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Abstract: This paper addresses the problem of distance- and orientation-based formation
control of a class of second-order nonlinear multi-agent systems in 3D space, under static and
undirected communication topologies. More specifically, we design a decentralized model-free
control protocol in the sense that each agent uses only local information from its neighbors to
calculate its own control signal, without incorporating any knowledge of the model nonlinearities
and exogenous disturbances. Moreover, the transient and steady state response is solely
determined by certain designer-specified performance functions and is fully decoupled by the
agents’ dynamic model, the control gain selection, the underlying graph topology as well as
the initial conditions. Additionally, by introducing certain inter-agent distance constraints, we
guarantee collision avoidance and connectivity maintenance between neighboring agents. Finally,
simulation results verify the performance of the proposed controllers.
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1. INTRODUCTION

During the last decades, decentralized control of networked
multi-agent systems has gained a significant amount of
attention due to the great variety of its applications.
The main focus of multi-agent systems is the design of
distributed control protocols in order to achieve global
tasks, such as consensus, network connectivity and col-
lision avoidance.

A particular multi-agent problem that has been considered
in the literature is the formation control problem, where
the agents represent robots that aim to form a prescribed
geometrical shape, specified by a certain set of desired
relative configurations between the agents. The main cat-
egories of formation control that have been studied in the
related literature are ([Oh et al., 2015]) position-based con-
trol, displacement-based control, distance-based control
and orientation-based control. In distance-based formation
control, inter-agent distances are actively controlled to
achieve a desired formation, dictated by desired inter-
agent distances. Each agent is assumed to be able to sense
the relative positions of its neighboring agents, without
the need of orientation alignment of the local coordinate
systems. When orientation alignment is considered as a
control design goal, the problem is known as orientation-
based (or bearing-based) formation control. The desired
formation is then defined by relative inter-agent orienta-
tions.

The literature in distance-based formation control is rich,
and is traditionally categorized in single or double inte-
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grator agent dynamics and directed or undirected com-
munication topologies (see e.g. [Olfati-Saber and Murray,
2002, Smith et al., 2006, Hendrickx et al., 2007, Anderson
et al., 2007, 2008, Dimarogonas and Johansson, 2008,
Krick et al., 2009, Dorfler and Francis, 2010, Cao et al.,
2011, Park et al., 2012, Belabbas et al., 2012, Oh and
Ahn, 2014]) Orientation-based formation control has been
addressed in [Eren, 2012, Trinh et al., 2014, Zhao and
Zelazo, 2016], whereas the authors in [Trinh et al., 2014,
Bishop et al., 2015, Fathian et al., 2016] have considered
the combination of distance- and orientation-based forma-
tion.

In most of the aforementioned works in formation con-
trol, the two-dimensional case with simple dynamics and
point-mass agents has been dominantly considered. In
real applications, however, the engineering systems have
nonlinear second order dynamics and are usually subject
to exogenous disturbances and modeling errors. Another
important issue concerns the connectivity maintenance,
the collision avoidance between the neighboring agents
and the transient and steady state response of the closed
loop system, which have not been taken into account in
the majority of related woks. Thus, taking all the above
into consideration, the design of robust distributed control
schemes for the multi-agent formation control problem
becomes a challenging task.

Motivated by this, we aim to address here the distance-
based formation control problem with orientation align-
ment for a team of rigid bodies operating in 3D space, with
unknown second-order nonlinear dynamics and external
disturbances. We propose a purely decentralized control
protocol that guarantees distance formation, orientation
alignment as well as collision avoidance and connectivity
maintenance between neighboring agents and in paral-
lel ensures the satisfaction of prescribed transient and



steady state performance. The prescribed performance
control framework has been incorporated in multi-agent
systems in [Karayiannidis et al., 2012, Bechlioulis and Kyr-
iakopoulos, 2014], where first order dynamics have been
considered. Furthermore, the first one only addresses the
consensus problem, whereas the latter solves the position
based formation control problem, instead of the distance-
and orientation-based problem treated here. Due to space
constraints, a more detailed version of this paper that con-
tains the extended derivations of the proofs and omitted
calculations, can be found in [Nikou et al., 2016].

The remainder of the paper is structured as follows. In
Section 2 notation and preliminary background is given.
Section 3 provides the system dynamics and the formal
problem statement. Section 4 discusses the technical de-
tails of the solution and Section 5 is devoted to a sim-
ulation example. Finally, the conclusion and future work
directions are discussed in Section 6.

2. NOTATION AND PRELIMINARIES

2.1 Notation

The set of positive integers is denoted as N. The real n-
coordinate space, with n ∈ N, is denoted as Rn; Rn≥0
and Rn>0 are the sets of real n-vectors with all elements
nonnegative and positive, respectively. Given a set S, we
denote as |S| its cardinality. The notation ‖x‖ is used
for the Euclidean norm of a vector x ∈ Rn. Given a
symmetric matrix A, λmin(A) = min{|λ| : λ ∈ σ(A)}
denotes the minimum eigenvalue of A, where σ(A) is
the set of all the eigenvalues of A and rank(A) is its
rank; A ⊗ B denotes the Kronecker product of matrices
A,B ∈ Rm×n, as was introduced in [Horn and Johnson,
2012]. Define by In ∈ Rn×n, 0m×n ∈ Rm×n the unit matrix
and the m × n matrix with all entries zero, respectively;
Bc(r) = {x ∈ R3 : ‖x − c‖ ≤ r} is the 3D sphere of
radius r ≥ 0 and center c ∈ R3. The vector connecting
the origins of coordinate frames {A} and {B} expressed
in frame {C} coordinates in 3D space is denoted as pC

B/A ∈
R3. Given a ∈ R3, S(a) is the skew-symmetric matrix
defined according to S(a)b = a × b. We further denote
as qB/A ∈ T3 the Euler angles representing the orientation
of frame {B} with respect to frame {A}, where T3 is the
3D torus. The angular velocity of frame {B} with respect
to {A}, expressed in frame {C} coordinates, is denoted as
ωC

B/A ∈ R3. We also use the notation M = R3 × T3. For
notational brevity, when a coordinate frame corresponds to
an inertial frame of reference {0}, we will omit its explicit
notation (e.g., pB = p0

B/0, ωB = ω0
B/0 etc.). All vector

and matrix differentiations are derived with respect to an
inertial frame {0}, unless otherwise stated.

2.2 Dynamical Systems

Consider the initial value problem:

ψ̇ = H(t, ψ), ψ(0) = ψ0 ∈ Ωψ, (1)

with H : R≥0×Ωψ → Rn, where Ωψ ⊆ Rn is a non-empty
open set.

Definition 1. ([Sontag, 2013]) A solution ψ(t) of the initial
value problem (1) is maximal if it has no proper right
extension that is also a solution of (1).

Theorem 1. ([Sontag, 2013]) Consider the initial value
problem (1). Assume that H(t, ψ) is: a) locally Lipschitz

in ψ for almost all t ∈ R≥0, b) piecewise continuous in t
for each fixed ψ ∈ Ωψ and c) locally integrable in t for
each fixed ψ ∈ Ωψ. Then, there exists a maximal solution
ψ(t) of (1) on the time interval [0, τmax), with τmax ∈ R>0

such that ψ(t) ∈ Ωψ,∀t ∈ [0, τmax).

Proposition 1. ([Sontag, 2013]) Assume that the hypothe-
ses of Theorem 1 hold. For a maximal solution ψ(t) on
[0, τmax) with τmax <∞ and for any compact set Ω′ψ ⊆ Ωψ,

there exists a t′ ∈ [0, τmax) such that ψ(t′) /∈ Ω′ψ.

2.3 Graph Theory

An undirected graph G is a pair (V, E), where V is a
finite set of nodes, representing a team of agents, and
E ⊆ {{i, j} : i, j ∈ V, i 6= j}, with M = |E|, is the set of
edges that model the communication capability between
neighboring agents. For each agent, its neighbors’ set Ni
is defined as Ni = {j1, . . . , j|Ni|} = {j ∈ V s.t. {i, j} ∈ E}.

If there is an edge {i, j} ∈ E , then i, j are called adjacent.
A path of length r from vertex i to vertex j is a sequence
of r + 1 distinct vertices, starting from i and ending to
j, such that consecutive vertices are adjacent. For i = j,
the path is called a cycle. If there is a path between any
two vertices of the graph G, then G is called connected. A
connected graph is called a tree if it contains no cycles.

The adjacency matrix A(G) = [aij ] ∈ RN×N of a graph
G is defined by aij = aji = 1, if {i, j} ∈ E , and aij = 0
otherwise. The degree d(i) of vertex i is defined as the
number of its neighboring vertices, i.e. d(i) = |Ni|, i ∈ V.
Let also ∆(G) = diag{[d(i)]i∈V} ∈ RN×N be the degree
matrix of the system. Consider an arbitrary orientation of
G, which assigns to each edge {i, j} ∈ E precisely one of
the ordered pairs (i, j) or (j, i). When selecting the pair
(i, j), we say that i is the tail and j is the head of the edge
{i, j}. By considering a numbering k ∈ M = {1, ...,M}
of the graph’s edge set, we define the N ×M incidence
matrix D(G) as it was given in [Mesbahi and Egerstedt,
2010]. The Laplacian matrix L(G) ∈ RN×N of the graph
G is defined as L(G) = ∆(G)−A(G) = D(G)D(G)τ .

Lemma 1. [Dimarogonas and Johansson, 2008, Section
III] Assume that the graph G is a tree. Then, Dτ (G)D(G)
is positive definite.

3. PROBLEM FORMULATION

Consider a set of N rigid bodies, with V = {1, 2, . . . , N},
N ≥ 2, operating in a workspace W ⊆ R3, with coordinate
frames {i}, i ∈ V, attached to their centers of mass. Each
agent occupies a sphere Bri(pi(t)), where pi : R≥0 → R3

is the position of the agent’s center of mass and ri is the
agent’s radius. We also denote as qi : R≥0 → T3, i ∈ V,
the Euler angles representing the agents’ orientation with
respect to an inertial frame {0}, with qi = [φi, θi, ψi]

τ .
By defining xi : R≥0 → M, vi : R≥0 → R6, with
xi = [pτi , q

τ
i ]τ , vi = [ṗτi , ω

τ
i ]τ , we model each agent’s motion

with the 2nd order dynamics:

ẋi(t) = Ji(xi)vi(t), (2a)

Mi(xi)v̇i(t) + Ci(xi, ẋi)vi(t) + gi(xi)

+ wi(xi, ẋi, t) = ui, (2b)

where Ji : M → R6×6 is a Jacobian matrix given by
Ji(xi) = diag{I3, Jq(xi)}, with



Jq(xi) =

1 sin(φi) tan(θi) cos(φi) tan(θi)
0 cos(φi) − sin(φi)

0
sin(φi)

cos(θi)

cos(φi)

cos(θi)

 , (3)

for which we make the following assumption:

Assumption 1. The angle θi satisfies the inequality −π2 <
θi(t) <

π
2 ,∀i ∈ V, t ∈ R≥0.

The aforementioned assumption guarantees that Ji is al-
ways well-defined and invertible, since det(Ji) = 1

cos θi
.

Furthermore, Mi : M → R6×6 is the positive definite
inertia matrix, Ci : M×R6 → R6×6 is the Coriolis matrix,
gi : M → R6 is the gravity vector, and wi : M × R6 ×
R≥0 → R6 is a bounded vector representing model uncer-
tainties and external disturbances. We consider that the
aforementioned vector fields are unknown and continuous.
Finally, ui ∈ R6 is the control input vector representing
the 6D generalized force acting on the agent.

The dynamics (2) can be written in vector form as:

ẋ(t) = J(x)v(t), (4a)

M̄(x)v̇(t) + C̄(x, ẋ)v(t) + ḡ(x) + w̄(x, ẋ, t) = u, (4b)

where x = [xτ1 , . . . , x
τ
N ]τ : R≥0 → MN , v = [vτ1 , . . . , v

τ
N ]τ :

R≥0 → R6N , u = [uτ1 , . . . , u
τ
N ]τ ∈ R6N , and J =

diag{[Ji]i∈V} ∈ R6N×6N , M̄ = diag{[Mi]i∈V} ∈ R6N×6N ,
C̄ = diag{[Ci]i∈V} ∈ R6N×6N , ḡ = [gτ1 , . . . , g

τ
N ]τ ∈

R6N , w̄ = [wτ1 , . . . , w
τ
N ]τ ∈ R6N .

It is also further assumed that each agent can measure
its own pi, qi, ṗi, vi, i ∈ V, and has a limited sensing range
of si > max{ri + rj : i, j ∈ V}. Therefore, by defining
the neighboring set Ni(t) = {j ∈ V : pj(t) ∈ Bsi(pi(t))},
agent i also knows at each time instant t all pij/i(t), qj/i(t)

and, since it knows its own pi(t), qi(t), it can compute all
pj(t), qj(t),∀j ∈ Ni(t), t ∈ R≥0.

The topology of the multi-agent network is modeled
through the graph G = (V, E), with V = {1, . . . , N} and
E = {{i, j} ∈ V × V s.t. j ∈ Ni(0) and i ∈ Nj(0)}. The
latter implies that at t = 0 the graph is undirected, i.e.,

‖p`k(0)− pmk
(0)‖ < dk,con,∀{`k,mk} ∈ E , (5)

with dk,con = min{s`k , smk
}, `k,mk ∈ V,∀k ∈ M. We

also consider that G is static in the sense that no edges
are added to the graph. We do not exclude, however,
edge removal through connectivity loss between initially
neighboring agents, which we guarantee to avoid, as pre-
sented in the sequel. It is also assumed that at t = 0
the neighboring agents are at a collision-free configura-
tion, i.e., dk,col < ‖p`k(0) − pmk

(0)‖,∀{`k,mk} ∈ E , with
dk,col = r`k + rmk

. Hence, we conclude that

dk,col < ‖p`k(0)− pmk
(0)‖ < dk,con,∀{`k,mk} ∈ E . (6)

Moreover, given the desired formation constants dk,des,
qk,des for the edge k ∈ M, the formation configuration
is called feasible if the set Φ = {x ∈ MN : ‖p`k −
pmk
‖ = dk,des, q`k − qmk

= qk,des,∀{`k,mk} ∈ E}, with
`k,mk ∈ V,∀k ∈ M, is nonempty. Due to the fact that
the agents are not dimensionless and their communication
capabilities are limited, the control protocol, except from
achieving a desired inter-agent formation, should also
guarantee for all t ∈ R≥0 that (i) the neighboring agents
avoid collision with each other and (iii) all the initial edges
are maintained, i.e., connectivity maintenance. Therefore,
all pairs {`k,mk} ∈ V × V of agents that initially form an
edge must remain within distance greater than dk,col and

less than dk,con. We also make the following assumptions
that are required on the graph topology:

Assumption 2. The graph G is initially a tree.

Formally, the robust formation control problem under the
aforementioned constraints is formulated as follows:

Problem 1. Given N agents governed by the dynamics
(2), under the Assumptions 1, 2 and given the desired
inter-agent distances and angles dk,des, qk,des, with dk,col <
dk,des < dk,con, ∀{`k,mk} ∈ E , `k,mk ∈ V,∀k ∈ M,
design decentralized control laws ui ∈ R6, i ∈ V such that
∀ {`k,mk} ∈ E , k ∈M, the following hold:

(1) lim
t→∞

‖p`k(t)− pmk
(t)‖ = dk,des,

(2) lim
t→∞

[qmk
(t)− q`k(t)− qk,des] = 03×1,

(3) dk,col < ‖p`k(t)− pmk
(t)‖ < dk,con,∀ t ∈ R≥0.

4. PROBLEM SOLUTION

Let p = [pτ1 , . . . , p
τ
N ]τ : R≥0 → R3N , q = [qτ1 , . . . , q

τ
N ]τ :

R≥0 → T3N be the stacked vectors of all the agent posi-
tions and Euler angles. We further denote as p̃, q̃ : R≥0 →
R3M , with p̃(t) = [pT`1,m1

(t), . . . , pT`M ,mM
(t)]T , q̃(t) =

[qT`1,m1
(t), . . . , qT`M ,mM

(t)]T and p`k,mk
(t) = p`k(t)−pmk

(t),

q`k,mk
(t) = q`k(t)− qmk

(t), ∀{`k,mk} ∈ E , with the edges
ordered as in the case of the incidence matrix D(G). Thus,
the following holds:

p̃(t) = (Dτ (G)⊗ I3) p(t), (7a)

q̃(t) = (Dτ (G)⊗ I3) q(t). (7b)

Next, let us introduce the errors epk : R≥0 → R, epk(t) =

‖p`k,mk
(t)‖2 − d2k,des and eqk = [eqk1 , e

q
k2
, eqk3 ]τ : R≥0 →

T3, eqk(t) = qmk
(t) − q`k(t) − qk,des, for all distinct

edges {`k,mk} ∈ E , k ∈ M, as well as the stack
vectors ep(t) = [ep1(t), . . . , epM (t)]τ ∈ RM , eq(t) =
[(eq1(t))τ , . . . , (eqM (t))τ ]τ ∈ T3M . By taking the time
derivative of ep, eq, we obtain:

ėp(t) = Fp(x) (Dτ (G)⊗ I3) ṗ, (8a)

ėq(t) = (Dτ (G)⊗ I3) q̇, (8b)

where Fp : MN → RM×3M , with

Fp(x) = 2

p
τ
`1,m1

(t) . . . 01×3
...

. . .
...

01×3 . . . pτ`M ,mM
(t)

 .
By introducing the stack error vector e(t) = [(ep(t))τ ,
(eq(t))τ ]τ ∈ R4M , (8) can be written as:

ė(t) = F̄p(x)D̄τ (G)[ṗτ , q̇τ ]τ , (9)

where

F̄p(x) =

[
Fp(x) 0M×3M

03M×3M I3M

]
∈ R4M×6M , (10a)

D̄(G) =

[
D(G)⊗ I3 03N×3M
03N×3M D(G)⊗ I3

]
∈ R6N×6M . (10b)

Finally, we obtain from (4a):



[
ṗ
q̇

]
=



I3 . . . 03×3 03×3 . . . 03×3
...

. . .
...

...
. . .

...
03×3 . . . I3 03×3 . . . 03×3
03×3 . . . 03×3 Jq(x1) . . . 03×3

...
. . .

...
...

. . .
...

03×3 . . . 03×3 03×3 . . . Jq(xN )


︸ ︷︷ ︸

J(x)



ṗ1
...
ṗN
ω1
...
ωN


︸ ︷︷ ︸
v(t)

= J(x)v(t), (11)

and thus, (9) can be written as:

ė(t) = F̄p(x)D̄τ (G)J(x)v(t). (12)

The concepts and techniques of prescribed performance
control, originally proposed in [Bechlioulis and Rovithakis,
2008], are adapted in this work in order to: a) achieve
predefined transient and steady state response for the
distance and orientation errors epk, e

q
k,∀k ∈ M as well

as ii) avoid the violation of the collision and connectiv-
ity constraints between neighboring agents, as presented
in Section 3. As stated in [Bechlioulis and Rovithakis,
2008], prescribed performance characterizes the behavior
where the aforementioned errors evolve strictly within a
predefined region that is bounded by absolutely decaying
functions of time, called performance functions. The math-
ematical expressions of prescribed performance are given
by the inequality objectives:

−Ck,colρpk(t) < ep
k
(t) < Ck,conρ

p
k
(t), −ρq

k
(t) < eq

kn
(t) < ρq

k
(t), (13)

∀k ∈M, n ∈ {1, 2, 3}, where the functions ρqk(t) = (ρqk,0 −
ρqk,∞)e−l

q
k
t + ρqk,∞, ρpk(t) = (1 − ρpk,∞c̄)e

−lp
k
t + ρpk,∞c̄,

with c̄ = (max{Ck,con, Ck,col})−1, are designer-specified,
smooth, bounded, and decreasing functions of time, where
lpk, l

q
k, ρ

p
k,∞, ρ

q
k,∞ ∈ R>0,∀k ∈ M, incorporate the desired

transient and steady state performance specifications re-
spectively, and Ck,col, Ck,con ∈ R>0,∀k ∈ M, are asso-
ciated with the collision and connectivity constraints. In
particular, we select

Ck,col = d2k − d2k,col, Ck,con = d2k,con − d2k, (14)

∀k ∈ M, which, since the desired formation is com-
patible with the collision and connectivity constraints
(i.e., dk,col < dk,des < dk,con,∀k ∈ M), ensures that
Ck,col, Ck,con ∈ R>0,∀k ∈ M and, in view of (6) that
−Ck,colρpk(0) < epk(0) < ρpk(0)Ck,con, ∀k ∈ M. Moreover,
by choosing

ρqk,0 = ρqk(0) > max
n∈{1,2,3}

|eqkn(0)|, (15)

it is also guaranteed that −ρqk(0) < eqkn(0) < ρqk(0).

∀k ∈ M, n ∈ {1, 2, 3}. Hence, if we guarantee prescribed
performance via (13), by employing the decreasing prop-
erty of ρpk(t), ρqk(t),∀k ∈ M, we obtain −Ck,col < epk(t) <
Ck,con,−ρqk(t) < eqkn(t) < ρqk(t), and, consequently, owing

to (14) we have dk,col < ‖p`k(t) − pmk
(t)‖ < dk,con,∀k ∈

M, t ∈ R≥0, and, hence, a solution to problem 1.

In the sequel, we propose a decentralized control protocol
that does not incorporate any information on the agents’
dynamic model and guarantees (13) for all t ∈ R≥0. Given
the errors ep(t), eq(t):

Step I-a: Select the corresponding functions ρpk(t), ρqk(t)
and positive parameters Ck,con, Ck,col, k ∈ M, following
(13), (15), and (14), respectively, in order to incorpo-
rate the desired transient and steady state performance
specifications as well as the collision and connectivity

constraints. In addition, define the normalized errors ξpk :
R≥0 → R, ξqk = [ξqk1 , ξ

q
k2
, ξqk3 ]τ : R≥0 → R3 with ξpk(t) =

(ρpk(t))−1epk(t), ξqk(t) = (ρqk(t))−1eqk(t), ∀k ∈ M, as well as
the stack vector forms ξp = [ξp1 , . . . , ξ

p
M ]τ = (ρp)−1ep, ξq =

[(ξq1)τ , . . . , (ξqM )τ ]τ = (ρq)−1eq, and ξ = [(ξp)τ , (ξq)τ ]τ =
(ρ)−1e ∈ R4M , where ρp = diag{[ρpk]k∈M} ∈ RM×M , ρq =
diag{[ρqkI3]k∈M} ∈ R3M×3M , ρ = diag{ρp, ρq}.

Step I-b: Define the transformed errors εpk : R → R, εqk :
R3 → R3 and the signals rpk : R→ R, rqk : R3 → R3×3 as

εp
k
(ξp
k
) = ln

((
1 +

ξp
k

Ck,col

)(
1−

ξp
k

Ck,con

)−1
)
, (16a)

εq
k
(ξq
k
) =

[
ln

(
1 + ξq

k1

1− ξq
k1

)
, ln

(
1 + ξq

k2

1− ξq
k2

)
, ln

(
1 + ξq

k3

1− ξq
k3

)]τ
, (16b)

rp
k
(ξp
k
) =

∂εp
k
(ξp
k
)

∂ξp
k

=
Ck,col + Ck,con

(Ck,col + ξp
k
)(Ck,con − ξpk)

,

rq
k
(ξq
k
) =

∂εq
k
(ξq
k
)

∂ξq
k

= diag

{[
rp
kn

(ξp
kn

)
]
n∈{1,2,3}

}
= diag

{[
2

1− (ξq
kn

)2

]
n∈{1,2,3}

}
,

and design the decentralized reference velocity vector for
each agent vi,des = [ṗτi,des, ω

τ
i,des]

τ : R4M × R≥0 → R6 as:

vi,des(ξ, t) =

− J−1
i (xi)


∑

j∈Ni(0)

(ρp
kij

(t))−1rp
kij

(ξp
kij

)εp
kij

(ξp
kij

)pi,j(t)∑
j∈Ni(0)

(ρq
kij

(t))−1rq
kij

(ξq
kij

)εq
kij

(ξq
kij

)

 (17)

where kij ∈ M is the edge of agents i, j ∈ Ni(0), i.e.,
{`kij ,mkij} ∈ E and `kij = i,mkij = j. We write (17) in
vector form vdes(ξ, t) = [ṗτdes(ξ

p, t), ωτdes(ξ
q, t)]τ :

vdes(ξ, t) = −J−1(x)D̄(G)F̄τp(x)r(ξ)(ρ(t))−1ε(ξ), (18)

where ṗdes = [ṗτ1,des, . . . , ṗ
τ
N,des]

τ , ωdes = [ωτ1,des, . . . ,

ωτN,des]
τ ∈ R3N , ε = [(εp)τ , (εq)τ ]τ = [εp1, . . . , ε

p
M , (ε

q
1)τ ,

. . . , (εqM )τ ]τ ∈ R4M and J(x), D̄(G), F̄p as they were
defined in (10) and (11), respectively. Moreover, r =
diag{rp, rq} ∈ R4M×4M , rp = diag{[rpk]k∈M} ∈ RM×M
and rq = diag{[rqk]k∈M} ∈ R3M×3M . It should be noted

that J−1(x) is always well-defined due to Assumption 1.

Step II-a: Define the errors ev : R4M ×R≥0 → R6N , with
ev(ξ, t) = [(ev1)τ (ξ, t), . . . , (evN )τ (ξ, t)]τ = v(t) − vdes(ξ, t),
where evi (ξ, t) = [evi1(ξ, t), . . . , evi6(ξ, t)]τ = [ṗτi (t) −
ṗτi,des(ξ

p, t), ωτi (t)−ωτi,des(ξq, t)]τ = vi(t)−vi,des(ξ, t), i ∈ V,
and select the corresponding performance functions ρvim :

R≥0 → R>0, with ρvim(t) = (ρvim,0 − ρ
v
im,∞)e−l

v
im
t + ρvim,∞

and ρvim,0 = ρvim(0) > |evim(0)|, lvim , ρ
v
im,∞ ∈ R>0, ρ

v
im,∞ <

ρvim,0,∀i ∈ V,m ∈ {1, . . . , 6}.

Moreover, define the normalized errors ξvi = [ξvi1 , . . . , ξ
v
i6

]τ :

R4M × R≥0 → R6 with ξvi (ξ, t) = (ρvi (t))
−1evi (ξ, t), ρ

v
i =

diag{[ρvim ]m∈{1,...,6}} ∈ R6×6, which is written as ξv(ξ, t) =

[(ξv1 (ξ, t))τ , . . . , (ξvN (ξ, t))τ ]τ = (ρv(t))−1ev(ξ, t) ∈ R6N ,
with ρv(t) = diag

{
[ρvi (t)]i∈V

}
∈ R6N×6N .
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Fig. 1. The evolution of the distance errors epk(t) with the
performance functions ρpk(t),∀k ∈ {1, 2, 3}.

Step II-b: Define the transformed velocity errors εvi :
R6 → R6 and the signals rvi : R6 → R6×6 as:

εvi (ξ
v
i ) =

[
ln

(
1 + ξvi1
1− ξvi1

)
, · · · , ln

(
1 + ξvi6
1− ξvi6

)]τ
, (19a)

rvi (ξ
v
i ) =

∂εvi (ξ
v
i )

∂ξvi
= diag{

[
rvim (ξvim )

]
m∈{1,...,6}

}

= diag

{[
2

(1− (ξvim )2)

]
m∈{1,...,6}

}
, (19b)

and design the decentralized control protocol for each
agent i ∈ V as ui : R6 × R≥0 → R6:

ui(ξ
v
i , t) = −γi(ρvi (t))−1rvi (ξvi )εvi (ξ

v
i ), (20)

with γi ∈ R>0,∀i ∈ V, which can be written in vector form
as:

u(ξv, t) = −Γ(ρv(t))−1rv(ξv)εv(ξv), (21)

where Γ = diag{[γiI6]i∈V} ∈ R6N×6N , εv = [(εv1)τ , . . . ,
(εvN )τ ]τ ∈ R6N and rv = diag{[rvi ]i∈V} ∈ R6N×6N .

Remark 1. Notice by (17) and (20) that the proposed con-
trol protocols are distributed in the sense that each agent
uses only local information to calculate its own signal. In
that respect, regarding every edge kij , with {`kij ,mkij} =
{i, j}, the parameters ρpkij ,∞, ρ

q
kij ,∞, l

p
kij
, lqkij , as well as

the sensing radii sj ,∀j ∈ Ni(0), which are needed for the
calculation of the functions ρpkij , ρ

q
kij

, can be transmitted

off-line to each agent i ∈ V. Moreover, the proposed control
law does not incorporate any prior knowledge of the model
nonlinearities/disturbances, enhancing thus its robustness.

The main results of this work are summarized in the
following theorem.

Theorem 2. Consider a system of N agents, subject to
(2), aiming at establishing a formation described by the
distances dk,des and orientation angles qk,des, k ∈M, while
satisfying the collision and connectivity constraints be-
tween neighboring agents, represented by dk,col and dk,con,
respectively, with dk,col < dk,des < dk,con, k ∈ M. Then,
under Assumptions 1, 2, the control protocol (17)-(21)
guarantees: −Ck,colρpk(t) < epk(t) < Ck,conρ

p
k(t),−ρqk(t) <

eqkn(t) < ρqk(t),∀k ∈ M, n ∈ {1, 2, 3}, t ≥ 0, as well as the
boundedness of all closed loop signals.

Proof. The proof can be found in [Nikou et al., 2016].

Remark 2. The transient and steady state performance of
the closed loop system is explicitly and solely determined
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Fig. 2. The evolution of the orientation errors eqkn(t) with

the performance functions ρqk(t),∀k, n ∈ {1, 2, 3}.

by the parameters lpk, l
q
k, ρpk,∞, ρ

q
k,∞, ρ

p
k,0 and Ck,col, Ck,con,

k ∈ M. Nonetheless, fine tuning might be needed in real-
time scenarios, to retain the required control input signals
within the feasible range that can be implemented by
real actuators. Similarly, the input constraints impose an
upper bound on the speed of convergence of ρpk(t) and

ρqk(t), k ∈M, as obtained by the exponentials e−l
p
k
t, e−l

q
k
t.

Remark 3. Regarding Assumption 1, we stress that, by
choosing the initial conditions θi(0),∀i ∈ V, and the
desired formation constants θk,des = qk2,des,∀k ∈ M
close to zero, the condition −π2 < θi(t) < π

2 will not
be violated, since the agents will be mostly operating
near the point θi = 0,∀i ∈ V. This is a reasonable
assumption for real applications, since θi represents pitch
angles that are desired to be close to zero (consider, e.g.,
aerial vehicles). Furthermore, notice that the proposed
control scheme guarantees collision avoidance only for the
initially neighboring agents (at t = 0), since that is how
the edge set E is defined. Inter-agent collision avoidance
with all possible agent pairs is left as future work.

5. SIMULATION RESULTS

To demonstrate the efficiency of the proposed control
protocol, we considered a simulation example with N =
4,V = {1, 2, 3, 4} spherical agents of the form (2), with
ri = 1m and si = 4m,∀i ∈ {1, . . . , 4}. We selected
the exogenous disturbances as wi = Ai sin(ωc,it)(ai1xi −
ai,2ẋi), where the parameters Ai, ωc,i, ai1 , ai2 as well
as the dynamic parameters of the agents were ran-
domly chosen in [0, 1]. The initial conditions were taken
as p1(0) = [0, 0, 0]T m, p2(0) = [2, 2, 2]T m, p3(0) =
[2, 4, 4]T m, p4(0) = [2, 3, 2.5]T m, q1(0) = q2(0) =
q3(0) = q4(0) = [0, 0, 0]T r, which give the initial edge
set E = {{1, 2}, {2, 3}, {2, 4}}. The desired graph forma-
tion was defined by the constants dk,des = 2.5m, qk,des =
[π4 , 0,

π
3 ]T r,∀k ∈ {1, 2, 3}. Invoking (14), we also chose

Ck,col = 5.25m and Ck,con = 10.75m. Moreover, the
parameters of the performance functions were chosen as
ρpk,∞ = 0.1, ρqk,0 = π

2 > max{eqk1(0), eqk2(0), eqk3(0)} = π
3

and lpk = lqk = 1,∀k ∈ {1, 2, 3}. In addition, we chose
ρvim,0 = 2|evim(0)| + 0.5, lvim = 1 and ρvim,∞ = 0.1. Finally,
γi was set to 5. The simulation results are depicted in
Fig. 1-4. In particular, Fig. 1 and 2 show the evolution of
epk(t) and eqkn(t) along with ρpk(t) and ρqk(t), respectively,

∀k ∈ {1, 2, 3}, n ∈ {1, 2, 3}. The velocity errors evim(t)
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Fig. 3. The evolution of the velocity errors evim(t) with the
functions ρvim(t),∀i ∈ {1, . . . , 4},m ∈ {1, . . . , 6}.

Fig. 4. The resulting input signals ui(t), i ∈ {1, . . . , 4}.

along ρvim(t) and the control signals ui are illustrated
in Figs. 3 and 4, respectively. As it was predicted by
the theoretical analysis, the formation control problem
with prescribed transient and steady state performance
is solved with bounded closed loop signals, despite the
unknown agent dynamics and the presence of external
disturbances.

6. CONCLUSIONS AND FUTURE WORK

In this work we proposed a robust decentralized control
protocol for distance- and orientation-based formation
control, collision avoidance and connectivity maintenance
of multiple rigid bodies with unknown dynamic models.
Future efforts will be devoted towards extending the cur-
rent results to directed as well as time-varying communi-
cation graph topologies.
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