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Abstract— A formulation of the area defense and surveillance
problem for one intruder and one defense and surveillance
robot and its corresponding solution using control barrier
functions is presented. The defense robot must follow the
intruder as it moves through a rectangular region in the
plane, ensuring that the position of the intruder is also within
a rectangular region attached to the surveillance robot. The
proposed reactive and closed-form control laws depend on
the positions of the robots, their maximum speeds, and the
size of the rectangular regions. We show the application and
effectiveness of our results in experiments with real robots.

I. INTRODUCTION

The work [1] introduced the target guarding problem,
consisting of an evader or intruder which tries to reach a
target location, and a pursuer or defender trying to intercept
the evader before it reaches the target. In this paper, we study
a version of the target guarding problem where a defense
and surveillance robot, acting as the pursuer or defender,
must protect a rectangular target region from undetected
intrusions. The defense robot is equipped with a rectangular
region around it which acts as a shield. Its goal is to move
ensuring that the intruder remains within the shield region
whenever it is on the target region.

The area surveillance problem can be considered in
the general category of pursuit-evasion problems [2]. Ap-
proaches to solve these problems include computing the
reachable sets of pursuers and evaders through the Hamilton-
Jacobi equation [3]–[7], as well as the use of Voronoi-
like partitions of the environment [8]–[10]. For area search
and patrolling, continuous space [11] and graph-based [12]
schemes have been studied, and techniques to calculate the
boundaries of the area where the intruder might be located
based on its velocity have been developed [13]. Closely
related to area surveillance, algorithms for area coverage
have been studied in the literature [14]–[16].

In our previous work [17], we study a solution to the
perimeter surveillance problem for one intruder and multiple
surveillance robots using control barrier functions. Our con-
tribution in this paper is a formulation and solution to the
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area defense and surveillance problem for one intruder and
one surveillance robot using set-invariance methods based on
control barrier functions. The intruder is allowed to move
throughout the plane with a continuously differentiable po-
sition and bounded speed. The surveillance robot is allowed
to move on the plane with a bound on its speed that is
less or equal than that of the intruder, and has an associated
rectangular region attached to it. The goal of the surveillance
robot is to ensure that the position of the intruder is always
within its associated rectangular region whenever the intruder
is inside a predefined and fixed rectangular target region
on the plane. Compared to the reachability, planning, and
coverage strategies in the literature, our solution consists of a
reactive closed-form control law calculated from the position
of the intruder and the surveillance robot, the speed bounds,
and the geometric characteristics of the rectangular regions.
Similar to recent approaches in coverage control [15], [16],
the solution makes use of Zeroing Control Barrier Functions
[18], [19].

The paper is structured as follows. Section II describes
the problem formulation and states the control objective
to be satisfied by our proposed control laws. Section III
presents sufficient conditions to solve the control objective,
and Section IV describes the proposed control laws. Our
theoretical results are implemented in The Robotarium [20]
in Section V.

II. PROBLEM FORMULATION

Let xP ∈ R2 denote the position of point P on the plane,
and let xA (t) denote the position of the intruder robot A.
It is assumed that xA (t) is continuously differentiable and
can be measured, and that the velocity ẋA (t) is bounded by
vA > 0 such that ∥ẋA (t) ∥ ≤ vA, but is otherwise unknown.

Let xD (t) be the position of the defense robot D, with
dynamics given by

ẋD (t) = u (t) (1)

The velocity of robot D is assumed to be bounded such that
∥ẋD (t) ∥ ≤ vD with 0 < vD ≤ vA.

Let the target region T ⊂ R2 be a rectangular region with
vertices at xV i for i ∈ {1, 2, 3, 4} numbered in counter-
clockwise direction. To avoid using modulo arithmetic and
for simplicity of the notation, let xV 5 = xV 1. Each of the
rectangle’s sides is a boundary of T . The vector going from
one vertex to the other of the ith boundary is given by

bi = xV i+1 − xV i (2)



TABLE I: Function TA,i (xA (t) ,xV i)

TA,i (xA (t) ,xV i) = (3)

1
vA

(√(
(xA (t)− xV i) · b̂i+1

)2
+
(
(xA (t)− xV i) · b̂i − Li

)2
+ ϵ2 − ϵ

)
for (xA (t)− xV i) · b̂i ≥ Li

1
vA

(√(
(xA (t)− xV i) · b̂i+1

)2
+ ϵ2 − ϵ

)
for 0 < (xA (t)− xV i) · b̂i < Li

1
vA

(√(
(xA (t)− xV i) · b̂i+1

)2
+
(
(xA (t)− xV i) · b̂i

)2
+ ϵ2 − ϵ

)
for (xA (t)− xV i) · b̂i ≤ 0

for i ∈ {1, 2, 3, 4} and xV 5 = xV 1. The length Li of the
ith side of the rectangle is given by Li = ∥bi∥, and the
corresponding unit vector is given by b̂i =

bi

∥bi∥ . The vector
perpendicular to b̂i and directed towards the inside of T ,

denoted by b̂⊥i, is given by b̂⊥i =

[
0 −1
1 0

]
b̂i. Since T is a

rectangle, opposite sides are parallel and of the same length,
and adjacent sides are perpendicular. Given these geometric
constraints, we have b̂1 = −b̂3, L1 = ∥b1∥ = ∥b3∥ = L3,
b̂2 = −b̂4, L2 = ∥b2∥ = ∥b4∥ = L4, b̂⊥1 = b̂2, b̂⊥2 = b̂3,
b̂⊥3 = b̂4, and b̂⊥4 = b̂1. We use the notation b̂i = −b̂i+2

and b̂⊥i = b̂i+1 for i ∈ {1, 2, 3, 4}, with b̂5 = b̂1 and
b̂6 = b̂2.

The ith half-plane corresponding to the ith boundary of T
can be expressed as HT ,i = {xP : (xP − xV i) · b̂i+1 ≥ 0}.
Then, T can be expressed as T =

⋂4
i=1 HT ,i, such that

T = {xP : (xP − xV i) · b̂i+1 ≥ 0, ∀i ∈ {1, 2, 3, 4}}. (4)

Let the shield region S ⊂ R2, be a rectangular region
surrounding robot D, with perpendicular constant distances
between its boundaries and xD (t) denoted by the positive
constants si, so that the position of the closest point on the
ith boundary of S to xD (t) is xD (t)− sib̂i+1. The shield
region can be defined by the intersection of the half-planes
HS,i = {xP : (xP − xD (t)) · b̂i+1+ si ≥ 0}, so that S can
be expressed as S =

⋂4
i=1 HS,i, which is equal to

S = {xP : (xP − xD (t)) · b̂i+1+si ≥ 0, ∀i ∈ {1, 2, 3, 4}}.
(5)

Figure 1 shows an image of the regions and the robot D
with parameters s1, s2, s3 and s4. The region S moves on
the plane together with xD (t). The objective of robot D is
to move so that, if xA (t) is within the target region T , then
it is also within the shield region S. We formalize this as the
following control objective:

Control Objective 1. Given the continuously differentiable
position xA (t) of robot A with velocity bounded by
∥ẋA (t) ∥ ≤ vA, vA > 0, the position xD (t) of robot
D with dynamics given by (1) and velocity bounded by
∥ẋD (t) ∥ ≤ vD, 0 < vD ≤ vA, and a target region T on
the plane according to (4), determine a shield region S with
parameters s1, s2, s3 and s4 as in (5) and design a control
law u (t) =

[
u1 (t) , u2 (t)

]T
bounded by ∥u (t) ∥ ≤ vD for

robot D such that xA (t) ∈ S whenever xA (t) ∈ T , that is,

Fig. 1: The vertices xV i of the rectangular target region, and
the distances si from xD (t) to the edges of the shield region
S are shown.

(xA (t)− xD (t)) · b̂i+1 + si ≥ 0 ∀i ∈ {1, 2, 3, 4} whenever
(xA (t)− xV i) · b̂i+1 ≥ 0 ∀i ∈ {1, 2, 3, 4}, ∀t ≥ 0.

III. A SUFFICIENT CONDITION FOR
RECTANGULAR AREA SURVEILLANCE

In this section, sufficient conditions to satisfy the Control
Objective 1 are shown. The next Lemma will be used in later
proofs.

Lemma 1. If xA (t) ∈ T , then 0 ≤ (xA (t)− xV i) · b̂i ≤ Li

for all i ∈ {1, 2, 3, 4}.

Proof. If xA (t) ∈ T then, by (4), (xA (t)− xV i) · b̂i+1 ≥ 0
for all i ∈ {1, 2, 3, 4} with b̂5 = b̂1. Using (2), xV i =
xV i+1 − bi = xV i+1 − Lib̂i. Then, we have

0 ≤ (xA (t)− xV i) · b̂i+1 =
(
xA (t)− xV i+1 + Lib̂i

)
· b̂i+1

= (xA (t)− xV i+1) · b̂i+1 (6)

which is equivalent to (xA (t)− xV i) · b̂i ≥ 0 for all i ∈
{1, 2, 3, 4} with xV 5 = xV 1. Since, 0 ≤ (xA (t)− xV i) ·
b̂i+1 implies 0 ≤ (xA (t)− xV i+1) · b̂i+2 with xV 5 = xV 1,
b̂5 = b̂1, b̂6 = b̂2 and b̂i+2 = −b̂i, then

0 ≤ (xA (t)− xV i+1) · b̂i+2 =
(
xA (t)− L1b̂i − xV i

)
· −b̂i

= − (xA (t)− xV i) · b̂i + Li, (7)



which implies (xA (t)− xV i) · b̂i ≤ Li for all i ∈
{1, 2, 3, 4}. Together, both results imply 0 ≤ (xA (t)− xV i)·
b̂i ≤ Li for all i ∈ {1, 2, 3, 4}.

Let the continuously differentiable function
TA,i (xA (t) ,xV i) be defined as in equation (3) in
Table I. The function of f (x) =

√
x2 + ϵ2 − ϵ ≤ |x| is

used as a continuously differentiable approximation to the
absolute value function, so that the constant ϵ > 0 must be
selected as small as possible for a better approximation. Let
TD,i (xD (t) ,xV i) be defined as

TD,i (xD (t) ,xV i) =
(xD (t)− xV i) · b̂i+1 − si

vD/
√
2

. (8)

Theorem 1. Assuming the conditions of the Control Objec-
tive 1 hold, if TA,i (xA (t) ,xV i) − TD,i (xD (t) ,xV i) ≥
0 ∀i ∈ {1, 2, 3, 4}, ∀t ≥ 0, then the Control Objective 1 is
solved.

Proof. Let xA (t) ∈ T so that, by (4), (xA (t)− xV i) ·
b̂i+1 ≥ 0 ∀i ∈ {1, 2, 3, 4}, and assume TA,i (xA (t) ,xV i)−
TD,i (xD (t) ,xV i) ≥ 0 ∀i ∈ {1, 2, 3, 4} ∀t ≥ 0. By
Lemma 1 and using (3), we have TA,i (xA (t) ,xV i) =

1
vA

(√(
(xA (t)− xV i) · b̂i+1

)2
+ ϵ2 − ϵ

)
. Substituting

together with (8) into TA,i (xA (t) ,xV i) −
TD,i (xD (t) ,xV i) ≥ 0, multiplying both sides by
vD/

√
2 and using vD

vA
√
2
< 1 leads to

0 ≤ vD

vA
√
2

(√(
(xA (t)− xV i) · b̂i+1

)2
+ ϵ2 − ϵ

)
−
(
(xD (t)− xV i) · b̂i+1 − si

)
≤ vD

vA
√
2
| (xA (t)− xV i) · b̂i+1|

−
(
(xD (t)− xV i) · b̂i+1 − si

)
≤ (xA (t)− xV i) · b̂i+1 − (xD (t)− xV i) · b̂i+1 + si

= (xA (t)− xD (t)) · b̂i+1 + si (9)

Therefore, TA,i (xA (t) ,xV i)−TD,i (xD (t) ,xV i) ≥ 0 ∀i ∈
{1, 2, 3, 4} ∀t ≥ 0 and xA (t) ∈ T imply (xA (t)− xD) ·
b̂i+1 + si ≥ 0 ∀i ∈ {1, 2, 3, 4}, which by (5) corre-
sponds to xA (t) ∈ S. Hence, if TA,i (xA (t) ,xV i) −
TD,i (xD (t) ,xV i) ≥ 0 ∀i ∈ {1, 2, 3, 4} ∀t ≥ 0, xA (t) ∈ S
whenever xA (t) ∈ T .

IV. CONTROL LAWS FOR AREA SURVEILLANCE

We proceed to ensure the conditions of Theorem 1,
i.e., TA,i (xA (t) ,xV i) − TD,i (xD (t) ,xV i) ≥ 0 ∀i ∈
{1, 2, 3, 4}, ∀t ≥ 0. This is done by defining a set that
contains the positions of robots A and D which satisfy
the conditions, and ensuring its forward invariance. We
use results from the literature on zeroing control barrier
functions. A brief introduction is given next, but the reader
is referred to [18]. Consider a system of the form

ẋ = f (x) + g (x)u (10)

where x ∈ Rn, u ∈ U ⊂ Rm, with f and g locally Lipschitz
continuous. For any initial condition x (0), there exists a
maximum time interval I (x (0)) = [0,τmax) such that x (t)
is the unique solution to (10) on I (x (0)). In the case when
(10) is forward complete, τmax = ∞. A set Z is called
forward invariant with respect to (10) if for every x (0) ∈ Z ,
x (t) ∈ Z for all t ∈ I (x (0)).

Let the set C be defined as

C = {x ∈ Rn : h (x) ≥ 0} (11)

where h : Rn → R is continuously differentiable. C is
assumed to be non-empty and to have no isolated points.

Definition 1 (Definition 5, [18]). Given a set C ⊂ Rn as
defined in (11) for a continuously differentiable function h,
the function h is called a zeroing control barrier function
(ZCBF ) defined on a set D with C ⊆ D ⊂ Rn, if there
exists an extended class K function α such that

sup
u∈U

[Lfh (x) + Lgh (x)u+ α (h (x))] ≥ 0,∀x ∈ D.

(12)

The Lie derivative notation is used, so that ḣ (x) =
∂h(x)
∂x f (x) + ∂h(x)

∂x g (x)u = Lfh (x) + Lgh (x)u. Given
a ZCBF h, define the set K = {u ∈ U : Lfh (x) +
Lgh (x)u+ α (h (x)) ≥ 0} for each x ∈ Rn.

Theorem 2 (Corollary 2, [18]). Given a set C ⊂ Rn as
defined in (11) for a continuously differentiable function h,
if h is a ZCBF on D, then any Lipschitz continuous controller
u : D → U for the dynamics (10) such that u (x) ∈ K will
render the set C forward invariant.

These results can be applied to time varying systems, as
described in [19]. In the following, the time and position
dependencies are implied. Let the state x ∈ R4 be defined
as x =

[
xD (t) xA (t)

]T
, with dynamics

ẋ =

[
0

ẋA (t)

]
+

[
I2×2

02×2

]
u (13)

where u ∈ U = {u : ∥u∥ ≤ vD}. The constraints from
Theorem 1 are used to define the ZCBF candidates hi (x)
for i ∈ {1, 2, 3, 4} as follows

hi (x) = TA,i (xA (t) ,xV i)− TD,i (xD (t) ,xV i) (14)

Since by Theorem 1 satisfying hi (x) ≥ 0 for all i ∈
{1, 2, 3, 4} solves the Control Objective 1, we define the set
C as

C = {x :

4⋂
i=1

hi (x) ≥ 0} (15)

The time derivative of TA,i (xA (t) ,xV i), given by ṪA,i =
∂TA,i

∂xA
· ẋA with ∂TA,i

∂xA
shown in equation (16) in Table II,

can be bounded by

−1 ≤ −∥∂TA,i

∂xA
∥vA ≤ ṪA,i ≤ ∥∂TA,i

∂xA
∥vA ≤ 1. (17)



TABLE II: ∂TA,i

∂xA

∂TA,i

∂xA
=



((xA(t)−xV i)·b̂i+1)b̂i+1+((xA(t)−xV i)·b̂i−Li)b̂i

vA

√
((xA(t)−xV i)·b̂i+1)

2
+((xA(t)−xV i)·b̂i−Li)

2
+ϵ2

for (xA (t)− xV i) · b̂i ≥ Li

((xA(t)−xV i)·b̂i+1)b̂i+1

vA

√
((xA(t)−xV i)·b̂i+1)

2
+ϵ2

for 0 < (xA (t)− xV i) · b̂i < Li

((xA(t)−xV i)·b̂i+1)b̂i+1+((xA(t)−xV i)·b̂i)b̂i

vA

√
((xA(t)−xV i)·b̂i+1)

2
+((xA(t)−xV i)·b̂i)

2
+ϵ2

for (xA (t)− xV i) · b̂i ≤ 0

(16)

The time derivative of TD,i is given by

ṪD,i =
1

vD/
√
2
b̂i+1 · u (18)

Let us define the coordinate frame of the target region, with
origin at xV 1 and with orthogonal axes given by b̂1 and
b̂2. The rotation matrix that transforms coordinates from the
target region frame T to the world frame is given by

WRT =
[
b̂1 b̂2

]
(19)

and its inverse is equal to its transpose, T RW =
(WRT )T.

A position vector xP in the frame of the target region
T is denoted by xT

P . Note that in the T -frame, b̂T1 =
T RW b̂1 =

[
1 0

]T
, b̂T2 = T RW b̂2 =

[
0 1

]T
, and

ûT =
[
uT
1 uT

2

]T
= T RWu. The coordinate frames are

shown in Figure 1. Since in cartesian coordinates for two
vectors a and b we have a ·b = aTb, (18) can be expressed
in the T -frame as

ṪD,i =
1

vD/
√
2

WRT b̂Ti+1 ·
WRT uT (20)

=
1

vD/
√
2

(
b̂Ti+1

)T (WRT )T WRT uT (t)

=
1

vD/
√
2
b̂Ti+1 · uT .

Substituting (17) and (20), ḣi (x) can be bounded by

ḣi (x) = ṪA,i − ṪD,i ≥ −1− 1

vD/
√
2
b̂Ti+1 · uT . (21)

Given (21), it can be ensured that ḣi (x) + α (hi (x)) ≥
0, with α (hi (x)) = γihi (x) where γi a strictly positive
constant, if the term b̂Ti+1 · uT satisfies the inequality

b̂Ti+1 · uT ≤ − vD√
2
(1− γihi (x)) (22)

for each i. The inequalities (22) for i ∈ {1, 2, 3, 4} take the
form uT

2 ≤ − vD√
2
(1− γ1h1 (x)), uT

1 ≥ vD√
2
(1− γ2h2 (x)),

uT
2 ≥ vD√

2
(1− γ3h3 (x)) and uT

1 ≤ − vD√
2
(1− γ4h4 (x)),

which can be rewritten as
vD√
2
(1− γ2h2 (x)) ≤ uT

1 ≤ − vD√
2
(1− γ4h4 (x)) (23)

vD√
2
(1− γ3h3 (x)) ≤ uT

2 ≤ − vD√
2
(1− γ1h1 (x)) (24)

The existence of a uT
1 and uT

2 that satisfy equations (23)
and (24) is discussed next. First, conditions to ensure

that minx (h1 (x) + h3 (x)) and minx (h2 (x) + h4 (x)) are
strictly positive are provided. Then, these minimum values
are used to calculate constants γi to ensure the feasibility of
(23) and (24).

Lemma 2. For hj (x) and hj+2 (x) as defined in (14) for
j ∈ {1, 2}, the value of minx (hj (x) + hj+2 (x)) is given
by

min
x

(hj (x) + hj+2 (x)) =

2


√(

Lj+1

2

)2
+ ϵ2 − ϵ

vA
−

Lj+1

2 − sj+sj+2

2

vD/
√
2

 , (25)

and it is strictly positive if

sj + sj+2 > Lj+1 −
√
2vD
vA

√(Lj+1

2

)2

+ ϵ2 − ϵ

 .

(26)

Proof. Direct substitution of (8) shows that TD,j +

TD,j+2 =
√
2

vD
(Lj+1 − sj − sj+2), and since TA,i ≥

1
vA

(√(
(xA (t)− xV i) · b̂i+1

)2
+ ϵ2 − ϵ

)
following (3),

the sum hj (x)+hj+2 (x) = TA,j+TA,j+2−TD,j−TD,j+2

can be bounded as follows

hj (x) + hj+2 (x) ≥ −
√
2

vD
(Lj+1 − sj − sj+2)+

1

vA

(√(
(xA (t)− xV j) · b̂j+1

)2
+ ϵ2 − ϵ

+

√(
(xA (t)− xV j+2) · b̂j+3

)2
+ ϵ2 − ϵ

)
(27)

with b̂5 = b̂1. As the terms of the right-hand side of (27)
are 2-norms of affine functions in xA (t) and constants, it
can be verified that the right-hand side is a convex function



of xA (t). Its gradient is given by

1

vA


(
(xA (t)− xV j) · b̂j+1

)
b̂j+1√(

(xA (t)− xV j) · b̂j+1

)2
+ ϵ2

+

(
(xA (t)− xV j+2) · b̂j+3

)
b̂j+3√(

(xA (t)− xV j+2) · b̂j+3

)2
+ ϵ2

 ,

(28)

which can be verified to be equal to 0 at xA (t) = x∗
A =

xV j + λj b̂j +
1
2Lj+1b̂j+1 for all λj ∈ R. Hence, hj (x) +

hj+2 (x) has a global minimum value at x∗ =
[
0 x∗

A

]
of minx (hj (x) + hj+2 (x)) = hj (x

∗) + hj+2 (x
∗), which

upon evaluation leads to equation (25).
Substituting (26) in (25) leads to

minx (hj (x) + hj+2 (x)) > 2
vA

(√(
Lj+1

2

)2
+ ϵ2 − ϵ

)
−

√
2

vD
Lj+1 +

√
2

vD

(
Lj+1 −

√
2vD
vA

(√(
Lj+1

2

)2
+ ϵ2 − ϵ

))
=

0.

The next result provides values for γi following the
constraints of Lemma 2 that ensure the existence of a uT ,
bounded by ∥uT ∥ ≤ vD, that satisfies (23) and (24).

Lemma 3. If hi (x) ≥ 0, Li and si satisfy the conditions of
Lemma 2 for all i ∈ {1, 2, 3, 4}, and γj = γj+2 are given
by

γj = γj+2 ≥ 2

minx (hj (x) + hj+2 (x))
(29)

for j ∈ {1, 2}, then the inequalities (23) and (24) can be
satisfied by some control input uT bounded by ∥uT ∥ ≤ vD.

Proof. Since hj (x) ≥ 0, multiplying (29) by −hj (x) and
adding 1 on both sides leads to 1 − γjhj (x) ≤ 1 −

2hj(x)
minx(hj(x)+hj+2(x))

. Repeating the process with hj+2 (x)

leads to 1−γj+2hj+2 (x) ≤ 1− 2hj+2(x)
minx(hj(x)+hj+2(x))

. Adding
these two equations leads to

2− γjhj (x)− γj+2hj+2 (x) ≤

2

(
1− (hj (x) + hj+2 (x))

minx (hj (x) + hj+2 (x))

)
(30)

Since minx (hj (x) + hj+2 (x)) ≤ (hj (x) + hj+2 (x)),
then 2

(
1− (hj(x)+hj+2(x))

minx(hj(x)+hj+2(x))

)
≤ 0, and therefore

2− γjhj (x)− γj+2hj+2 (x) ≤ 0 (31)

Evaluating at j = 1 and j = 2, rearranging terms and
multiplying both sides by vD/

√
2, the following inequalities

can be obtained
vD√
2
(1− γ2h2 (x)) ≤ − vD√

2
(1− γ4h4 (x)) (32)

vD√
2
(1− γ3h3 (x)) ≤ − vD√

2
(1− γ1h1 (x)) (33)

Then, constants γj = γj+2 satisfying (29) ensure the feasi-
bility of (32) and (33), which in turn ensure the existence of
some values uT

1 and uT
2 satisfying (23) and (24).

To complete the proof, it is shown next that there exists
such a uT (x) that, in addition, satisfies ∥uT (x) ∥ ≤ vD.
Let us denote the leftmost and rightmost terms of (23)
and (24) with the functions m1 (x), M1 (x), m2 (x) and
M2 (x) respectively. For hi (x) ≥ 0, these can be bounded
as follows:

m1 (x) =
vD√
2
(1− γ2h2 (x)) ≤

vD√
2
, (34)

M1 (x) = − vD√
2
(1− γ4h4 (x)) ≥ − vD√

2
, (35)

m2 (x) =
vD√
2
(1− γ3h3 (x)) ≤

vD√
2
, (36)

M2 (x) = − vD√
2
(1− γ1h1 (x)) ≥ − vD√

2
. (37)

Due to the bounds (34)-(37), (23) and (24) can be sat-
isfied by control inputs bounded by − vD√

2
≤ uT

i (x) ≤
vD√
2

, ensuring that ∥uT (x) ∥ =
√
uT 2
1 (x) + uT 2

2 (x) ≤√(
vD√
2

)2
+
(

vD√
2

)2
≤ vD.

Finally, the control action u (x) to satisfy the Control
Objective 1 through the forward invariance of the set C is
obtained next.

Theorem 3. Let m1 (x), M1 (x), m2 (x) and M2 (x) be
defined as in equations (34)-(37). If the initial state x (0) ∈ C
with C as defined in (15) and the conditions of Lemma 2 and
Lemma 3 hold, then the control law

u (x) = WRT uT (x) (38)

where WRT is given in (19), and uT (x) =[
uT
1 (x) uT

2 (x)
]

with

uT
1 (x) = max{m1 (x) , 0}+min{0,M1 (x)}, (39)

uT
2 (x) = max{m2 (x) , 0}+min{0,M2 (x)}, (40)

solves the Control Objective 1.

Proof. Equations (23) and (24) can be represented by
mj (x) ≤ uT

j (x) ≤ Mj (x) for j ∈ {1, 2}. Since x (0) ∈ C,
then hi (x (0)) ≥ 0 for all i ∈ {1, 2, 3, 4}. Then, given a γj
following Proposition 3 which ensures mj (x) ≤ Mj (x),
we select a uT

j as follows:

uT
j (x) =


mj (x) for mj ≥ 0

0 for mj (x) < 0 < Mj (x)

Mj (x) for Mj (x) ≤ 0.

(41)

An input uT
j (x) as in (41) satisfies mj (x) ≤ uT

j ≤ Mj (x),
and equations (39) and (40) are equivalent to (41). Since

∥∂hj (x)

∂x
∥ = ∥∂hj+2 (x)

∂x
∥ ≤

√
v2A +

(
vD/

√
2
)2

vA
(
vD/

√
2
) , (42)



by Lemma 3.3 in [21], hj (x) and hj+1 (x) are both globally
Lipschitz continuous. Since the max and min functions are
also globally Lipschitz continuous, it can be verified that (39)
and (40) satisfy

∥uT
j (x1)− uT

j (x2) ∥ ≤
4γj

vA
(
vD/

√
2
)√v2A +

(
vD/

√
2
)2

∥x1 − x2∥, (43)

and therefore

∥u (x1)− u (x2) ∥ = ∥uT (x1)− uT (x2) ∥
≤ ∥uT

1 (x1)− uT
1 (x2) ∥+ ∥uT

2 (x1)− uT
2 (x2) ∥

≤ 8γj

vA
(
vD/

√
2
)√v2A +

(
vD/

√
2
)2

∥x1 − x2∥, (44)

showing that the control law is globally Lipschitz continuous.
Furthermore, the right side of the state equation (13) is
globally Lipschitz continuous since

∥
[WRT uT (x1)

ẋA (t)

]
−
[WRT uT (x2)

ẋA (t)

]
∥ ≤

∥uT (x1)− uT (x2) ∥, (45)

and therefore by Theorem 3.2 in [21], there is a unique
solution for all t ≥ 0. By Theorem 2, the set C is forward
invariant for all t ≥ 0. Since hi (x) ≥ 0 for all i ∈
{1, 2, 3, 4} and for all t ≥ 0, by Proposition 1 the Control
Objective 1 is solved.

In order to ensure that x (0) ∈ C, the inequalities
hi (x (0)) ≥ 0 must be satisfied. Using (3), (8) and (14),
given an initial position xD (0) ∈ T of robot D, it is
sufficient that, for an initial position of robot A xA (0) /∈ T ,
the initial distance

dA,i (0) =

√
(vATA,i (xA (0) ,xV i) + ϵ)

2 − ϵ2, (46)

which is the shortest distance from robot A to the ith
boundary of T , satisfies

dA,i (0) ≥ (47)√(
vA

vD/
√
2

(
(xD (0)− xV i) · b̂i+1 − si

)
+ ϵ

)2

− ϵ2

for each i ∈ {1, 2, 3, 4}, with b̂5 = b̂1.

V. EXPERIMENTS

The control law in Theorem 3 ensures the solution to
the Control Objective 1 while only requiring knowledge,
with respect to the intruder, of its maximum speed and its
current position. The control law does not require a further
description of the motion of the intruder, such as its position
as a function of time. To showcase the proposed control law
in this paper, we implemented it in the Robotarium [20],
and simulated an intruder using the position of a point on
the plane following a predefined time function to ensure the
maximum desired speed vA. Let it be emphasized that the
time function describing the position of the intruder was not

Fig. 2: A robot in the Robotarium as the defender, within the
shield and target regions S and T . The intruder is represented
by the projection of a red dot.

Fig. 3: The ZCBFs hi (t) corresponding to the sides of the
region T have values always greater or equal than zero,
ensuring the Control Objective 1.

Fig. 4: The norm of the control action of robot D in the
scenario from Figure 2 is bounded by ∥u (t) ∥ ≤ vD.



used to calculate the control law of the defender robot. It
was only used to obtain the position xA at each time instant
t, which was then fed into the control loop. As long as the
current position of the intruder and its maximum speed are
known, and the conditions of Theorem 3 are satisfied, the
Control Objective 1 is guaranteed to be solved. Similarly, as
long as the conditions are satisfied, different rectangles and
parameters can be selected to solve the control objective. The
position xD corresponds to a point 0.07m off of the axis of
the wheels of the two-wheeled robots in the Robotarium,
allowing to model and control the robots using a single
integrator mathematical model.

Figure 2 shows a rectangular target region T with
vertices at xV 1 = [−0.1801,−0.6144]

T
,xV 2 =

[0.6390,−0.0409]
T
,xV 3 = [0.1801, 0.6144]

T
,xV 4 =

[−0.6390, 0.0409]
T. The intruder A moves according to

xA (t) =
[
cos (0.0959t+ 6.5) sin (0.1151t+ 7.7)

]T
, en-

suring a maximum speed of vA = 0.15m/s. This function
of time was not used for the control law, but only used
to calculate the instantaneous position of robot A at every
time t, which was then used in the controller. Robot D
has an initial position at the origin, and maximum speed
vD = 0.13m/s. The initial position of robot A satisfies the
initial condition described by equation (47) for each side of
the rectangular region. The selected parameters si satisfying
(26) are s1 = 0.2643, s2 = 0.2913, s3 = 0.2643, s4 =
0.2913, leading to the values of γ1 = γ3 = 0.8446 and
γ2 = γ4 = 0.9467 satisfying (29). Figure 3 shows the values
of the ZCBFs satisfy hi (t) ≥ 0, ensuring the satisfaction of
the Control Objective. Figure 4 shows that the control action
satisfies ∥u (t) ∥ ≤ vD.

VI. CONCLUSION

In this paper, control laws that ensure the defense and
surveillance of a rectangular region in the plane are pre-
sented. The reactive and closed-form control laws based on
control barrier functions can be used with robots of different
speeds and geometric parameters defining the shield region.
Future work will consider the case of multiple surveil-
lance robots, multiple intruders with motion in the three-
dimensional space, and regions with geometries different
than rectangles.
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