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Abstract— This paper studies the problem of Image-Based
Visual Servo Control (IBVS) for quadrotors. Although the
control of quadrotors has been extensively studied in the last
decades, combining the IBVS module with the quadrotor’s
dynamics is still hard, mainly due to the under-actuation issues
related to the quadrotor control as opposed to the 6 DoF
control outputs generated by the IBVS modules. We propose an
alternative formulation to solve this problem, by particularly
using linear Model Predictive Control (MPC), that allows us
to relax the UAVs under-actuation issues. Stability guarantees
of the proposed scheme are presented. The proposed model is
validated with synthetic data and tested in a real UAV’s setup.

I. INTRODUCTION

Guided by its applications, e.g., search & rescue [1],
inspection [2], [3], mapping & exploration [4], photogra-
phy [5], agriculture [6], and construction [7], research on
Unmanned Aerial Vehicle (UAV) has been one of the more
active topics in robotics. There are many types of UAVs
that can be categorized depending on their dimension and
number/type of actuators. The two main categories are fixed-
wing v.s. rotary-wing UAVs. In this work we focus on the
latter, namely the use of quadrotors. These vehicles are
characterized by having four rotational propellers. Quadrotor
UAVs are underactuated [8]. The reason for this is the fact
that there is no direct actuation providing motion on the xy–
direction. In this paper, we tackle the control of a quadrotor
using computer vision, namely Visual Servoing (VS) [9],
[10]. VS aims at providing control inputs for a camera
(attached to a robotic agent) to take it from an initial to a
goal position in the environment. However, the output of the
VS module provides six degrees of freedom control inputs
(linear and angular velocities) to the camera, which is not
suitable for the quadrotor’s under-actuated dynamics.

This paper tackles the under-actuation issues of the
quadrotor Visual Servoing using Model Predictive Control
(MPC) [11]. In [12] a preliminary work to navigate a UAV
with IBVS is presented. We model a linear MPC scheme
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with the quadrotor dynamics and the VS control velocity
goal, providing the actuation inputs to the UAV agent, i.e.,
roll, pitch, yaw, and thrust quantities. Different from existing
works, such as [13], we focus on the approximation using
a linear MPC, with the purpose of having a fast, low cost
solver. To the best of our knowledge, this is the first time
where VS is successfully combined with MPC for low power
quadrotors, enabling its application in real-time scenarios.
The conditions for the feasibility and stability of the linear
MPC are studied, and the proposed control scheme is tested
in simulated and real scenarios.

In addition to fixing the under-actuation issues of quadro-
tors, with the proposed framework we can efficiently include
additional restrictions on the motion of the robotic agent. An
advantage of the proposed formulation with respect to the
state-of-the-art is the possibility to include a system model
to track velocities that non-holonomic systems cannot, in
general, track optimally. Moreover, the inclusion of state and
control constraints means that this framework can handle
actuation limits from the hardware. Also worth noting, it
is possible to use previous control predictions to actuate the
system, in the event of a feature detection failure.

Despite the related background, the coupling of VS with
MPC to model the UAV’s dynamics has not yet fully studied.
In [14], [15], the authors propose the use of MPC for aircraft
collision avoidance and use single point features to guide
the robotic agent around the object, along a conical spiral
trajectory. [16] proposes an autonomous vision-based landing
of helicopter-based unmanned aerial vehicle (UAV). A real-
time MPC-based optimization scheme to drive the robotic
agent through the requested flight pattern is proposed. In
[13], the authors present an observer-based model predictive
control scheme for quadrotors to explicitly bound the roll and
pitch angles and alleviate the feature loss on large rotation.

Other relevant works on similar topics are available in the
literature. [17], [18] concerns Image-Based Visual Servoing
(IBVS) for aerial vehicles. The authors use a PID to track a
desired thrust and angular momentum’s instead of MPC, and
no actuation limits are considered. [19] also did not account
for actuation limits and focuses on planning and low-level
feedback control. [20]–[22] aim at a high level planning,
instead of low-level control. The high computational cost
involved required a powerful off-board computer. In [23],
the authors propose a nonlinear MPC with visual servoing
(focusing the center of the image on a given set of points).
However, no guarantees of stability are given, which we do
due to our linear MPC nature.

In addition to the use of MPC schemes for the control of
aircrafts using computer vision, MPC was used in several



works to help with the issues of the IBVS. In [24], [25],
the authors propose control schemes for IBVS for manipu-
lators with eye-in-hand configurations. [26] studies a similar
problem, in which the authors include the possibility of
having a wide field of view camera in the manipulator’s hand
effector. In [27], the authors use an MPC to simultaneously
solve the problem of feature correspondence and provide
control inputs, and in [28] a Nonlinear MPC is used to guide
fixed-wing aircraft around an obstacle. To the best of our
knowledge, there is no work that studies the use of MPC to
deal with the under-actuation issues raised in the VS control
loop in quadrotors.

The paper is organized as follows. In Sec. II we present the
background and problem statement. In Sec. III, we propose
the model predictive image-based visual servoing control
scheme. The experimental results with simulated and real
data are presented in Sec. IV. Sec. V concludes the paper.

II. PROBLEM STATEMENT

In this paper, we use bold small letters to represent vectors.
Matrices are denoted by bold capital letters. Regular letters
denote scalars. The hat in a vector means that it is the
respective estimate (e.g., â denotes the estimated coordinates
of a), and the tilda the estimation error (i.e., ã := â − a).
Rotation matrices are defined as Rb

a, where a is the origin
frame and b the target frame. When the origin/target frame
is the inertial frame, we omit the corresponding letter. For
two sets A and B, A⊕B denotes their Minkowski sum [29].

Next, we present the background and the problem state-
ment. We start by describing the 6D visual servoing model,
Sec. II-A. Then, we present the quadrotor’s system dynamics
and present the problem studied in this paper, Sec. II-B.

A. 6D Visual Servoing

Visual Servoing (VS) is the task of controlling a robot
using computer vision. There are two main types of VS
schemes, position-based and image-based. The former re-
quires a two step procedure, in which the first gets the pose
of the robot, and in the second, the control is done in 3D.
Image-based VS aims at controlling the robot directly using
image features (2D). For a detailed comparison of the two
control schemes, see [10]. In this paper we aim at solving
the Image-Based Visual Servoing (IBVS).

The goal of IBVS is to minimize an error

s̃(t) := s(m(t), a)− s∗, (1)

where m(t) is a set of images features, s(m(t), a) is a vector
of k visual features in the image plane, a is the set of camera
intrinsic parameters, and s∗ represents the desired feature’s
position vector. Here we consider the case of a fixed goal
pose and motionless target, i.e., s∗ is constant and changes
in s̃ depend only on the camera motion.

Given the camera extrinsic parameters [30] (i.e., the rigid
transformation from the base of a vehicle until the center of
the perspective camera) the spacial velocity of the camera is
expressed by υc =

[
vT
c ω

T
c

]T
, where vc,ωc ∈ R3 are the

instantaneous linear and angular velocities of the origin of the

x y

z

al

Fig. 1: Quadrotor model. Axis x, y and z represent the
vehicle body frame axis. Constant al represents the arm
length of the motors, corresponding to the distance of the
motors to the origin of the body frame.

camera frame, respectively. As the desired feature’s position
is static, the features and error kinematics with respect to the
camera velocity are

ṡ = Lsυc︸ ︷︷ ︸
Features kinematics

⇒ ˙̃s = ṡ− ṡ∗ = Lsυc︸ ︷︷ ︸
Error Kinematics

, (2)

where the matrix Ls ∈ Rk x 6 is known as the interaction
matrix or feature Jacobian [10], related to s, and of the form

Ls =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
,

(3)
where s := (x, y) are the feature projection to the normalized
image plane, and Z its depth.

By inverting equation (2) and imposing an exponential
error decrease profile (i.e., ˙̃s = −ηs̃ and η is a control gain),
we obtain the velocity control law

υc = −ηL+
s s̃, (4)

where L+
s ∈ R6×k is the Moore-Penrose pseudo-inverse of

Ls.

s = (x, y, 1)T (5)

IBVS Stability: The stability of the IBVS control law in
(4) is dependent on the rank of the interaction matrix,
which needs to be full rank to avoid singularities. For this
condition to be met, the system needs to track at least 3
features. Tracking 3 features, however, may still lead to some
configurations in which ηL+

s is singular. Moreover, with only
3 points, there exist four local minima poses [10] (while
only one will be correct, up to four valid solutions can be
computed for which e converges). To avoid this, we track 4
non-collinear features.

B. System Model

The state of the quadrotor is defined by its velocity v in
the inertial frame, its attitude α := [θ, φ, ψ] with respect to
the inertial frame, where θ, φ and ψ are the rotation with



respect to the inertial x–axis (roll), y–axis (pitch) and z–
axis (yaw), and its angular velocity on the body frame ω,
respectively. These states are concatenated under

x ∈ R9 :=
[
v α ω

]
=
[
vx vy vz θ φ ψ ωx ωy ωz

]
, (6)

where the subscripts indicate the axis of reference. The
quadrotor non-linear dynamics is defined as in [8]:

v̇ = RB
ν

m
+ g, (7a)

α̇ = Tω, and (7b)

ω̇ = M−1(τ − ω ×Mω), (7c)

where m and M ∈ R3×3 are the mass and inertia matrix of
the UAV, T ∈ R3×3 is the body to the inertial frame attitude
Jacobian, and RB ∈ SO(3) the rotation matrix from the
body to inertial-frame. In particular, the inertia is a diagonal
matrix with components Mx,My and Mz for the each axis.
Vectors ν and τ are respectively the force and torque vectors,
where the force vector only has a body z-axis component,
due to the geometrical location of the motors in the UAV
body – see Fig. 1:

ν =
[
0 0 νz

]
. (8)

Due to this property, the dynamics in equations (7) are under-
actuated.

The set where all states x lie in is denoted as X . The set
of control inputs ν and τ is denoted as U , defined as

U , {−νz
4
al ≤ τx,y ≤

νz
4
al, 0 ≤ νz ≤ 4 · 9.81 ·m}, (9)

where al is the distance from the center of the UAV to the
center of the rotors. As νz is the total thrust produced by
the 4 rotors, the torque that the vehicle can apply is the
force produced by one rotor, multiplied by the lever-arm al.
Finally, the vehicle cannot produce acceleration more than 4
times its mass.

For IBVS problems, the movement of the camera is
assumed to be small. Therefore, the the vehicle will operate
close to the hovering equilibrium point, around which we
linearize the dynamics in (7), i.e.,

xeq = 0, (10)

which can be written, in the compact form, as

ẋ = fc(x,u) = Acx + Bcu, (11)

with

Ac ∈ R9×9 =

03×3 [g]x 03×3

03×3 03×3 I3×3

03×3 03×3 03×3

 , [g]x :=

0 −g 0
g 0 0
0 0 0

 ,

(12)

Bc ∈ R9×4 =

0
3×3 1

m
εz

03×3 03×1

M−1 03×1

 , (13)

where

εz =
[
0 0 1

]T
(14)

Fig. 2: System architecture: at each camera sampling time,
we detect and match the features of interest. IBVS provides
a desired velocity in the camera frame, which is transformed
to the UAV body. This velocity is then used as a reference to
be tracked by the MPC framework, yielding optimal control
inputs that are then sent to the hardware-level controller
(PX4 [31]). Note that the Stereo Camera is attached the UAV
frame.

and I ∈ R3×3 are the 3×3 identity matrix. The control input
vector u for the linearized system is then composed by

u =
[
τT νz

]T
. (15)

Finally, we consider a discretization of the continuous
model, using a sampling time of h (in the experiments we use
h = 0.01[s]). In this case, we obtain the linearized discrete-
time model

x(t+ 1|t) = f(x(t|t),u(t|t)) = Ax(t|t) + Bu(t|t), (16)

where A and B are the discrete-time state-space matrices
for Ac and Bc, through

A = eAch = I9×9 + h

03×3 [g]x [r]x
03×3 03×3 I3×3

03×3 03×3 03×3

 , where

r =

 0
0

0.0491

 , and (17)

B =

∫ h

0

eAcvBcdv = h

 H 1
mεz

1
2M−1 03×3

M−1 03×3

 , where

H =

 0 − 0.016
My

0
0.016
Mx

0 0

0 0 0

 . (18)

and x(t+ n|t) defines the estimate for time t+ n at time t,
for n = 1...N . For n = 0, the estimation is the measurement
at time t, that we represent as x(t).

III. MODEL PREDICTIVE IMAGE-BASED VISUAL
SERVOING FOR QUADROTORS

In this section we present the proposed Image-Based
Visual Servo control (IBVS) for quadrotors using Model
Predictive Control (MPC). To combine both modules, we
implemented the cascaded control system, as shown in Fig. 2.
We start by modeling the IBVS with MPC. Then, we analyze
its stability.



A. Model Predictive Control

The MPC module is responsible to track the desired
velocity given by the IBVS module, considering the under-
actuated constraints of the quadrotor.

At each step i = 0...N − 1 where N is the horizon length
of the MPC formulation, and from an initial error x̃(t),
an optimal control input u(t|t) is obtained by minimizing
a cost function J(·), yielding a predicted state x̃(t + 1|t).
Recursively performing these steps, yields a set of optimal
predicted states {x̃(t + 1|t), x̃(t + 2|t), ..., x̃(t + N |t)} and
N − 1 optimal control inputs u(k + i|k) = {u(t|t),u(t +
1|t), ...,u(t + N − 1|t)},∀i = 0...N − 1. Finally, at each
sampling time of the MPC controller, the first optimal control
input u(t|t) is selected to be applied to the system.

The desired state for system (7) is

x∗ =

RBRB
c υc

03×1

ωB

 , (19)

with

ωB = RB
c ωc

1
1
0

 , (20)

where vc and ωc are given in (4), and where RB
c and RB

represent the camera to UAV body and UAV body to inertial
rotation matrices, respectively.

With this choice of x∗, we close the loop of the IBVS
module, and we use MPC to track the received velocity and
cope with the system dynamics to obtain an optimal tracking
controller. Note that we disregard the angular velocity around
the body z-axis - this is due to the selected system lineariza-
tion state, which considers a fixed heading, as at this point
we are interested on translating the UAV to desired visual
navigation marks.

B. MPC Feasibility and Stability Analysis

In this subsection we define and analyze the proposed
MPC framework. First, let the error state x̃ be

x̃ ∈ R9 := x− x∗. (21)

We start by defining the error set E as

E ,
{
x ∈ R9 : X ⊕ {−x∗}

}
, (22)

where X is defined as

X , {x ∈ R9 : θ ∈ (−π
9
,
π

9
), φ ∈ (−π

9
,
π

9
, ψ ∈ (−π

9
,
π

9
)},

(23)
ensuring an operation close to the linearized equilibrium.

The error dynamics are represented by

˙̃x(·) := ẋ(·)− ẋ∗(·)︸ ︷︷ ︸
=0

⇒ ˙̃x(·) = ẋ(·). (24)

Remark 1. We consider the velocity to be tracked by the
MPC as constant through the whole receding horizon, as we
sample the camera information only at the initial sampling
time x̃(k), which renders ẋ∗(t+ n|t) = 0,∀n = 0, ..., N .

Accordingly, we write the cost functions for the running
cost Jl(·) and final cost Jf (·) to be used in the MPC
formulation as

Jl(x̃(t+ k|t),u(t+ k|t)) =

x̃(t+ k|t)TQxx̃(t+ k|t)+
u(t+ k|t)TQuu(t+ k|t), (25)

Jf (x̃(t+N |t)) = x̃(t+N |t)TQf x̃(t+N |t). (26)

where Qx and Qu are positive definite diagonal matrices
that weight the state error and the control effort, respectively.
These weights can be appropriately tuned to achieve a de-
sired performance. Finally, the matrix Qf is the final weight
matrix for the last step of the receding horizon optimization,
obtained through the Riccatti equation:

Qf =Qx + ATQfA−
(BTQfA)T (Qu + BTQfB)−1(BTQfA). (27)

The final cost is defined through the Riccatti equation as it
provides the best estimate of the cost-to-go for a receding
horizon controller [11], similarly to the infinite horizon cost
for Linear Quadratic Regulators [32].

The cost function, referred to as J(·), is defined as

J(x̃(t|t),u(t|t)) =
N−1∑
k=0

Jl(x̃(t+ k|t),u(t+ k|t)) + Jf (x̃(t+N |t)). (28)

The optimal control input is then given by the following
optimization problem

argmin
u(k+i|k)

J(x̃(t|t),u(t|t)) (29a)

subject to x̃(t+ k + 1|t) =

Ax̃(t+ k|t) + Bu(t+ k|t), (29b)
x̃(t+ k|t) ∈ E, (29c)
x̃(t+N |t) ∈ Ef , (29d)
u(t+ k|t) ∈ U (29e)

where E and U are given in (22), and (9), respectively. Ef

is defined as

Ef , {x̃ ∈ R9 : x̃ = 09} ⊂ E, (30)

representing the desired state final state.
We now state the theorem that yields the stability results

of this work.

Theorem 1. Under the control law in (29), then x̃(t) satisfies
limt→∞ x̃(t) = 0 from all initial values of x̃ for which (30)
admits a feasible solution.

Proof. The proof of this theorem follows the corresponding
analysis in [11] and is divided in three parts: at first, we
prove that the terminal set Ef is a control invariant set; at
the second, we demonstrate the boundedness of J0

N (x̃); and
finally we guarantee that J0

N (x̃) is monotonically decreasing.
Following [11], let J0

N (x̃) = J(x̃(0|t),uN (·|t)), where
x̃(0|t) ∈ E is any MPC starting state and uN (·|t) =



{uN (0|t),uN (1|t), . . . ,uN (N −1|t)} be a minimizing con-
trol sequence.

1) Control Invariant Sets: The controllability matrix for
system (11) is of the form

Cm =
[
AnB An−1B . . . AB

]
∈ R9×36, (31)

where A and B are defined in (17) and (18).
In our case, the rank of Cm is 9, and the condition number

of Cm is approximately 388, for our system properties
defined in Section IV. Therefore, we conclude that the
system (11) is controllable, and therefore stabilizable. As
so, there exists a terminal feedback controller u(t+N |t) =
−Γx̃(t+N |t) that renders E control invariant. Noting that
{x̃eq} = {0} ∈ Ef ⊂ E, Ef is consequently a control
invariant set.

Remark 2. The condition number of Cm is dependent on
the system inertial parameters that affect the control matrix
B. Therefore, it is worth noting that these results are valid
for the particular system in hand.

2) Boundedness of J0
N (x̃): The bounds of J0

N (x̃) are derived
from the choice of the running cost function, given by x̃(t+
k|t)TQxx̃(t+k|t) + u(t+k|t)TQuu(t+k|t), with Qx and
Qu positive definite. Therefore, it holds that

α1(||x̃||, ||u||) ≤ J0
N (x̃) ≤ α2(||x̃||, ||u||) (32)

where α1(||x̃||, ||u||) = λ(Qx)||x̃|| + λ(Qu)||u|| and
α2(||x̃||, ||u||) = λ̄(Qx)||x̃||+ λ̄(Qu)||u||, and where λ(Qi)
and λ̄(Qi) are, respectively, the minimum and maximum
eigenvalues of matrix Qi. Noting that Qx and Qu are
diagonal positive-definite matrices, then the eigenvalues are
displayed on the diagonal of these matrices and correspond
to the appropriate weights chosen for the cost function. For
the experiments we chose λmax(Qx) = 100, λmin(Qx) = 1
and λmax(Qu) = 2, λmin(Qx = 1), leading to

||x̃||+ ||u|| ≤ J0
N (x̃) ≤ 100||x̃||+ 2||u|| (33)

3) Descent and Monotonicity Properties of the Cost Func-
tion: The remaining proof follows the same steps as in [11],
Proposition 2.12, proof for Theorem 2.24.

4) Recursive Feasibility: To prove recursive feasibility, we
recall that E is a control invariant set, that is, ∀x̃ ∈ E, there
exists at least one u ∈ U such that f(x̃,u) ∈ E. Note also
that x̃(t) = x̃(t|t).

The control law in (29) gives an optimal control signal
for the system in (21), yielding x̃(t + n + 1|t) = f(x̃(t +
n|t),u(t + n|t)). fThe control inputs through the receding
horizon, then, satisfy the constraints set by E and U if and
only if the problem is initially feasible.

At step n = N , f(x̃(t + N |t),uf (t + N |t)) = x̃(t +
N + 1|t) ∈ Ef , as there exists at least one control input
uf (t + N |t), that renders the set Ef control invariant, i.e.,
x̃(t + N + 1|t) ∈ Ef for at least one uf (t + N |t) control
input. Such control input can be a linear feedback controller
uf (t + N |t) = −Γx̃(t + N |t), and Γ is an appropriately

selected gain matrix. As so, if the optimization problem in
(29) is feasible at (t), then it will be recursively feasible for
(t+ n|t), ∀n = 0 . . . N .

Finally, it can be concluded that the system in (21), under
the control law in (29), converges to the origin, that is, the the
error x̃(t) asymptotically converges to zero, and therefore the
system achieves the desired tracking of the reference velocity
from the IBVS module.

C. Algorithm

In a succinct form, at each sampling time, we: i) sample
four features s; ii) solve (1) to obtain s̃, followed by solving
(4) to get υc; iii) obtain x̃ from (19) and (21), and iv) solve
the optimization problem in (29), yielding the control input
u, which is applied to the system.

IV. EXPERIMENTS

We run two different type of experiments. We start with
realistic simulation results using Gazebo and the RotorS
simulator [33] (experiments presented in Sec. IV-A). No
disturbances are considered and a good approximation of
the system model is used. Then, in Sec. IV-B, we tested the
proposed framework in a real experimental scenario using a
UAV with very little knowledge of the system’s model.

For both simulations and real experiments, we perform
the same excitation, with desired features setpoints, to the
system: sequential translations of 0.5[m] on x, y and z axis,
achieved by changing the desired image features s∗ accord-
ingly. We have generated C/C++ code using CVXGEN [34],
with an horizon of N = 10, for the Linear MPC implementa-
tion of (29), which was wrapped around the ROS framework
[35]. The code will be made available. Implementation-wise,
both simulations and real experiments share the same ROS
backend, apart from the vehicle interface. In simulation, we
rely on RotorS, while for the real experiments we use a PX4-
based UAV [31] and the MAVROS package1 to interface with
the flight controller. packages available.

A. Simulation Results

Figure 3 shows the results obtained in simulation. Figure
3(a) shows the feature error and 3(b) the IBVS velocity con-
vergence. On the 3D setup, the UAV starts at an approximate
distance to the target of 1.3[m], composed by 4 features.
The simulated vehicle has a mass of 1.5[kg] and inertia of
Mx = 0.034,My = 0.046 and Mz = 0.098.

As expected, with a good knowledge of the system pa-
rameters, our control method achieves a practically zero
steady-state error, converging asymptotically to the desired
reference with a small overshoot on the z axis. This result
is important in assessing the proposed scheme, as it means
that the connection of the IBVS module and the MPC works
properly. The MPC solver took a minimum of 0.72[ms], a
maximum of 5.8[ms], and an average of 1.1[ms] to obtain
a solution on a 3.6[GHz] Intel Core-i7 CPU.

1Available at (on 12th September, 2019): https://github.com/
mavlink/mavros

https://github.com/mavlink/mavros
https://github.com/mavlink/mavros
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(a) Feature Error. Each curve represents a feature component
error (x and y in the image plane).
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(b) IBVS Velocity Module. The curves in blue, red and yellow
represent the desired velocity along the x, y and z axis.

Fig. 3: Simulation results: We use a realistic physics engine simulator, namely Gazebo, and RotorS [33]. We observe that the
feature errors converge to zero and, accordingly, so does the desired velocity for the camera/UAV. Note that convergence on
the x and y axis is smaller (and similar among each other) than the convergence on the z axis, due to the system dynamics.
These can be, also, tuned by adjusting weight matrices Qx,Qu and Qf . On the left, each curve corresponds to a feature
error. On the right, zero error is shown in black, while the velocity for x, y and z is shown in blue, red and yellow.
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component error (x and y in the image plane).
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(b) IBVS Velocity Module. The curves in blue,
red and yellow represent the desired velocity
along the x, y and z axis, respectively.

(c) 3D Trajectory of the UAV. Blue, red and
yellow represent the translations on x, y and
z respectively.

Fig. 4: Performance of the real system: We observe that, although the system converges to the correct desired feature
position in the image plane, there is a small steady-state error. This error is due to the imperfect knowledge of the system
inertial properties. This is observed on the error around z-axis, as a force-to-thrust mapping error causes a small decrease
in the system performance. Nonetheless, we observe that the vehicle navigates stably through the desired feature sets, while
maintaining small roll and pitch angles, as well as zero yaw, respecting the linearization limits.

B. Experimental Results

On what concerns the experimental test-bed, our UAV,
built around a Hover 1 frame, a Nvidia Jetson TX2, a PX4
flight controller and, has an approximate mass of 1.73[kg]
and a rough inertia approximation of Mx = 0.04,My =
0.04, and Mz = 0.1. To obtain the depth Z of each feature,
we use a ZED Stereo camera. The system successfully
converges to the desired setpoints, although a small steady-
state error is present. The obtained 3D trajectory, as shown in
Figure 4(c), provides an insight on the system’s performance
while navigating through the different setpoints. The ac-
companying video shows the UAV navigating through these
setpoints. On the vehicle, running a Nvidia Jetson TX2, the
solver took a minimum of 7.9[ms], a maximum of 10.8[ms]
and an average of 8.4[ms] to obtain a sequence of control

inputs, making it possible to run the controller at 100[Hz].
We observe a small decrease in the tracking performance

on the real system. This results from (i) an imperfect knowl-
edge of our system inertial parameters, and (ii) an inaccurate
force-to-thrust mapping, dependent on motor properties and
propellers performance. In typical PID implementations, the
integrator gain compensates for these system errors, con-
verging the steady-state error to zero. Nonetheless, a PID
approach is subject to high gain tuning and input saturation
that can render the system unstable, and it cannot deal with
state constraints. At this stage, we did not add an integration
action, as it is not relevant to evaluate our formulation.

The system coped with the state constraints that avoid
states far from the linearization point, and kept the desired
small attitude angles during the entire test sets. Moreover, the



computational benefits with respect to previous approaches
of using MPC for quadrotors, e.g. [28], make this approach
easily implementable on-board UAVs of different sizes and
computational capabilities, ensuring an operation near the
linearization point of the system.

Furthermore, the use of the MPC framework was crucial
to limit the velocity of the vehicle and cope with motion blur
that the used camera is subject to.

V. CONCLUSIONS

We present a new formulation to tackle the under-actuation
issues of the image-based visual servoing of a quadrotor.
The guarantees on the feasibility and stability of the MPC
are presented. Using both synthetic and real data, we show
our method works properly and is capable of running at a
frequency of 100Hz on-board the vehicle. As future work,
we plan to extend the formulation to a Linear Time-Varying
(LTV) MPC to handle time-varying dynamics, and incorpo-
rate the visual servoing dynamics in the MPC framework.
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