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Abstract— This paper presents sufficient conditions that char-
acterize the stability properties of certain classes of inter-
connected systems. The considered classes of systems include
autonomous, continuous and discrete time nonlinear systems
coupled with linear or nonlinear interconnection terms. These
conditions are then exploited for the decentralized event-
based control of interconnected systems. Examples illustrate
the theoretical results and simulations show the effectiveness of
the proposed event-based techniques.

I. INTRODUCTION

Vector Lyapunov functions were first introduced by Bell-
man [2] and Matrosov [15] and have extended the classical
Lyapunov framework for the analysis of large-scale systems.
Compared to a single scalar Lyapunov function, the use
of vector Lyapunov functions has been proven to be more
flexible for studying stability. Indeed, instead of using a
single Lyapunov function to study the stability of the overall
system, each component of the vector Lyapunov function
can be used at different hierarchical levels. The advantages
and flexibility of vector Lyapunov functions have been
extensively used to study a variety of stability problems for
complex or large-scale systems, see for instance [1], [6], [13],
[14], [16], [17], [19], [25], [28] and references therein. Sta-
bilization of nonlinear systems by vector control Lyapunov
functions has also been considered in [11] and [18].

In this paper we present a novel distributed stability test
for interconnected systems. In particular, similar to [1] and
[19], we start by considering a weighted sum of Lyapunov
functions d1V1 + d2V2 + . . . + dNVN , di > 0, N being
the number of subsystems, which will serve as a Lyapunov
function for the overall interconnected system. Traditionally,
the existence of the di’s above that establish asymptotic or
exponential stability of the interconnected system is based on
M -matrices, namely, matrices with nonpositive off-diagonal
elements and positive principal minors. In the proposed
approach, instead of testing if a matrix is a M -matrix in
a centralized way, i.e., calculating the principal minors and
then finding suitable di’s, we determine each di through
the solutions of a quadratic inequality. In particular, we
first associate the N subsystems to N different quadratic
inequalities which are independent of each other. Then,
the solutions of those N quadratic inequalities will form a
stability criterion for the overall interconnected system and
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will provide different margins for the selection of the weights
di, i = 1, . . . , N which also affect the region of attraction of
the total system. We note that a distributed stability test by
using optimization techniques was also presented in [8] for
linear systems with symmetric interactions which is not the
case in our work. The class of systems under consideration
may result from the decomposition of large-scale systems
into low-dimensional subsystems, structural perturbations,
unmodeled dynamics or physical couplings, see for instance
[19]. While we mainly focus on autonomous continuous-time
systems, we also include an extension for the discrete-time
case.

Finally, by leveraging techniques from [7], [10], [21],
and [27], we exploit the previous sufficient conditions to
study the event-triggered control of interconnected systems.
More specifically, the solutions of the quadratic inequalities
are used to define state-dependent triggering mechanisms
for the cases of sampled feedback stabilization and state-
broadcasting. Different mechanisms are used by each sub-
system to update its control law and to broadcast its state at
the same or different times. Note that [27] required global
input-to-state stability assumptions while a uniform lower-
bound on the inter-event period was not provided which is
not the case in our work. Other non-trivial ISS designs and
small gain conditions were also used in [7]. A small gain
approach was also employed for sampled-data stabilization
in [24].

The rest of the paper is organized as follows. Section II
contains the notation and definitions. Section III contains the
main result and its extensions to several classes of systems.
These sufficient conditions are exploited in Section IV for
the event-based control of interconnected systems.

II. PRELIMINARIES

Notations. We recall first some basic concepts and def-
initions. A function α : R≥0 → R≥0 is of class K, if it
is continuous and strictly increasing with α(0) = 0. If in
addition lims→∞ α(s) = ∞, then α is said to be of class
K∞. A function β : R≥0 × R≥0 → R≥0 is of class KL if
for each fixed t, β(·, t) is of class K and for each fixed s it
is decreasing to zero as t→∞. By |x| we denote both the
Euclidean norm of a vector x ∈ Rn and the absolute value
for a scalar. By λm(A) and λM (A) we denote the minimum
and maximum real part of the eigenvalues of A ∈ Rn×n,
respectively. By c(A) we denote the cardinality of a set
A. With det(A) we denote the determinant of a matrix
A ∈ Rn×n.



Consider a system ẋ = f(x), where x ∈ Rn, f : D → Rn
is locally Lipschitz, 0 ∈ D ⊂ Rn and f(0) = 0.

Definition 2.1: The equilibrium x = 0 of system ẋ =
f(x) is locally asymptotically stable if there exist a class
KL function β(·, ·) and a neighborhood D0 ⊂ D of the
equilibrium x = 0 such that for any initial state x(0) ∈
D0 the solution exists for all t ≥ 0 and satisfies |x(t)| ≤
β(|x(0)|, t). The equilibrium x = 0 of ẋ = f(x) is locally
exponentially stable if β(|x(0)|, t) := κ|x(0)|e−µt, κ, µ > 0.

Definition 2.2: Let x = 0 be an asymptotically stable
equilibrium point of system ẋ = f(x) and let x(t;x0) be the
solution of the system. The region of attraction of the origin
is R := {x ∈ D : x(t;x0) is defined∀t ≥ 0, andx(t;x0)→
0 as t→∞}.

III. SUFFICIENT CONDITIONS FOR STABILITY

Consider a group of i = 1, . . . , N systems described by

ẋi = fi(xi) (1)

which are interconnected through functions Hi(·) to form
the system

ẋi = fi(xi) +Hi(x), i = 1, . . . , N (2)

where xi ∈ Di ⊂ Rni , x = (xT1 , . . . , x
T
N )T ∈ Rn, n =∑N

i=1 ni and fi, Hi are locally Lipschitz. We assume that
x = 0 is an equilibrium for (2), i.e., fi(0) = 0, Hi(0) = 0
for all i ∈ N = {1, . . . , N}. We assume that the following
holds:

Assumption A1: For each i ∈ N , there exist C1 functions
Vi : Di → R and constants ai1, ai2, ai3, ai4 > 0 such that

ai1|xi|2 ≤ Vi(xi) ≤ ai2|xi|2, xi ∈ Di (3a)

∇Vi(xi)fi(xi) ≤ −ai3|xi|2, xi ∈ Di (3b)∣∣ ∇Vi(xi) ∣∣≤ ai4|xi|, xi ∈ Di (3c)
Assumption A1 implies that each decoupled system (1)

is exponentially stable. In the following, we consider the
regions of attraction Ri for each system (1) and in particular
we consider any bounded estimate Si ⊂ Ri ⊂ Di of the form

Si := {xi ∈ Ri : Vi(xi) ≤ ci}, ci > 0. (4)

Note that Assumption A1 holds for all xi ∈ Si and several
techniques in the literature provide such estimates Si, see for
instance [5], [9]. Next, define the set S := S1 × . . . × SN
which is an estimate of the region of attraction of (2) under
no interaction. For the terms Hi(·) we assume that

Assumption A2: There exist ξij ≥ 0 such that |Hi(x)| ≤∑N
j=1 ξij |xj |, x ∈ S.
Assumption A2 imposes a restriction on the interconnec-

tion term and it is a standard assumption when studying
the stability of interconnected systems. Note however that
contrary to [19], A2 needs not to hold globally.

Next we define the neighborhood ∆i = Ξi ∪ Θi of the
i-th subsystem (1), which includes the systems j ∈ N that
directly drive system i ∈ N through the interconnection term
Hi(·), Θi = {j ∈ N : ξij 6= 0}, as well as the systems j ∈
N that are driven by system i, Ξi = {j ∈ N : ξji 6= 0}. Note

that we do not exclude the case where the interconnection
term Hi(·) also depends on the state xi, i.e., ξii 6= 0.

Traditionally, using the above assumptions one chooses a
composite Lyapunov function V =

∑
diVi to establish suffi-

cient conditions for the stability of the interconnected system.
In particular, for the derivative of this composite Lyapunov
along system (2) it holds that V̇ (x) ≤ − 1

2φ
T (DW+WTD)φ

where D = diag(d1, . . . dn), φ = (|x1|, . . . , |xn|)T , W =
(wij) with wij = ai3 − ai4ξii if i = j and wij =
−ai4ξij if i 6= j. Then, asymptotic stability of the origin of
the interconnected system follows if there exists a positive
diagonal matrix D such that DW+WTD is positive definite.
The latter is established by the following lemma:

Lemma 3.1: ([1], [19]) Consider a n × n matrix W =
(wij) with wij ≤ 0 for all i, j = 1, . . . , n, i 6= j. The
following are equivalent:

(i) All leading principal minors of W are positive.
(ii) There exists a positive diagonal matrix D =

diag(d1, . . . dn) such that DW + WTD is positive
definite.

Matrices satisfying Lemma 3.1 are called M -matrices. Thus,
the asymptotic stability of the origin of the interconnected
system (2) is established if the interconnection matrix W
above is an M -matrix. However, determining if the matrix
W is an M -matrix and selecting an appropriate matrix
D, are performed in a centralized way in the sense that
manipulations are required using the whole interconnection
matrix W . Namely, first test if the leading principal minors
of W and then select D = diag(d1, . . . dN ). Note that if W
in Lemma 3.1 is positive diagonally dominant, then it is also
a M -matrix, [1], [19]. However, finding the constants di > 0
still remains a global problem.

We next present a sufficient condition to characterize the
stability of an interconnected system where we only need to
check the stability of each individual system. In particular
we have

Proposition 3.1: Consider system (2) and assume that
Assumptions A1 and A2 hold. Then,

(i) If for each i ∈ N

a2
i3 − c(Θi)a

2
i4

N∑
j=1

ξ2
ji > 0 (5)

then the system is exponentially stable.
(ii) If there exists i0 ∈ N such that (5) holds and

a2
i3 − c(Θi)a

2
i4

N∑
j=1

ξ2
ji = 0, ∀i ∈ N \ {i0}; (6a)

Hi0(x) 6= 0, x 6= 0, (6b)

then the system is asymptotically stable.
(iii) The system is stable if one the following holds:

(a) (6a) holds and Hi0(x) = 0 for x 6= 0; or
(b) condition (6a) holds for all i ∈ N .

Proof: For each i ∈ N and from Assumption A1, we
consider the candidate composite Lyapunov function V (x) =∑N
i=1 diVi(xi) where di are positive constants to be selected

appropriately, and note that V (0) = 0 and V (x) > 0, x 6= 0.



The derivative of V along the trajectories of the system
is given by V̇ (x) =

∑N
i=1 di

(
∇Vifi(xi) +∇ViHi(x)

)
. By

taking into account Assumptions A1 and A2, we have that

V̇ (x) ≤−
N∑
i=1

diai3|xi|2 +

N∑
i=1

diai4|xi|
N∑
j=1

ξij |xj |. (7)

By applying the inequality xy ≤ x2

2 + y2

2 with x =
diai4|xi| and y = ξij |xj | in the last term on the right
hand side of (7) and by expanding the summations and
rearranging terms we obtain

∑N
i=1 diai4|xi|

∑N
j=1 ξij |xj | ≤

1
2

(∑N
i=1 c(Θi)d

2
i a

2
i4|xi|2 +

∑N
i=1 |xi|2

∑N
j=1 ξ

2
ji

)
. There-

fore, it follows from (7) that

V̇ (x) ≤ 1

2

N∑
i=1

|xi|2
(
c(Θi)a

2
i4d

2
i − 2ai3di +

N∑
j=1

ξ2
ji

)
. (8)

(i) Assume that (5) holds and notice that V̇ (x) in (8) will be
negative definite if for each i ∈ N there exists di > 0 such
that

c(Θi)a
2
i4d

2
i − 2ai3di +

N∑
j=1

ξ2
ji = −qi < 0, qi > 0 (9)

then, we would have from (8) and (9) that

V̇ (x) ≤ −
N∑
i=1

qi
2
|xi|2, (10)

which would imply exponential stability for system (2).
Recall first that ai3, ai4, and c(Θi) are all positive constants.
Define now

gi(y) := αiy
2 + βiy + γi, (11)

where αi := c(Θi)a
2
i4, βi := −2ai3, γi :=

∑N
j=1 ξ

2
ji. Then,

we have from (5) and (11) that there exist yi1, yi2 ∈ R>0

such that gi(y) < 0, y ∈ (yi1, yi2). Thus, inequality (9)
is satisfied and consequently that (10) holds which implies
exponential stability of x = 0. Finally, an estimate of the
region of attraction R for the interconnected system is given
as follows. Let di ∈ (yi1, yi2) and define r := mini∈N dici,
where ci > 0 is given by (4). Then, an estimate of the region
of attraction is given by Ωr := {x ∈ Rn : V (x) ≤ r}.

(ii) Assume now that there exists i0 ∈ N such that (5)
holds. Then, according to (i) there exists di0 such that (9)
holds. Suppose now that for each i ∈ N \ {i0}, (6) holds.
Then, it follows from (11) and (11) that for each i ∈ N\{i0},
there exists ŷ > 0 such that gi(ŷ) = 0. In particular, we
can obtain that ŷ = di = − βi

2αi
> 0. With this selection of

di > 0 we obtain from (8): V̇ (x) ≤ − 1
2qi0 |xi0 |

2 ≤ 0. Define
Ec = {x ∈ S : V̇ (x) = 0} = {x ∈ S : xi0 = 0}. Let x(t)
be a solution in Ec. Due to (6b) and the definition of Ec,
the latter implies that

xi0(t) ≡ 0⇒ ẋi0(t) ≡ 0⇒
Hi0(x(t)) ≡ 0⇒ x(t) ≡ 0. (12)

Thus, the only solution that lies in Ec is the zero solution and
according to Barbashin-Krasovskii-LaSalle Theorem, [12]

this implies asymptotic stability. (iii) (a) Assume first that
(6a) holds and in addition that there exists x 6= 0 such that
Hi0(x) = 0. Then, the third implication in (12) is not true
and we we obtain V̇ (x) ≤ 0 which establishes stability of
(2). (b) Finally, suppose that for all i ∈ N condition (6a)
holds. Then it follows from (11) and (11) that there exist
di > 0 such that (10) holds with qi = 0 for all i ∈ N which
implies stability of (2).

Proposition (3.1) provides a condition to characterize
the stability properties of an interconnected system of the
form (2). More specifically, (5) implies the existence of
two solutions to equation gi(y) = 0 in (11). Those two
solutions give a certain margin for the selection of the
constants di in the weighted composite Lyapunov function
V =

∑
diVi to guarantee exponential stability of (2). In

particular we obtain from (11) that for any di ∈ (yi1, yi2) :=

(
−βi−

√
β2
i−2αiγi

2αi
,
−βi+

√
β2
i−2αiγi

2αi
) the system is exponen-

tially stable. For values closer to yi2, we decrease the rate
of convergence, but we may increase the estimate of the
region of attraction. Finally, note that exponential stability
is guaranteed if (5) holds for all i ∈ N . This condition is
relaxed in property (ii) of Proposition 3.1 where only one
system is required to satisfy (5). In this case, attractivity
to zero is guaranteed by the Barbashin-Krasovskii-LaSalle
Theorem only if we impose the additional condition (6b).
Note that Proposition 3.1 (ii) requires at least one system to
satisfy (6a) and (6b) in a neighborhood of zero to establish
asymptotic stability. Finally, if condition (6b) does not hold,
namely, if there exists x 6= 0 for which Hi0(x) = 0 it is not
possible to apply the same arguments as in (12) and thus only
stability of the interconnected system can be established.

Remark 3.1: Consider the interconnection of two identical
systems ẋ1 = f(x1) + H1(x2), ẋ2 = f(x2) + H2(x1)and
suppose that Assumptions A1 and A2 hold globally with the
same Lyapunov function. Then, according to (3.1), stability
of the interconnected system follows if det(W ) > 0, or
equivalently if ξ12ξ21 <

a213
a214

. Notice now that according
to Proposition 3.1(i), the system is exponentially stable if
both ξ12 <

a13
a14

and ξ21 <
a13
a14

. While condition (5) is more
conservative than the traditional M -matrix test, it provides a
systematic and distributed approach to characterize stability
and calculate the weights di in the composite Lyapunov
function.

Example 3.1: Consider the interconnection of systems

ẋi = fi(xi) +Hi(xi−1, xi+1), i ∈ N

with x0, xN+1 ≡ 0. Assume now that Assumptions A1 and
A2 hold globally. Then, according to Proposition 3.1, the
system is exponentially stable if, for i = 1, a2

13 > a2
14ξ

2
21,

i = N , a2
N3 > a2

N4ξ
2
N−1,N , and for i = 2, . . . , N −1, a2

i3 >
2a2
i4(ξ2

i−1,i + ξ2
i+1,i). In addition if (6) holds, the system is

asymptotically stable. A similar system was also considered
in [20] to study l2 string stability and in [3] to study the
robustness of spatially invariant large-scale systems. String
stability and its properties are beyond the scope of this paper.

Part (i) of Proposition (3.1) can be extended to non-



autonomous interconnected systems. Consider the following
non-autonomous system: ẋi = fi(t, xi) + Hi(t, x) with fi,
Hi locally Lipschitz in xi and fi(t, 0) = 0 and Hi(t, 0) = 0.
Then we have the following result whose proof is omitted
due to space constraints:

Proposition 3.2: Assume that each decoupled system
ẋi = fi(t, xi) is exponentially stable and Assumptions
A1, A2 hold uniformly in t. Further assume that for all
i ∈ N , condition (5) holds. Then, the interconnected system
is exponentially stable. If in addition there exists i ∈ N such
that (6a) holds, then the system is stable.

Finally, we extend the previous results to the case of
discrete-time system

xi(k + 1) = fi(xi(k)) +Hi(x(k)), i ∈ N (13)

where k ∈ Z≥0, xi(k) ∈ Di ⊂ Rni , 0 ∈ Di, fi : Di →
Rni are locally Lipschitz with Lipschitz constant Li > 0
and fi(0) = 0, Hi(0) = 0.For each decoupled subsystem
xi(k + 1) = fi(xi(k)) we assume that

Assumption A3: There exist functions Vi : Di → R such
that

ai1|xi|2 ≤ Vi(xi) ≤ ai2|xi|2 (14a)

∆fiVi(xi) = Vi(fi(xi))− Vi(xi) ≤ −ai3|xi|2 (14b)
|Vi(x)− Vi(y)| ≤ ai4|x− y|(|x|+ |y|) ∀x, y ∈ Di (14c)

Assumption A3 provides exponential stability for discrete-
time systems, [12, Exercise 4.68]. Note that (14c) is a
Lipschitz property on the Lyapunov function. The following
result extends Proposition 3.1 to the discrete-time case under
the additional assumption

Assumption A4: The neighborhood ∆i, i ∈ N , is sym-
metric. Namely, it holds that j ∈ Θi ⇐⇒ j ∈ Ξi.

Assumption A4 implies that when a system j drives
system i, then also i drives system j.

Proposition 3.3: Consider system (13) and assume that
for each i ∈ N there exist Vi satisfying (14). Also, assume
that A3 and A4 hold. Then,

(i) the system is exponentially stable if for each i ∈ N

Qi :=ai3 − ai4c(Ξi)
N∑
j=1

ξ2
ji > 0 (15a)

Q2
i >4c(Ξi)a

2
i4L

2
i

N∑
j=1

ξ2
ji. (15b)

(ii) If there exists i0 ∈ N such that (15) holds and

Q2
i = 4c(Ξi)a

2
i4L

2
i

N∑
j=1

ξ2
ji ∀i ∈ N \ {i0} (16a)

Hi0(x) 6= 0, x 6= 0 (16b)

then the system is asymptotically stable.
(iii) The system is stable if one the following holds:

(a) (16a) holds and Hi0(x) = 0 for x 6= 0; or
(b) condition (16a) holds for all i ∈ N .

Proof: Due to space constraints the proof is omitted.

For the discrete time case, to guarantee the exponen-
tial stability of the interconnected system we require that
ai3− ai4N

∑N
j=1 ξ

2
ji > 0 and (ai3− ai4c(Ξi)

∑N
j=1 ξ

2
ji)

2 >

4c(Ξi)(ai4Li)
2
∑N
j=1 ξ

2
ji which imply that we require small

interconnection terms and high degree of stability of each
decoupled system xi(k + 1) = fi(xi(k)). Proposition 3.3
can also be partially extended to the non-autonomous case.

IV. APPLICATION TO EVENT TRIGGERED CONTROL

The sufficient condition (5) in Proposition 3.1 is fulfilled
when the degree of stability of each individual system is
greater than the strength of the interconnection. Thus, by
using local feedback laws it may be possible to fulfill this
condition. For instance, consider that each decoupled system
is of the form ẋi = fi(xi, ui) where ui = hi(xi) is a lo-
cally Lipschitz feedback law that exponentially stabilizes the
closed-loop system ẋi = fi(xi, hi(xi)), namely, Assumption
A1 holds. Then, if the feedback law can enhance the stability
of the system, namely, if ai3 > 0 in (3b) can be selected
arbitrarily large in such a way that condition (i) or (ii) of
Proposition (3.1) hold, then we can establish asymptotic
stability of the interconnected system. Note however that this
is not always true, see [19].

In this section, we exploit the stability margins qi given
by the solution of (9) in Proposition 3.1 for the event-based
stabilization of the coupled system

ẋi(t) = fi(xi(t), ui(t)) +Hi(x(t))

ui(t) = hi(x(tik)), t ∈ [tik, t
i
k+1)

(17)

where tik, k ∈ Z≥0 is the time the controller i is recomputed
and updated.

Assumption A5: There exist locally Lipschitz feedback
laws ui = hi(xi), hi : Di → Rm, hi(0) = 0, i ∈
N , constants ai1, ai2, ai3, ai4 > 0 and C1 functions Vi :
Di → R≥0 such that ai1|xi|2 ≤ Vi(xi) ≤ ai2|xi|2, xi ∈
Di, ∇Vi(xi)fi(xi, hi(xi)) ≤ −ai3|xi|2, xi ∈ Di and
|∇Vi(xi)| ≤ ai4|xi|, xi ∈ Di.

In particular, we have
Proposition 4.1: Consider the interconnection of systems

(17) under the Assumptions A2 and A5 and in addition let
property (5) hold. Then, the triggering mechanism

Lidiai4|ei| ≤ βiqi|xi|+ εi (18)

with Li, di, qi, εi > 0 and βi ∈ (0, 1) guarantees practical
stability of the sampled system (17), where ei := xi − x̂i,
x̂i := xi(t

i
k).

Proof: [Outline] Consider again the Lyapunov func-
tion V =

∑N
i=1 diVi for some positive constants di,

i ∈ N . Then, it follows by taking into account As-
sumption A1, A2, by adding and subtracting terms and
by exploiting the Lipschitz properties of the system that
V̇ (x) =≤

∑N
i=1

1
2

(
d2
i (c(Θi)a

2
i4)−2ai3di+

∑N
i=1 ξ

2
ji

)
|xi|2+

Lidiai4|xi||ei| where Li > 0 is the Lipschitz constant of
f , h and ei = xi − x̂i. Since condition (5) holds for each
i ∈ N , it follows as in (11) that there exist di > 0 such that
1/2c(Θi)a

2
i4d

2
i − ai3di + 1/2

∑N
j=1 ξ

2
ji = −qi < 0, qi > 0



and therefore, V̇ (x) ≤
∑N
i=1−qi|xi|2 + Lidiai4|xi||ei|.

Finally, from the triggering condition (18) we obtain V̇ (x) ≤∑N
i=1−qi(1− βi)|xi|2 + εi|xi| ≤

∑N
i=1−qi(1− βi)|xi|2 +

1
2δi
|xi|2 +

δiε
2
i

2 where we have applied the inequality xy ≤
x2

2ε + εy2

2 , ε > 0. Then for δi = 2
qi(1−βi)

it follows that

V̇ (x) ≤ −κ1V (x) + η1 with κ1 = mini∈N {qi(1−βi)/2}
maxi∈N {diai2} and

η1 =
∑N
i=1

2
qi(1−βi)

ε2i which implies ultimate boundedness
for sufficiently small εi > 0.

Note that the triggering condition (18) requires first to
solve gi(y) < 0 in (11) for each subsystem i ∈ N and
select di to obtain the constants qi > 0. In particular, by
appropriately selecting di in the interval (yi1, yi2), where
yi1, yi2 are the solutions of gi(y) = 0 in (11), as well as the
constant βi ∈ (0, 1) we can regulate the rate of convergence
of the system, the number of controller updates as well
as the region of attraction R. A lower-bound on the inter-
event period can be obtained by exploiting the inequality
d
dt |ei(t)| ≤ |ėi(t)| ≤ 2Li|xi(tk)| + Li|ei(t)| + h where
h = c(Θi) maxj∈Ξi

{ξij |xj0|} and Li the Lipschitz constant
on the compact set V := {x : V (x) ≤ V (x0)}, where
V (x) =

∑N
i=1 diVi(xi) and x0 = (xT10, . . . , x

T
N0)T . Due to

space constraints the details are omitted.
Remark 4.1: State-dependent mechanisms as in (18) have

been widely used in the relative literature, see for instance
[21], [23], [27] and references therein. While we do not re-
quire global input-to-state stability assumptions as in [7] and
[27], we only obtain semi-global results. Several extensions
can also be obtained by using time-dependent triggering
mechanisms as in [10] and [23]. Note that for εi = 0,
i ∈ N in (18) we can establish exponential stability instead
of practical. However the lower bound on the inter-event
period may decrease as the state approaches the equilibrium
as is the case in [27].

In (17) the state of each subsystem is transmitted continu-
ously through the interconnection term (consider for instance
collaborative manipulation or physically interconnected sys-
tems, [4], [10]). Motivated by networked environments where
communication may take place over digital networks (see for
instance [26]), we consider the interconnected system

ẋi(t) = fi(xi(t)) +Hi(x(tk)) (19)

where x(tk) = (x1(t1k)T , . . . , xi−1(ti−1
k )T , xi+1(ti+1

k )T , . . . ,
xN (tNk )T )T . In this case each subsystem i ∈ N sends
a sampled version of its state to its neighbors, namely,
j ∈ Ξi. We derive next a suitable mechanism to determine
the broadcasting times and preserve the stability of the
interconnected system. Due to space constraints the proof is
omitted.

Proposition 4.2: Consider the system (19) and suppose
that Assumptions A1 and A2 hold. In addition assume that
condition (5) holds. Then, if each system i ∈ N broadcasts
its state according to the rule

δi
∑N

j=1
ξ2
ji|ei|2 ≤ βiQi|xi|2 (20)

for some βi ∈ (0, 1) with Qi :=
a2i3

c(Θi)a2i4
(1− 1

δi
)−
∑N
j=1 ξ

2
ji

and δi >
a2i3

a2i3−c(Θi)a2i4
∑N

i=1 ξ
2
ji

, then the system (19) is
exponentially stable.

Note that similar arguments as in Remark 4.1 hold for the
broadcasting periods. While the bound on the period might
decrease as the state approaches the equilibrium, Fig. 2 in
Example 5.2 shows that this bound is conservative for certain
systems, see also [27].

Two more cases can be considered. First, both the mech-
anisms presented before can be combined for the case of
ẋi(t) = fi(xi(t), ui(t)) + Hi(x(bk)), ui(t) = hi(xi(t

i
k)),

t ∈ [tik, t
i
k+1), where tk represent the controller update times

and bk represent the broadcasting times similar to [27].
Finally, another interesting case arises if we consider

systems of the form ẋi = f̄i(xi,xj , ui) with xj = {xj : j ∈
Ξi} and with the input ui(t) = h(xi,xj) which decomposes
the system to the form ẋi = fi(xi, 0, hi(xi)) + Hi(xi,xj)
in such a way that Assumptions A5 and A2 hold. Then, by
combining the approaches before, the following condition al-
lows both controller updates and transmissions to occur at the
same time: δi

(
L2
i +

∑N
j=1 ξ

2
ji

)
|ei|2 ≤ βiQi|xi|2 + εi, βi ∈

(0, 1), εi > 0 with Qi =
a2i3

(c(Θi)+1)a2i4
(1− 1

δi
)−
∑N
j=1 ξ

2
ji for

sufficiently large δi > 0. Such a case may occur in affine in
the control systems under matching conditions. Finally, it is
possible to extend the results of this section by considering
data dropouts and delays using similar arguments as in [27]
and by assuming globally bounded dynamics for the systems
and interconnection terms.

V. SIMULATIONS

Example 5.1: Consider the system ẋi = −xi sin2(x2
i ) +

ui cos(x2
i ) + Hi(x), i = 1, 2, 3, 4 where H1(x) = 0.4x2,

H2(x) = 3x1x
2
3 + 0.8x3x4, H3(x) = 0.2x2

2 + 0.4x4 sin(x4),
and H4(x) = 3x2

2x
3
3. The feedback law ui = −xi cos(x2

i )
exponentially stabilizes each decoupled system with Lya-
punov function Vi = 1

2x
2
i , and ai3 = ai4 = 1, i = 1, 2, 3, 4.

Then, for |x1| ≤ 1.4, |x2| ≤ 1, |x3| ≤ 0.5, |x4| ≤ 1.2 it
follows that A2 holds with ξ12 = 0.4, ξ21 = 0.9, ξ23 = 0.6,
ξ24 = 0.4, ξ32 = 0.2, ξ34 = 0.5, ξ42 = 0.3, ξ43 = 0.3 and
(5) holds for each i = 1, 2, 3, 4. Then, we can determine
from (9) values for di to establish exponential stability. By
using (11) we find that d1 ∈ (0.56, 1.43), d2 ∈ (0.21, 0.45),
d3 ∈ (0.34, 0.66), d4 ∈ (0.29, 0.71) and let with βi = 0.8,
i = 1, 2, 3, 4 for the triggering mechanism (18) and εi =
10−4. Also, let x10 = 1.4, x20 = 1, x30 = −0.5, and
x40 = −1.2 be the initial conditions of the systems. Then,
we can obtain on the compact sets {x ∈ R, Vi(x) ≤ Vi(xi0)}
that L1 = 4, L2 = 1.14, L3 = 1, and L4 = 2.72. Different
values of di were selected as in Table 1. The simulation
results and the number of updates for are depicted in Fig. 1
and Table 1 respectively. For smaller values of di the number
of updates decreases but the target set becomes larger as
shown in Fig. 1.

Example 5.2: Consider the systems ẋi = −2xi+y
2
i , ẏi =

−xiyi − 3yi +
∑3
j=1 ξijyj where i, j = 1, 2, 3 and ξii = 0.

For each system we consider the Lyapunov function Vi =
1
2 (x2

i + y2
i ). It can be seen that each decoupled system is



TABLE 1
Values of di

Case 1 2 3 4 5
d1 1 0.78 1.21 1.42 0.57
d2 0.33 0.27 0.39 0.44 0.22
d3 0.5 0.42 0.57 0.65 0.35
d4 0.5 0.39 0.60 0.7 0.3

No of Transmissions in 20s
x1 414 414 644 3557 2157
x2 137 142 198 390 269
x3 138 148 199 566 323
x4 264 265 403 1365 616
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Fig. 1. Norm of states of systems of Example 5.1.

exponentially stable with ai3 = 2 and ai4 = 1. Also, let
ξ21 = 0.8, ξ31 = 1, ξ12 = 0.6, ξ32 = 1.2, ξ13 = 0.9
and ξ23 = 0.8. Then, it follows that (5) is satisfied with
c(Θi) = 2 and thus the system is exponentially stable. Next,
by considering (20) for δ1 = 10, δ2 = 20, δ3 = 5, we obtain,
Q1 = 0.16, Q2 = 0.1, and Q3 = 0.15. Also, let β1 = 0.7,
β2 = 0.8, β3 = 0.6, The simulations results are shown in
Fig. 2. Note that in Fig. 2 (left) the broadcasting periods are
lower bounded.

VI. CONCLUSION

In this paper we presented stability tests for certain
classes of interconnected systems including autonomous,
time-varying, continuous and discrete time nonlinear systems
coupled with linear or nonlinear interconnection terms. These
conditions were then exploited for the decentralized event-
based control of interconnected systems with state dependent
mechanisms. Future work will address the stabilization of
interconnected systems by exploiting the sufficient conditions
presented in this paper and extend the event-triggered control
approaches of [22] and [23] to discrete time interconnected
systems.
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