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Abstract: This paper proposes a task-space control protocol for the collaborative manipulation
of a single object by N robotic agents. The proposed methodology is decentralized in the sense
that each agent utilizes information associated with its own and the object’s dynamic/kinematic
parameters and no on-line communication takes place. Moreover, no feedback of the contact
forces/torques is required, therefore employment of corresponding sensors is avoided. An
adaptive version of the control scheme is also introduced, where the agents’ and object’s dynamic
parameters are considered unknown. We also use unit quaternions to represent the object’s
orientation. In addition, load sharing coefficients between the agents are employed and internal
force regulation is guaranteed. Finally, experimental studies with two robotic arms verify the
validity and effectiveness of the proposed control protocol.
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1. INTRODUCTION

Multi-agent manipulation has gained a notable amount of
attention lately. Difficult tasks including manipulation of
heavy loads that cannot be handled by a single robotic
arm necessitate the employment of multiple agents. Early
works develop control architectures where the robotic
agents communicate and share information with each
other, and completely decentralized schemes (Liu et al.,
1996; Liu and Arimoto, 1998; Zribi and Ahmad, 1992;
Khatib et al., 1996; Caccavale et al., 2000) where each
agent uses only local information or observers (Gudiño-
Lau et al., 2004).

Impedance and force/motion control is the most common
methodology utilized in the related literature (Caccavale
et al., 2008; Heck et al., 2013; Erhart and Hirche, 2013;
Szewczyk et al., 2002; Tsiamis et al., 2015; Ficuciello et al.,
2014; Ponce-Hinestroza et al., 2016; Gueaieb et al., 2007).
Most of the aforementioned works employ force/torque
sensors to acquire knowledge of the manipulator-object
contact forces/torques which however may result to perfor-
mance decline due to sensor noise or mounting difficulties.
Force/Torque sensor-free methodologies can be found in
(Wen and Kreutz-Delgado, 1992; Yoshikawa and Zheng,
1993; Liu et al., 1996), which have inspired the dynamic
modeling in this work.

Another important characteristic is the representation of
the agent and object orientation. The most commonly
used tools for orientation representation consist of rotation
matrices, Euler angles and the angle/axis convention.
Rotation matrices, however, are rarely used in robotic
manipulation tasks due to the difficulty of extracting
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an error vector from them. Moreover, the mapping from
Euler angles and angle/axis values to angular velocities
exhibits singularities at certain points, rendering thus
these representations incompetent. On the other hand, the
representation using unit quaternions, which is employed
in this work, constitutes a singularity-free orientation
representation, without complicating the control design.
Unit quaternions are employed in (Campa et al., 2006;
Caccavale et al., 2000, 2008; Aghili, 2011) for manipulation
tasks and in (Erhart and Hirche, 2016) for the analysis of
the interaction dynamics in cooperative manipulation.

In addition, most of the works in the related literature
consider known dynamic parameters regarding the object
and the robotic agents. However, the accurate knowledge
of such parameters, such as masses or moments of inertia,
can be a challenging issue; (Liu and Arimoto, 1998) pro-
poses an adaptive control scheme through gain tuning and
(Caccavale et al., 2000) considers the robust pose regula-
tion problem. The adaptive control of single manipulation
tasks with uncertain kinematic and dynamic parameters
is tackled in (Cheah et al., 2006; Wang, 2017).

In (Erhart and Hirche, 2013) kinematic uncertainties are
considered. In (Tsiamis et al., 2015) a leader-follower
scheme is employed, and in (Wang and Schwager, 2015)
a decentralized force consensus algorithm is developed;
(Murphey and Horowitz, 2008) and (Chaimowicz et al.,
2003) address the problem employing hybrid control
schemes.

In this paper, we propose a novel nonlinear control scheme
for trajectory tracking of an object rigidly grasped by
N robotic agents. The main novelty of our approach is
the combination of i) coupled object-agents dynamic for-
mulation which does not require contact forces/torques
measurements from corresponding sensors, ii) an extension
to an adaptive version, where the dynamic parameters of
the object and the agents are considered unknown and iii)
the employment of unit quaternions for the object orienta-



tion, avoiding thus potential representation singularities.
Moreover, the overall scheme is decentralized in the sense
that each agent utilizes information regarding only its own
state, and internal force regulation can be also guaran-
teed. Furthermore, we utilize coefficients for load sharing
among the robotic arms, which may exhibit different power
capabilities. To the best of the authors’ knowledge, the in-
tegration of the aforementioned attributes for cooperative
manipulation has not been addressed before, and turns out
to be a challenging problem, due to the high complexity of
the coupled object-agents dynamics. Finally, experimental
studies verify the validity and effectiveness of the proposed
framework.

The rest of the paper is organized as follows: Section 2
introduces notation and preliminary background. Section 3
describes the problem formulation and the overall system’s
model. The control scheme is presented in Section 4 and
Section 5 verifies our approach with an experimental setup.
Finally, Section 6 concludes the paper.

2. NOTATION AND PRELIMINARIES

2.1 Notation

The set of positive integers is denoted as N and, given
n ∈ N, Rn is the real n-coordinate space, Rn≥0 and Rn>0 are
the sets of real n-vectors with all elements nonnegative and
positive, respectively, and Sn is the n-D sphere; In ∈ Rn×n≥0
and 0n×m ∈ Rn×m, n,m ∈ N, denote the unit matrix
and the matrix with all entries zero, respectively. The
vector connecting the origins of coordinate frames {A}
and {B} expressed in frame {C} coordinates in 3D space
is denoted as pC

B/A ∈ R3. Given a ∈ R3, S(a) ∈ R3×3 is the
skew-symmetric matrix defined according to S(a)b = a ×
b. The rotation matrix from {A} to {B} is denoted as
RB/A ∈ SO(3), where SO(3) is the 3D rotation group.
The angular velocity of frame {B} with respect to {A},
expressed in {C}, is denoted as ωC

B/A ∈ R3 and it holds that

(Siciliano et al., 2010) ṘB/A = S(ωA
B/A)RB/A. We further

denote as φA/B ∈ T3 the Euler angles representing the
orientation of {B} with respect to {A}, where T3 is the 3D
torus. We also define the set M = R3 ×T3. For notational
brevity, when a coordinate frame corresponds to an inertial
frame of reference {I}, we will omit its explicit notation
(e.g., pB = pI

B/I , ωB = ωI
B/I , RB = RB/I etc.). Finally, all

vector and matrix differentiations will be with respect to
an inertial frame {I}, unless otherwise stated.

2.2 Unit Quaternions

Given two frames {A} and {B}, we define a unit quater-
nion ξB/A = [ηB/A, ε

T
B/A]T ∈ S3 describing the orientation

of {B} with respect to {A}, with ηB/A ∈ R, εB/A ∈ S2,
subject to the constraint η2B/A + εTB/AεB/A = 1. The re-
lation between ξB/A and the corresponding rotation ma-
trix RB/A as well as the axis/angle representation can be
found in (Siciliano et al., 2010). For a given quaternion
ξB/A = [ηB/A, ε

T
B/A]T ∈ S3, its conjugate, that corresponds

to the orientation of {A} with respect to {B}, is (Siciliano
et al., 2010) ξ∗B/A = [ηB/A,−εTB/A]T ∈ S3. Moreover, given

two quaternions ξi = [ηi, ε
T
i ]T , i ∈ {1, 2}, the quaternion

product is defined as (Siciliano et al., 2010)

ξ1 ⊗ ξ2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
∈ S3. (1)

Fig. 1. Two robotic agents rigidly grasping an object.

The time derivative of a quaternion ξB/A = [ηB/A, ε
T
B/A]T ∈

S3 is given by (Siciliano et al., 2010):

ξ̇B/A =
1

2
E(ξB/A)ωA

B/A, (2a)

where E : S3 → R4×3 is defined as E(ξ) =

[
−εT

ηI3 − S(ε)

]
.

Finally, it can be shown that ET (ξ)E(ξ) = I3 and hence

ωA

B/A = 2ET (ξB/A)ξ̇B/A. (2b)

3. PROBLEM FORMULATION

Consider N fully actuated robotic agents rigidly grasping
an object (see Fig. 1). We denote as qi ∈ Rni the
generalized joint-space variables of the ith agent and as
{Ei}, {O} the end-effector and object’s center of mass
frames, respectively; {I} corresponds to an inertial frame
of reference, as mentioned in Section 2.1. The rigidity
assumption implies that the agents can exert both forces
and torques along all directions to the object. We consider
that each agent has access to the position and velocity of
its own joint variables and that no interaction force/torque
measurements or on-line information exchange between
the agents is required. Moreover, it is assumed that the
desired object profile as well as relevant geometric features
(e.g., center of mass location) are transmitted off-line to
the agents. Finally, we consider that the agents operate
away from kinematic singularity poses (Siciliano et al.,
2010). In the following, we present the modeling of the
coupled kinematics and dynamics of the object and the
agents.

3.1 Kinematics

In view of Fig. 1, we have that:

pEi
(t) = pO(t) + pEi/O

(qi) = pO(t) +REi
(qi)p

Ei
Ei/O

, (3a)

φEi
(t) = φO(t) + φEi/O

, (3b)

∀i ∈ N , where pEi
, φEi

, pO, φO are the ith end-effector’s

and object’s pose, respectively, and p
Ei
Ei/O

and φEi/O
are

the constant distance and orientation offset between {O}
and {Ei}, which are considered known. Differentiation of
(3a) along with the fact that, due to the grasping rigidity,
it holds that ωEi

= ωO, leads to

vi(t) = JOi
(qi)vO(t), (4)

and, by differentiation, to

v̇i(t) = J̇Oi
(qi, q̇i)vO(t) + JOi

(qi)v̇O(t), (5)

where vO, vi : R≥0 → R6 with vO(t) = [ṗTO(t), ωTO (t)]T ,vi(t)
= [ṗTEi

(t), ωTEi
(t)]T are the object’s center of mass’ and end-

effectors’ velocities respectively. Also, JOi
: Rni → R6×6 is

the object-to-agent Jacobian matrix, with

JOi
(qi) =

[
I3 S(pO/Ei

(qi))
03×3 I3

]
, (6)



which is always full-rank due to the grasp rigidity.

Remark 1. Each agent i can compute pEi
, φEi

and vi via
its forward and differential kinematics (Siciliano et al.,
2010) pEi

(t) = kpi(qi), φEi
(t) = kηi(qi) and vi(t) =

Ji(qi)q̇i, respectively, where kpi : Rni → R3, kηi : Rni →
T3 are the forward kinematics and Ji : Rni → R6×6 is
the geometric Jacobian of agent i ∈ N . In addition, since
p

Ei
Ei/O

and φEi/O
are known, pO, φO and vO can be computed

by inverting (3) and (4), respectively, without employing
any sensory data for the object’s configuration. Moreover,
from φO, we can compute the unit quaternion ξO (Siciliano
et al., 2010) to represent the object’s orientation, since the
desired pose for the object’s center of mass will be given in
terms of a desired position trajectory pO,d(t) and a desired
quaternion trajectory ξO,d(t).

3.2 Dynamics

Next, we consider the following second order dynamics for
the object, which can be derived based on the Newton-
Euler formulation:

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) = fO, (7)

where xO : R≥0 → M, with xO(t) = [pTO(t), φTO(t)]T ,
MO : M → R6×6 is the positive definite inertia matrix,
CO : M×R6 → R6×6 is the Coriolis matrix, gO : M→ R6 is
the gravity vector, and fO ∈ R6 is the vector of generalized
forces acting on the object’s center of mass.

The task space agent dynamics are given by (Siciliano
et al., 2010):

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − fi, (8)

where Mi : Rni → R6×6 is the positive definite inertia
matrix, Ci : Rni × Rni → R6×6 is the Coriolis matrix,
gi : Rni → R6 is the task-space gravity term, fi ∈ R6 is
the vector of generalized forces that agent i exerts on the
grasping point with the object and ui is the task space
wrench acting as the control input, ∀i ∈ N .

The agent dynamics (8) can be written in vector form as:

M(q)v̇ + C(q, q̇)v + g(q) = u− f, (9)

where q = [[qTi ]i∈N ]T ∈ Rn, with n =
∑
i∈N ni, v =

[[vTi ]i∈N ] ∈ R6N ,M = diag{[Mi]i∈N } ∈ R6N×6N , C =
diag{[Ci]i∈N } ∈ R6N×6N , f = [[fTi ]i∈N ]T ∈ R6N , u =
[[uTi ]i∈N ]T ∈ R6N , g = [[gTi ]i∈N ]T ∈ R6N .

Remark 2. The task space wrench ui can be translated to
joint space inputs τi ∈ Rni via τi = JTi (qi)ui + (Ini

−
JTi (qi)J̄

T
i (qi))τi0, where J̄i is a generalized inverse of Ji

(Siciliano et al., 2010); τi0 concerns redundant agents
(ni > 6) and does not contribute to end-effector forces.

Moreover, the following property holds:

Lemma 1. (Siciliano et al., 2010) The matrices ṀO − 2CO

and Ṁi − 2Ci are skew-symmetric.

The kineto-statics duality (Siciliano et al., 2010) along
with the grasp rigidity suggest that the force fO acting
on the object’s center of mass and the generalized forces
fi, i ∈ N , exerted by the agents at the grasping points, are
related through:

fO = GT (q)f, (10)

where G : Rn → R6N×6 is the full column-rank grasp
matrix, with

G(q) = [JTO1
(q1), . . . , JTON

(qN )]T .

By substituting (9) into (10), employing (4), (5), (7), and
rearranging terms, we obtain

M̃(q, xO)v̇O +C̃(q, q̇, xO, ẋO)vO + g̃(q, xO) = GT (q)u, (11)

where M̃ = MO + GTMG,C̃ = CO + GTCG + GTMĠ,
g̃ = gO +GT g. Moreover, the following Lemma holds.

Lemma 2. The matrix M̃ is symmetric and positive defi-

nite and the matrix ˙̃M − 2C̃ is skew-symmetric.

Proof. The proof can be found in (Verginis and Dimarog-
onas, 2016).

Formally, the problem treated in this paper is the follow-
ing:

Problem 1. Given a desired bounded object pose specified
by pO,d(t) ∈ R3, ξO,d(t) = [ηO,d, ε

T
O,d]T ∈ S3, with bounded

first and second derivatives, find u in (11) that achieves

lim
t→∞

[
pO(t)
ξO(t)

]
=

[
pO,d(t)
ξO,d(t)

]
.

4. MAIN RESULTS

We need first to define the errors associated with the object
pose and the desired pose trajectory. We first define the
position error ep : R≥0 → R3:

ep(t) = pO(t)− pO,d(t). (12)

Since unit quaternions do not form a vector space, they
cannot be subtracted to form an orientation error; instead
we should use the properties of the quaternion group
algebra. Let eξ = [eη, e

T
ε ]T : R≥0 → S3 be the unit

quaternion describing the orientation error. Then, it holds
that (Siciliano et al., 2010) eξ(t) = ξO,d(t) ⊗ ξ∗O(t) =[
ηO,d(t)
εO,d(t)

]
⊗
[
ηO(t)
−εO(t)

]
, which, by using (1), becomes:

eξ(t) =

[
ηO(t)ηO,d(t) + εTO(t)εO,d(t)

ηO(t)εO,d(t)− ηO,d(t)εO(t) + S(εO)(t)εO,d(t)

]
. (13)

By taking the time derivative of (12) and (13), employing
(2) and certain properties of skew-symmetric matrices
(Campa et al., 2006), it can be shown that (Siciliano et al.,
2010)

ėp(t) = ṗO(t)− ṗO,d(t) (14a)

ėη(t) = 1
2e
T
ε (t)eω(t) (14b)

ėε(t) = − 1
2 (eη(t)I3 + S(eε(t))) eω(t)− S(eε(t))ωO,d(t),

(14c)

where eω : R≥0 → R3, with eω(t) = ωO(t) − ωO,d(t) and

ωO,d(t) = 2ET (ξO,d)ξ̇O,d(t), as indicated by (2b).

Notice that, considering the properties of unit quater-
nions, when ξO = ξO,d, then eξ(t) = [1, 01×3]T ∈ S3.
If ξO = −ξO,d, then eξ(t) = [−1, 01×3]T ∈ S3, which,
however, represents the same orientation. Therefore, the
control objective established in Problem 1 is equivalent
to lim

t→∞
[eTp (t), |eη(t)|, eTε (t)]T = [0T3×1, 1, 0

T
3×1]T . Next, we

design control protocols such that the aforementioned
specification is met. Firstly, we consider that the dynam-
ics parameters of the object and the agents are known.
Then, we extend the proposed scheme to also compensate
for unknown dynamic parameters, using adaptive control
techniques (Slotine and Li, 1987; Siciliano et al., 2010).



4.1 Non-Adaptive Control Scheme

Define the reference signals vr
O = [(ṗr

O)T , (ωr
O)T ]T : R≥0 →

R6 as

vr

O(t) =

[
ṗO,d(t)− kpep(t)

ωO,d(t)− kεeη(t)eε(t)

]
= vO,d(t)−Ke(t), (15)

where vO,d(t) = [ṗTO,d(t), ωTO,d(t)]T ∈ R6, kp, kε ∈ R>0, K =

diag{kpI3, kεI3} ∈ R6×6 and e(t) = [eTp (t), eη(t)eTε (t)]T .

Furthermore, define the reference velocity error ev :
R≥0 → R6 as:

ev(t) = vO(t)− vr

O(t), (16)

and design the decentralized control law for ui : R≥0 → R6

in (11), i ∈ N , as:

ui(t) = µi(t) + fi,d(t) (17)

where µi(t) = gi +
(
CiJOi

+MiJ̇Oi

)
vr
O(t) +MiJOi

v̇r
O(t)−

J−TOi
(kviev(t) + cie(t)), fi,d(t) = ciJ

−T
Oi

(MOv̇
r
O(t)+

COv
r
O(t) + gO), kvi ∈ R>0 is a positive gain, ci ∈ R≥0

are load sharing coefficients with 0 ≤ ci ≤ 1,∀i ∈
N ,
∑
i∈N ci = 1, and we have also exploited the depen-

dence of qi, q̇i, xO, ẋO on time. The control law (17) can be
also written in vector form:

u = µ+ fd, (18)

where µ = g+(CG+MĠ)vr
O(t)+MGv̇r

O(t)− G̃T (Kvev(t)

+ Cfe(t)), fd = G̃TCf (MOv̇
r
O(t) + COv

r
O(t) + gO), Kv =

[kv1I6, . . . , kvN I6]T ∈ R6N×6, Cf = [c1I6, . . . , cNI6]T ∈
R6N×6, fd = [[fTi,d]i∈N ]T ∈ R6N , and finally, G̃ =

diag{[J−1Oi
]i∈N } ∈ R6N×6N .

By employing the fact that GT G̃T = [I6, . . . , I6] ∈ R6×6N

as well as
∑
i∈N ci = 1, we multiply (18) by GT to obtain:

GTu = M̃v̇r

O(t) + C̃vr

O(t) + g̃ −
∑
i∈N

kviev(t)− e(t), (19)

that will be used in the sequel.

The following theorem summarizes the main results of this
subsection.
Theorem 1. Consider N robotic agents rigidly grasping an
object with coupled dynamics described by (11) under
the control protocol (18). Then, under the assumption
eη(0) 6= 0, the object pose converges asymptotically to the
desired one with all closed loop signals being bounded, i.e.,
Problem 1 is solved.

Proof. Consider the positive definite and radially un-
bounded Lyapunov function:

V (ep, eη , ev , t) =
1

2
eTp ep + e2η − 1 + eTε eε +

1

2
eTv M̃(q(t), xO(t))ev .

By differentiating V with respect to time, substituting the
error dynamics (14), and employing (15), (16) and (11),
we obtain:

V̇ =− eTKe+ eT ev + eTv

(
GTu− C̃vr

O − g̃
)
−

eTv M̃ v̇r

O + eTv

(
1

2
˙̃M − C̃

)
ev.

Then, by employing Lemma 2 and (19), we obtain that

V̇ = −kpeTp ep − kεe2ηeTε eε −
∑
i∈N kvie

T
v ev, which is non-

positive. We conclude therefore that the system is stable
and V is a non-increasing function, deducing the bound-
edness of ep, eη, eε, ev. Hence, invoking also the bounded-
ness of pO,d and ωO,d and of their derivatives, we employ

(15) to prove the boundedness of vr
O and (16) to prove

the boundedness of vO and therefore of vi, since the
boundedness of JOi

and G is straightforward. From the
aforementioned conclusions, invoking also the fact that
Mi(·), Ci(·),MO(·), gi(·), CO(·), gO(·) are continuous func-
tions, we can deduce the boundedness of qi and q̇i,∀i ∈ N
and of M̃, C̃, g̃. Moreover, the error derivatives (14a)-
(14c) are all bounded and thus, in view of (15), v̇r

O is
bounded as well. Hence, we also deduce the bounded-
ness of ui. Finally, by differentiating (16) and substitut-
ing (11) and (18) we also deduce the boundedness of
ėv and therefore of v̇O. Combining the aforementioned
statements we can conclude the boundedness of V̈ and
hence the uniform continuity of V̇ . Invoking Barbalat’s
lemma (Slotine et al., 1991), we deduce that V̇ → 0
and therefore (ep, eηeε, ev) → (03×1, 03×1, 06×1). The equi-
librium eη = 0 can be proven to be unstable (Mayhew
et al., 2011) and hence, since eη(0) 6= 0, we conclude
that (ep, eε, ev) → (03×1, 03×1, 06×1). Furthermore, we also
conclude that e2η → 1 since eξ ∈ S3 is a unit quaternion,
which leads to the completion of the proof.

Remark 3. The assumption eη(0) 6= 0 is a necessary as-
sumption to guarantee asymptotic stability of the orienta-
tion error eξ. In terms of Euler angles, it states that the
initial orientation errors (in the x, y, z directions) should
not be 180 degrees.

4.2 Adaptive Control Scheme

Consider now that the dynamic parameters of the object
and the agents (e.g., masses and inertia moments), are
unknown. We propose an adaptive version of (18) that
does not incorporate the aforementioned parameters and
still guarantees the solution of Problem 1.

It can be shown (Siciliano et al., 2010) that the object and
agent dynamics can be written in the form:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = Hi(qi, q̇i, vi, v̇i)θi (20a)

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) =

YO(xO, ẋO, vO, v̇O)θO, (20b)

∀i ∈ N , where θi ∈ R`, θO ∈ R`O are vectors of unknown
but constant dynamic parameters of the agents and the
object, appearing in the terms Mi, Ci, gi and MO, CO, gO,
respectively, and Hi ∈ R6×`, i ∈ N , YO ∈ R6×`O are known
regressor matrices, independent of θi, θO. It is worth noting
that the choice for ` and `O is not unique and depends on
the factorization method used (Siciliano et al., 2010). In
the same vein, since JOi

, as given in (6), depends only on
qi and not on θi, θO,∀i ∈ N , we can write:

JTOi
MiJOi

v̇i + (JTOi
MiJ̇Oi

+ JTOi
CiJOi

)vi + JTOi
gi =

Yi(qi, q̇i, vi, v̇i)θi, (21)

where Yi ∈ R6×` is another regressor matrix independent
of θi, θO. Hence, in view of (20) and (21), the left-hand
side of (11) can be written as:

M̃(q, xO)v̇O+C̃(q, q̇, xO, ẋO)vO + g̃(q, xO) =

YO(xO, ẋO, vO, v̇O)θO + Y T (q, q̇, vO, v̇O)θ (22)

where Y (q, q̇, vO, v̇O) = [Y1(q1, q̇1, vO, v̇O), . . . , YN (qN , q̇N ,
vO, v̇O)]T ∈ RN`×6 and θ = [[θTi ]i∈N ]T ∈ RN`.

Let us now denote as θ̂iO : R≥0 → R`O and θ̂i : R≥0 →
R` the estimates of θO and θi, respectively, by agent

i ∈ N , and the corresponding stack vectors θ̂O(t) =



[[(θ̂iO(t))T ]i∈N ]T ∈ RN`O , θ̂(t) = [[θ̂Ti (t)]i∈N ]T ∈ RN`, for
which we formulate the associated errors eθO : R≥0 →
RN`O , eθ : R≥0 → RN` as

eθO (t) =[(e1θO (t))T , . . . , (eNθO (t))T ]T = θ̄O − θ̂O(t) (23a)

eθ(t) =[eTθ1(t), . . . , eTθN (t)]T = θ − θ̂(t), (23b)

where θ̄O = [θTO , . . . , θ
T
O︸ ︷︷ ︸

Ntimes

]T ∈ RN`O .

Then, with the reference velocity signal vr
O defined as in

(15) and the corresponding error ev as in (16), we design
the adaptive control law ui : R≥0 → R6 in (11), for each
agent i ∈ N , as:

ui(t) =J−TOi

(
Yi(qi, q̇i, v

r

O, v̇
r

O)θ̂i(t)− cie(t)− kviev(t)

+ciYO(xO, ẋO, v
r

O, v̇
r

O)θ̂iO(t)
)
,

which can be written in vector form as

u(t) = G̃T
(
Ỹ (·)θ̂(t) + ỸO(·)θ̂O(t)− Cfe(t)−Kvev(t)

)
,

(24)

where Ỹ (·) = diag{[Yi(qi, q̇i, vr
O, v̇

r
O)]i∈N } ∈ R6N×N`,

ỸO(·) = diag{[ciYO(xO, ẋO, v
r
O, v̇

r
O)]i∈N } ∈ R6N×N`O , G̃,

Cf , Kv as defined in (18), and e as defined in (15).

Moreover, we design the adaptation laws for each agent as
˙̂
θiO : R≥0 → R`O , with

˙̂
θiO(t) = −ciY TO (xO, ẋO, v

r
O, v̇

r
O)ev(t)

and
˙̂
θi : R≥0 → R`, with

˙̂
θi(t) = −γiY Ti (qi, q̇i, v

r
O, v̇

r
O)ev(t),

∀i ∈ N , which is written in vector form as

˙̂
θO(t) =− C̃fY TO (xO, ẋO, v

r

O, v̇
r

O)ev(t) (25a)

˙̂
θ(t) =− ΓY (q, q̇, xO, ẋO)ev(t), (25b)

where Γ = diag{[γiI`]i∈N } ∈ RN`×N`≥0 , γi ∈ R>0, and

C̃f = [c1I`O , . . . , cNI`O ]T ∈ RN`O×`O .

The following theorem summarizes the main results of this
subsection.

Theorem 2. Consider N robotic agents rigidly grasping
an object with coupled dynamics described by (11) and
unknown dynamic parameters. Then, by applying the
control protocol (24) with the adaptation laws (25), and
under the assumption eη(0) 6= 0, the object pose converges
asymptotically to the desired pose with all closed loop
signals being bounded, i.e, Problem 1 is solved.

Proof. The proof is omitted since it follows identical steps
with the proof of Theorem 1 and can be found in (Verginis
and Dimarogonas, 2016).

Remark 4. Note that the dynamic parameter errors eθO , eθ
are only guaranteed to stay bounded, not to be asymptot-
ically driven to zero. However, that does not affect the re-
sult of the aforementioned analysis that (ep, eε, |eη|, ev)→
(03×1, 03×1, 1, 06×1). Moreover, the gains kp, kε in (15)
must be known by all agents i ∈ N , and the load-sharing
coefficients ci, i ∈ N cannot be arbitrarily chosen by each
agent, due to the constraint that

∑
i∈N ci = 1. Never-

theless, these values are constant and can be transmitted
off-line to the agents.

Remark 5. In both control methodologies (18),(24), we
can guarantee internal force regulation by including a
vector of desired internal forces fint,d : R≥0 → R6N that
belong to the nullspace of GT , i.e., fint,d(t) = (I6N −
G∗GT )f̂int,d, where G∗ : Rn → R6N×6, with G∗(q) =

Fig. 2. Two WidowX Robot Arms rigidly grasping an
object; {I} and {O} denote the inertial and the
object’s frame, respectively.

1
N [J−1O1

(q1), . . . , J−1ON
(qN )]T , and f̂int,d a constant vector

that can be transmitted off-line to the agents. It can be
proved then, in view of the aforementioned analysis, that
when t → ∞, the generalized force vector acting on the
object’s center of mass consists of a term that results
in its motion (for the trajectory tracking), and the term
associated with the internal forces. Note though, that the
computation of G∗GT requires knowledge of all grasping
points pEi

, which reduces to knowledge of the constant
offsets pO

Ei/O
, since, from (3a), we have that pEi

(t) =

pO(t) + ROp
O
Ei/O

and therefore, each agent can compute

all pEi
(t),∀i ∈ N , since it can compute the pose of the

object’s center of mass. Thus, by off-line transmission of
all pO

Ei/O
to all agents, we can regulate the internal forces.

5. EXPERIMENTAL EVALUATION

To demonstrate the efficiency of the proposed algo-
rithm, en experimental study was carried out using two
WidowX Robot Arms, as shown in Fig. 2, and the
non-adaptive version of the proposed control scheme.
The desired profile to be tracked by the object was
determined by the planar motion pO,d(t) = [0.3 +
0.05 sin( 2π

15 t), 0.12, 0]Tm and ξO,d(t) = [ηO,d(t), εTO,d(t)]T =

[cos( π60 sin( 2π
15 t)), 0, 0,− sin( π60 sin( 2π

15 t))]
T , that is associ-

ated to the angle trajectory φO,d(t) = [0, 0,− π
30 sin( 2π

15 t)]
T

rad with respect to the z axis. For the execution of the
task, we employed the three rotational joints with respect
to the z-axis (see Fig. 2) of the arms. The object’s initial
pose was pO(0) = [0.301, 0.123, 0]Tm, φO(0) = [0, 0, 0]T rad.
The load sharing coefficients and the control gains were
chosen as c1 = c2 = 0.5 and kp = 150, kε = 100, kv1 =
kv2 = 2.5, respectively. The experimental results for t =
102s are depicted in Fig. 3-4. In particular, the tracking of
the desired object pose by the actual one is illustrated in
Fig. 3. It can be concluded that the tracking of the desired
pose is achieved with some negligible oscillatory behavior
that can be attributed to the deviation of the dynamics
(11) from the actual coupled dynamics due to sensor
noise, unmodelled friction, external disturbances and small
sliding in the contact points which affects the rigidity
assumption. The torque signals τi, i ∈ {1, 2} are pictured
in Fig 4. A short video demonstrating the experimental
setup can be found at https://youtu.be/PCnZ6C8ECFg.

6. CONCLUSION

We have proposed a novel control protocol for the cooper-
ative manipulation of an object by N robotic agents using



Fig. 3. The desired (with blue) and actual (with red)
pose trajectory of the object’s center of mass pO,d(t)
and pO(t), respectively, for t ∈ [0, 100]s. Top: x
(horizontal) direction. Middle: y (vertical) direction.
Bottom: Angle φOz (t) with respect to z axis (direction
perpendicular to plane x-y).

Fig. 4. The resulting input torques τ1(t) (top) and τ2(t)
(bottom), t ∈ [0, 100]s.

unit quaternions and without employing any force/torque
measurements. Future efforts will be devoted towards in-
corporating kinematic uncertainties associated with the lo-
cation of the object’s center of mass, external disturbances,
non-rigid grasps as well as singularity avoidance.
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