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Abstract: This paper presents a novel framework combining abstraction refinement and plan
revision for control synthesis problems under temporal logic specifications. The control problem
is first solved on a simpler nominal model in order to obtain a satisfying plan to be followed by
the real system. A controller synthesis is then attempted for an abstraction of the real system to
follow this plan. Upon failure of this synthesis, cost functions are defined to guide towards either
refining the initially coarse partition to obtain a finer abstraction, or looking for an alternative
plan using the nominal model as above. This tentative synthesis is then repeated until a plan
and an abstraction of the real system able to follow this plan are found. The obtained controller
also ensures that the real system satisfies the initial specification.
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1. INTRODUCTION

In model checking and control synthesis problems under
temporal logic specifications, when the desired specifica-
tion is unsatisfiable by the considered system, classical
methods would stop and announce that the problem is not
feasible (Baier et al., 2008). To overcome this limitation,
we can try to create an automated framework which itera-
tively reformulates or relaxes the problem until satisfaction
is reached. Two main approaches can be considered.

The first option is to keep the desired specification while
considering a new model which should satisfy it and
remain as close as possible to the initial model (Ding
and Zhang, 2005). A subset of these methods is based on
the notion of abstraction refinement. When checking the
satisfaction of the specification on the original model is
too complicated, we can rely on creating an abstraction
of this model which over-approximates its behavior while
being simpler to deal with (Tabuada, 2009). As a result
of this over-approximation, a specification satisfied on the
abstraction will also be satisfied on the initial model,
but its unsatisfaction may be due to the choice of a too
coarse abstraction. Abstraction refinement thus aims at
iteratively improving the accuracy of the abstraction until
it satisfies the specification, see e.g. Clarke et al. (2003);
Lee et al. (1997) for model checking and Henzinger et al.
(2003); Nilsson and Ozay (2014) for control synthesis.

The dual approach consists in keeping the initial model
of interest while tuning down the verification or control
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objective. This can be achieved by a specification revision
problem, where one looks for a more permissive specifi-
cation which is satisfied by the model (Kim et al., 2015;
Finger and Wassermann, 2008). Specification relaxation is
an alternative method where one designs some metric to
measure the level of satisfaction of the initial unsatisfied
specification and thus looks for a path with minimal viola-
tion (Tumova et al., 2013) or equivalently, maximal satis-
faction (Guo and Dimarogonas, 2013) of the specification.

This paper addresses control synthesis under temporal
logic specifications by combining abstraction refinement
and specification revision approaches in a single framework
composed of 3 main elements. We first apply a specification
conversion, where a simpler nominal model is used to ex-
tract a plan ψ satisfying the main specification θ expressed
as a Linear Temporal Logic (LTL) formula. When we fail
to synthesize a satisfying controller for an abstraction of
the real system to follow this plan ψ, we adapt the problem
through either abstraction refinement, creating a more
accurate abstraction by splitting elements of its partition;
or plan revision, reusing the nominal model to synthesize
an alternative plan ψ′ satisfying the formula θ.

To the knowledge of the authors, the proposed approach
combining abstraction refinement and plan revision has
not been explored yet. In addition, the plan revision
approach introduced in this paper is significantly different
from the mentioned literature on specification revision and
relaxation in that we do not assume the main specification
to be unfeasible on the real system. A compositional
approach of the abstraction refinement was presented
in Meyer and Dimarogonas (2017).

The structure of this paper follows the above decompo-
sition: Section 2 formulates the problem and details the



specification conversion, Section 3 presents the abstraction
refinement and Section 4 introduces the plan revision. The
overall algorithm is given in Section 5. Section 6 provides
a numerical illustration of this approach.

2. PROBLEM FORMULATION

Let N, Z+, R and R+
0 be the sets of positive integers,

non-negative integers, reals and non-negative reals, respec-
tively. For a, b ∈ Rn, the interval [a, b] ⊆ Rn is defined
as [a, b] = {x ∈ Rn | a ≤ x ≤ b} using componentwise
inequalities. For a set S, |S| denotes its cardinality.

2.1 System description

We consider a nonlinear control system described by

ẋ = f(x,w) + u, (1)

with state x ∈ X ⊆ Rn, bounded additive control input
u ∈ U ⊆ Rn and bounded disturbance input w ∈ W ⊆ Rq.
Φ(t, x, u,w) denotes the state (assumed to exist and be
unique) reached by (1) at time t ∈ R+

0 from initial state
x ∈ X , under the constant control input u ∈ U and the
piecewise continuous disturbance input w : R+

0 →W. The
reachable set of (1) at time t ∈ R+

0 , from a set of initial
states X ′ ⊆ X and for a subset of constant control inputs
U ′ ⊆ U is defined as

RS(t,X ′,U ′) =

{
Φ(t, x, u,w)

∣∣∣∣ x ∈ X ′, u ∈ U ′,w : [0, t]→W

}
. (2)

We assume that we are able to compute over-approximations
RS(t,X ′,U ′) of the reachable set defined in (2):

RS(t,X ′,U ′) ⊆ RS(t,X ′,U ′). (3)

Several methods exist for over-approximating reachable
sets for fairly large classes of linear (Kurzhanskiy and
Varaiya, 2007; Girard, 2005) and nonlinear systems (Reis-
sig et al., 2016; Coogan and Arcak, 2015).

For a sampling period τ ∈ R+
0 whose value is defined in

the next section, a sampled version of system (1) can be
described as a non-deterministic infinite transition system
Sτ = (Xτ , Uτ ,−→

τ
) where Xτ = X is the set of states,

Uτ = U is the set of inputs and x
u−→
τ

x′ (equivalently

written as x′ ∈ Postτ (x, u)) if x′ ∈ RS(τ, {x}, {u}).

2.2 Specification conversion

In this section, we define the initial problem and detail the
specification conversion step mentioned in Section 1. We
first assume that the state space X ⊆ Rn is an interval of
Rn and we consider a uniform partition P of X into smaller
identical intervals. In what follows, the elements of P are
called cells of the state space. Next, we consider a control
specification θ written as a Linear Temporal Logic (LTL)
formula over the set of atomic propositions corresponding
to the elements of the partition P . The reader is referred
to Baier et al. (2008) for an introduction on the LTL
framework. In this paper, we focus on subclasses of LTL
formulas which can be satisfied by finite traces ψ =
ψ(0)ψ(1) . . . ψ(r) ∈ P r+1 for some r ∈ N, e.g. if θ is a
syntactically co-safe formula (Kupferman and Vardi, 2001)
or if it is defined over finite traces (De Giacomo and Vardi,
2013). In what follows, we denote as F(θ) the set of all
finite plans in P satisfying θ.

Problem 1. Find a controller C : X → U such that the
closed loop of the system Sτ (with xk+1 ∈ Postτ (xk, C(xk))
for all k ∈ Z+) satisfies the specification θ.

Although our initial objective is to synthesize a controller
such that the system Sτ satisfies the specification θ as in
Problem 1, we rely on solving this control problem on a
simplified model to define a secondary control problem for
Sτ consisting in following one of the satisfying finite plans
ψ ∈ F(θ) in P . We thus temporarily consider the single
integrator model Σn : ẋ = u (in the same state space
Rn), typically used for motion of fully-actuated kinematic
robotic agents (Mesbahi and Egerstedt, 2010) and such
that (1) can be seen as a disturbed version (by disturbance
w and state interactions) of the nominal system Σn.

Let size(P, i) ∈ R+
0 be the width in the ith dimension of

Rn of any cell in the uniform partition P and denote as
ui ∈ R the ith component of u ∈ Rn. Then the time

τ = max
i∈{1,...,n}

min
u∈U,ui 6=0

size(P, i)

|ui|
(4)

corresponds to the minimal time such that steering any
continuous state of Σn between any two neighbor cells of
P (i.e. whose boundaries have a common facet) exactly in
time τ can be done with a constant control u satisfying
the constraints u ∈ U . Using τ as a sampling period,
we can then abstract the behavior of the nominal system
Σn by a deterministic transition system. Since throughout
this paper, the input used in a transition of this nominal
abstraction is irrelevant to the control synthesis on the
disturbed system (1), we rather consider the following non-
deterministic finite transition system Sn = (Xn,−→

n
, σ0)

defined without input, where Xn = P is the set of states
(cells of the partition P ), σ0 ∈ P is the initial cell and
σ −→

n
σ′ ⇔ ∃u ∈ U | ∀x ∈ σ, x+ τu ∈ σ′.

The above definitions of τ and Sn thus ensure that for any
two neighbor cells σ and σ′ of P , the transition σ −→

n
σ′

exists in Sn. Similarly to F(θ), we define F(Sn) as the
set of all finite runs that can be generated by Sn, i.e. if
ψ ∈ P r+1 ∩F(Sn), then ψ(0) = σ0 and ψ(k) −→

n
ψ(k+ 1)

for all k ∈ {0, . . . , r − 1}.
This nominal abstraction Sn will be used for both the
initial problem conversion described below and the plan
revision method in Section 4. Both these steps can be
done using classical tools of model checking (Baier et al.,
2008) to find a finite plan ψ ∈ F(θ)∩F(Sn) satisfying the
specification θ on Sn. Problem 1 can then be replaced by
a new problem where the plan ψ is to be followed by Sτ .

Problem 2. Find a plan ψ = ψ(0)ψ(1) . . . ψ(r) ∈ F(θ)
satisfying the specification θ and a controller C : X → U
such that the sampled system Sτ follows ψ, i.e. for any

trajectory x0 C(x0)−→
τ

x1 C(x1)−→
τ

. . .
C(xr−1)−→

τ
xr of the controlled

system, we have xk ∈ ψ(k) for all k ∈ {0, . . . , r}.
Assumption 3. For any k, l ∈ {0, . . . , r} such that k 6= l,
we have ψ(k) 6= ψ(l).

For clarity of notation, we assume that no finite plan
ψ = ψ(0)ψ(1) . . . ψ(r) as considered in Problem 2 visits
the same cell twice, as provided by Assumption 3. The
case when Assumption 3 is relaxed can be covered by



designing controllers depending on both the current state
of the system and the current position in ψ in order to
know which cell is to be targeted next.

3. ABSTRACTION REFINEMENT

3.1 Abstraction

Since in most cases Problems 1 and 2 cannot be solved
directly on the infinite transition system Sτ , we rely on
creating an abstraction Sa of Sτ which can be described as
a finite transition system Sa = (Xa, Ua,−→

a
) where Xa is

a partition of the continuous state space X into a finite set
of intervals called symbols (in the abstraction refinement
procedure, Xa is initially taken equal to P and is then it-
eratively refined in Algorithm 2), Ua ⊆ U is a finite subset

of the control set U and a transition s
u−→
a
s′ (equivalently

written as s′ ∈ Posta(s, u)) exists if s′∩RS(τ, s, {u}) 6= ∅.
The use of these over-approximations (3) guarantees the
existence of a behavioral relationship between Sτ and Sa
(defined formally and proven in Section 5), which ensures
that a controller solving Problem 1 for Sa can be converted
into a controller solving Problem 1 for Sτ .

Instead of creating the whole abstraction Sa as defined
above followed by a controller synthesis (which may fail if
the chosen partition is too coarse), the abstraction refine-
ment proposed in this section is guided by the specification
and iteratively synthesizes a controller alongside the cre-
ation of the abstraction. If no satisfying controller is found,
an element of the initial coarse partition P is refined by
splitting it into smaller elements and the synthesis is tried
again. This approach thus aims at creating the abstraction
Sa from a refined partition Xa which is as coarse as
possible, but still fine enough to satisfy the specification.

3.2 Valid sets

We first introduce the function Pa : P → 2Xa such that
Pa(σ) = {s ∈ Xa | s ⊆ σ} corresponds to the projection
of a cell σ ∈ P onto a given finer partition Xa. Next, we
define the notion of valid sets.

Definition 4. Given a finite plan ψ = ψ(0) . . . ψ(r) as in
Problem 2, we define the function V : P → 2Xa such that
V (ψ(r)) = {ψ(r)} and for all k ∈ {0, . . . , r−1}: V (ψ(k)) =
{s ∈ Pa(ψ(k))|∃u ∈ Ua, Posta(s, u) ⊆ V (ψ(k + 1))}. The
set V (ψ(k)) is called the valid set of cell ψ(k). A cell σ ∈ P
and a symbol s ∈ Xa such that s ∈ Pa(σ) are said to be
valid if V (σ) 6= ∅ and s ∈ V (σ), respectively. Conversely,
a symbol s ∈ Pa(σ) is invalid if s /∈ V (σ).

Since ψ(r) is the final cell of the plan ψ to be reached
in Problem 2, it is considered as valid and the function
V : P → 2Xa is initialized with V (ψ(r)) = {ψ(r)}. We
then proceed backwards on the plan ψ to iteratively define
the other valid sets V (ψ(k)) as the subset of symbols in
ψ(k) which can be driven towards the valid set V (ψ(k+1))
of the next cell for at least one control input in Ua. The
function ValidSet(ψ(k), V (ψ(k+ 1))) in Algorithm 1 first
computes the valid set V (ψ(k)) with respect to a plan ψ
as in Definition 4. Then, the controller Ca : Xa → Ua
associates to each valid symbol s ∈ V (ψ(k)) the first
control value ensuring that s is valid (i.e. stopping the
search of such inputs as soon as one is found).

Data: P , Xa, Ua, Pa : P → 2Xa .
Input: Considered cell ψ(k) ∈ P .
Input: Targeted valid set V (ψ(k + 1)) ⊆ Pa(ψ(k + 1)).
V (ψ(k)) = {s ∈ Pa(ψ(k)) | ∃u ∈ Ua such that

Posta(s, u) ⊆ V (ψ(k + 1))}
forall s ∈ V (ψ(k)) do

Ca(s) taken in {u ∈ Ua | Posta(s, u) ⊆ V (ψ(k + 1))}
return {V (ψ(k)), Ca : Xa → Ua}
Algorithm 1: ValidSet(ψ(k), V (ψ(k + 1))). Computes
the valid set V (ψ(k)) and associated controller Ca at step
k ∈ {0, . . . , r − 1} of the plan ψ = ψ(0)ψ(1) . . . ψ(r).

3.3 Refinement

As stated in Section 3.1, the abstraction Sa is initialized
with respect to the initial coarse partition Xa = P .
We then iteratively compute the valid sets V (ψ(k)) from
k = r back to k = 0 as in Definition 4. If an empty
valid set V (ψ(k)) = ∅ is found for some step k (i.e. the
associated controller synthesis in Algorithm 1 fails), the
overall algorithm in Section 5 may choose to overcome
this problem through abstraction refinement by calling the
function Refine(ψ, j) in Algorithm 2 in order to refine one
of the previously visited cells ψ(j) with j ∈ {k, . . . , r− 1}.
The rule guiding the choice of j is detailed in Section 5.

This refinement is achieved in the following two steps.
Firstly, the cell ψ(j) is refined by splitting each of
its invalid symbols s into a set of subsymbols (∀s′ ∈
Split(s), s′ ⊆ s) and updating the partition Xa accord-
ingly. The definition of Split can be arbitrary. The second
step consists in calling Algorithm 1 for all the cells of
ψ whose valid sets may be expanded as a result of this
refinement, i.e. from the refined cell ψ(j) back to the cell
ψ(k) (with k ≤ j) whose valid set was empty.

Data: P , Xa, Pa : P → 2Xa , V : P → 2Xa , V (ψ(k)) = ∅.
Input: Plan ψ = ψ(0) . . . ψ(r).
Input: Step j ∈ {k, . . . , r − 1} of the refinement.
forall s ∈ Pa(ψ(j))\V (ψ(j)) do

Xa = (Xa\{s}) ∪ Split(s)

for l from j to k do
{V (ψ(l)), Ca} = ValidSet (ψ(l), V (ψ(l + 1)))

return {Xa, V : P → 2Xa , Ca : Xa → Ua}
Algorithm 2: Refine(ψ, j). Refinement of the cell ψ(l)
and update of the affected valid sets.

4. PLAN REVISION

4.1 Büchi and product automata

We first define a Büchi automaton, where the considered
set of atomic propositions is the partition P .

Definition 5. A Büchi automaton A = (Q,P, δ, q0, F ) is
described by: a finite set of states Q, an input alphabet
P , a transition relation δ : Q × P → 2Q, an initial state
q0 ∈ Q and a set of accepting states F ⊆ Q. For an infinite
word σ0σ1σ2 . . . over P , the associated run q0q1q2 . . . of
A (such that qi+1 ∈ δ(qi, σi) for all i ∈ Z+) is said to be
accepting if it visits the accepting set F infinitely often.

Büchi automata are used as an alternative structure cap-
turing the set of words that satisfy an LTL formula (Baier



et al., 2008). Let Aθ denote the Büchi automaton asso-
ciated to the LTL formula θ in Problem 1. We can then
consider the product of the transition system Sn and Aθ.
Definition 6. The product of Sn = (P,−→

n
, σ0) and

Aθ = (Q,P, δ, q0, F ) is described by the automaton Π =
(QΠ, ∅, δΠ, q0

Π, FΠ) where: QΠ = P × Q; there is no input
set (as in Sn); δΠ : QΠ → 2QΠ and (σ′, q′) ∈ δΠ((σ, q)) if
σ −→

n
σ′ and q′ ∈ δ(q, σ); q0

Π = (σ0, q0); and FΠ = P × F .

Given a run ω = (σ0, q0)(σ1, q1) . . . of Π, we denote as
ω|Sn

= σ0σ1 . . . the projection of ω onto a run of Sn. From
Definition 6, an accepting run ω of Π can thus be projected
onto a run ω|Sn

of Sn satisfying the formula θ. Due to our
focus on LTL formulas satisfiable in finite time, we assume
that such accepting run is such that ω|Sn

∈ F(θ) ∩F(Sn)
with the notations introduced in Section 2.2.

4.2 Iterative Deepening Search

We are interested in a search of Π allowing to be repeatedly
called, each time returning a satisfying plan ψ ∈ F(θ) ∩
F(Sn) which was not previously returned. The first call is
the specification conversion as in Section 2.2 and follow-up
calls are iterations of the plan revision. More precisely, a
call of Revise(ψ, j) as in Algorithm 3 aims at finding an
admissible revision of ψ up to ψ(j), i.e. a new satisfying
plan ψ′ ending with the sequence ψ(j + 1) . . . ψ(r). Such
a revision thus needs to satisfy the following three condi-
tions. Since the search is done on the product automaton
Π from its initial state q0

Π, the first condition ψ′ ∈ F(θ) ∩
F(Sn) can be reduced to checking whether the explored
path in Π ends with an accepting state. The second
condition is ψ′ ∈ AdmRev(ψ, j) where AdmRev(ψ, j) =
{σ0 . . . σpψ(j + 1) . . . ψ(r) | σp 6= ψ(j)} ensures that the
end sequence ψ(j+1) . . . ψ(r) is kept in ψ′ while forcing the
revision to start in ψ(j). Denoting as UsedP lans ⊆ F(θ)∩
F(Sn) the set of plans previously considered and discarded
in the main algorithm of Section 5, the third condition pre-
venting reusing these discarded plans is combined with the
above second condition by considering ψ′ ∈ NewRev(ψ, j)
where NewRev(ψ, j) = AdmRev(ψ, j)\UsedP lans.
Algorithm 3 implements the search algorithm on Π as
an Iterative Deepening Depth-First Search (Korf, 1985),
consisting in calling a Limited-Depth Depth-First Search
(function LDDFS defined recursively in Algorithm 4) with
iteratively increasing depth limit until a satisfying plan is
found. Intuitively, the function Revise initially searches
for admissible revisions as above of length 1 (search depth
limited to 0). If none is found, this limited-depth search is
repeated with an allowed search depth increased by 1.

Data: Initial state q0
Π of Π.

Input: Current plan ψ = ψ(0) . . . ψ(r) ∈ F(θ) ∩ F(Sn).
Input: Revision step j ∈ {0, . . . , r}.
for depth from 0 to ∞ do

ψ′ = LDDFS(q0
Π, depth)

if ψ′ 6= ∅ then return {ψ′, depth− r + j};
Algorithm 3: Revise(ψ, j). Generates a possible revision
ψ′ of ψ keeping its end sequence from j + 1 up to r, and
provides the index of the cell in ψ′ replacing ψ(j).

The Limited-Depth Depth-First Search is initialized in
Algorithm 3 to start from the initial state q0

Π of Π with
a depth limit denoted as depth ∈ Z+. It then proceeds
in Algorithm 4, where a successor q1

Π of q0
Π is chosen and

the function LDDFS is called again with the new explored
path q0

Πq
1
Π and an allowed depth reduced to depth − 1.

This recursive call is repeated until the allowed depth
reaches 0, where we check if the explored path generates an
admissible revision (accepting path in Π whose projection
onto a plan of Sn is in NewRev(ψ, j)). This plan is
returned to Algorithm 3 if it is an admissible revision.
Otherwise, the search backtracks and explores other paths
of Π. Since this search has a limited depth and is applied to
the finite graph Π, it will explore all paths of length depth+
1 in Π in finite time if no admissible revision is found. In
such cases, an empty set is returned to Algorithm 3 which
will repeat the search with an increased depth limit.

Data: Π, Sn, ψ, j, NewRev(ψ, j).
Input: Explored path q0

Π . . . q
l
Π in QΠ.

Input: Remaining allowed search depth: depth ∈ Z+.
if depth > 0 then

forall ql+1
Π ∈ δΠ(qlΠ) do

candidate = LDDFS(q0
Π . . . q

l
Πq

l+1
Π , depth− 1)

if candidate 6= ∅ then return candidate;

else if qlΠ ∈ FΠ and (q0
Π . . . q

l
Π)|Sn

∈ NewRev(ψ, j) then
return (q0

Π . . . q
l
Π)|Sn

return ∅
Algorithm 4: LDDFS(q0

Π . . . q
l
Π, depth). Recursive imple-

mentation of a limited-depth search.

Once Algorithm 3 receives a plan ψ′ 6= ∅ from Algorithm 4,
it returns this plan as well as the index corresponding
to the cell of ψ′ that replaces ψ(j). For the specification
conversion in Section 2.2, the initial plan is obtained from
a first call of Algorithm 3 denoted as Revise(∅, 0) (since
no previous plan is to be revised) and where the condition
ψ ∈ NewRev(∅, 0) in Algorithm 4 is always true.

5. OVERALL APPROACH

5.1 Algorithm

Algorithm 5 is an implementation of the overall approach
relying on the functions ValidSet, Refine and Revise
in Algorithms 1 to 3. The refined partition Xa of the
abstraction Sa is initialized with the partition P , an initial
plan ψ = ψ(0) . . . ψ(r) is obtained from Algorithm 3 for the
specification conversion and the last cell ψ(r) of the plan
ψ is valid as in Definition 4. The main loop then aims at
computing the valid sets and associated controllers as in
Algorithm 1 for all cells ψ(k) from k = r−1 back to k = 0.

If a non-empty valid set V (ψ(k)) is obtained, the while
loop proceeds with step k−1. Otherwise (V (ψ(k)) = ∅ for
some k), Algorithm 5 needs to pick a method between the
abstraction refinement and the plan revision, as well as one
of the previously explored cells ψ(j) (with j ∈ {k, . . . , r})
where this method should be applied. This choice is made
by introducing two cost functions JAR, JPR : P → R+

associating the cost of applying either method to each cell
of the plan ψ respectively. These functions can be chosen
arbitrarily in order to prioritize one method over the other.



We first compute the indices jAR and jPR corresponding
to the cells of ψ minimizing the costs JAR(ψ(jAR)) and
JPR(ψ(jPR)), respectively. If the abstraction refinement
offers the smallest cost (JAR(ψ(jAR)) < JPR(ψ(jPR))),
Algorithm 2 is called on cell ψ(jAR) and the next step
of the while loop proceeds without updating k, to check
if V (ψ(k)) is still empty. Otherwise, the plan revision is
applied on cell ψ(jPR), where we first reset the valid sets
for all cells that will be discarded by the revision, add ψ to
the set UsedP lans from Section 4.2 and call Algorithm 3
to obtain the new plan (overwriting ψ) and the associated
index k such that V (ψ(k)) is to be computed next. The
main loop is repeated until V (ψ(0)) 6= ∅ for some plan ψ.
Algorithm 5 outputs the final plan ψ, the refined partition
Xa, the valid symbols (in Xa) and the controller Ca.

Data: P , JAR : P → R+, JPR : P → R+.
Initialization: Xa = P , ψ(0) . . . ψ(r) = Revise(∅, 0)
Initialization: V (ψ(r)) = {ψ(r)}, k = r − 1
while k ≥ 0 do
{V (ψ(k)), Ca} = ValidSet (ψ(k), V (ψ(k + 1)))
if V (ψ(k)) 6= ∅ then k = k − 1;
else

jAR = arg minj∈{k,...,r−1} JAR(ψ(j))
jPR = arg minj∈{k,...,r} JPR(ψ(j))
if JAR(ψ(jAR)) < JPR(ψ(jPR)) then
{Xa, V, Ca} = Refine(ψ, jAR)

else
forall l ∈ {k, . . . , jPR} do V (ψ(l)) = ∅;
UsedP lans = UsedP lans ∪ {ψ}
{ψ, k} = Revise(ψ, jPR)

Output: {ψ, Xa, V : P → 2Xa , Ca : Xa → Ua}
Algorithm 5: Global algorithm.

5.2 Solution to Problem 1

To control the sampled system Sτ with the controller Ca
obtained in Algorithm 5, systems Sτ = (Xτ , Uτ ,−→

τ
) and

Sa = (Xa, Ua,−→
a

) must satisfy the feedback refinement

relation defined below, adapted from Reissig et al. (2016).

Definition 7. A map H : Xτ → Xa is a feedback re-
finement relation from Sτ to Sa if: ∀x ∈ Xτ , s = H(x),
∀u ∈ Ua ⊆ Uτ ,∀x′ ∈ Postτ (x, u), H(x′) ∈ Posta(s, u).

By finding such a relation, we obtain that Problem 1 can
be solved if Algorithm 5 terminates in finite time 1 .

Theorem 8. Let H : Xτ → Xa such that H(x) = s ⇔
x ∈ s. Then the controller C : Xτ → Uτ defined by
C(x) = Ca(H(x)) for all x ∈ Xτ solves Problem 1.

6. NUMERICAL ILLUSTRATION

The use of intervals as the elements of the state partition
(required by the extraction of a plan ψ satisfying the main
specification θ in Section 2.2) particularly suits the com-
putation of over-approximations of the reachable set using
the monotonicity property. The reader is referred to Angeli
and Sontag (2003) for a description of monotone control

1 The proof can be found in the extended version of this paper:
https://hal.archives-ouvertes.fr/hal-01491845

systems and to e.g. Meyer (2015) for their use to over-
approximate the reachable set and create abstractions. We
consider a 2D system described by the nonlinear monotone

dynamics: ẋ =

(
−1 0.3
0.3 −1

)
x−0.01x3+u, with state x ∈ R2,

control u ∈ [−5, 5]2 and componentwise cubic power x3.

The considered state space X = [−9, 9]2 is partitioned
into 3 elements per dimension, thus resulting in a par-
tition P of 9 cells. The control interval U = [−5, 5]2 is
discretized uniformly into 5 values per dimension: Ua =
{−5,−2.5, 0, 2.5, 5}2. Following the guidelines in (4), we
take the sampling period τ = 6/5 = 1.2. Below, the cells
of the partition P are denoted as σx,y with x, y ∈ {1, 2, 3}
such that for example, σ1,3 represents the top-left cell
in Figure 1. The nominal abstraction Sn is created such
that each cell of P has a transition towards its immediate
neighbors (but not in diagonal), and the initial cell is σ1,1.

The main control specification is taken as the syntactically
co-safe LTL formula θ = 3σ1,3, meaning that we want to
eventually reach the top-left cell of P . The corresponding
Büchi automaton Aθ and the product Π of Sn and Aθ are
computed with the software P-MAS-TG described in Guo
and Dimarogonas (2015). The remaining implementation
of Algorithm 5 is done on Matlab.

The cost functions JAR, JPR : P → R+ are an estimate of
the complexity of the future computations after applying
either abstraction refinement or plan revision on a cell of
P . This complexity is measured in the number of symbols
s ∈ Xa whose set of successors Posta(s, u) needs to be
computed for some u ∈ Ua. Assuming that V (ψ(k)) = ∅
for some plan ψ in Algorithm 5, then a call Refine(ψ, j)
for j ∈ {k, . . . , r − 1} is associated with the cost

JAR(ψ(j)) = 2n ∗ |Pa(ψ(j))\V (ψ(j))| (5)

+

j−1∑
l=k

|Pa(ψ(l))\V (ψ(l))|+ (k + 1) ∗ (2n)2,

where the first term is the number of subsymbols obtained
after splitting the invalid symbols of ψ(j) (assuming that
the function Split(s) returns 2n = 4 subsymbols of s),
the second term is all the invalid symbols of ψ(j − 1)
back to ψ(k) to be updated as in Algorithm 2 and the last
term is a forecast that all invalid cells ψ(0) to ψ(k) that
remains to be explored will be refined twice (assuming no
plan revision is called in the future). The cost for calling
Revise(ψ, j) is defined similarly to the third term of (5):

JPR(ψ(j)) = (|Revise(ψ, j)|−|ψ|+j+1)∗(2n)2/0.6, (6)

where the number of cells that remains to be explored now
depends on the size difference between the current plan
ψ and the candidate revision obtained in Revise(ψ, j).
The weight 1/0.6 is added in (6) to prioritize the use of
abstraction refinement over plan revision.

Figure 1 provides 3 snapshots of the refined partition Xa

and the valid symbols (filled in red) during the execution of
Algorithm 5. The initialization with Revise(∅, 0) provides
a first plan ψ = σ1,1σ1,2σ1,3 and the whole cell σ1,3 (top-
left in Figure 1a) is a valid symbol since it has no successor
in ψ. Algorithm 5 then computes the valid set of ψ(1) =
σ1,2 which is found to be empty until 3 successive calls
of Refine(ψ, 1), where |V (σ1,2)| = 6. Then, ψ(0) = σ1,1

is considered and its valid set remains empty despite 3



(a) Refinement on the
initial plan.

(b) Revision of the
plan.

(c) Refinement on the
revised plan.

Fig. 1. Refined partition and valid symbols (in red) for an
execution of Algorithm 5.

calls of Refine(ψ, 0). At this point, displayed in Figure 1a,
Algorithm 5 considers it less costly to revise the plan ψ
rather than refining a fourth time σ1,1 or σ1,2. The function
Revise(ψ, 0) is called to change the beginning sequence of
ψ while keeping the end σ1,2σ1,3 (Figure 1b), resulting
in a revision ψ′ = σ1,1σ2,1σ2,2σ1,2σ1,3. Algorithm 5 then
proceeds on ψ′(2) = σ2,2 whose valid set contains one
symbol after two calls of Refine(ψ′, 2), then on ψ′(1) =
σ2,1 where |V (ψ′(1))| = 5 after two calls of Refine(ψ′, 1)
and finally on ψ′(0) = σ1,1 where |V (ψ′(0))| = 1 after
one call of Refine(ψ′, 0), thus ending the algorithm (after
25.8s on a laptop with a 2.6 GHz CPU and 8 GB of RAM)
with the final partition and valid symbols as in Figure 1c.

7. CONCLUSION

In this paper, we presented a novel framework combining
abstraction refinement and plan revision for control syn-
thesis problems under temporal logic specifications. The
control problem is first solved on a simpler nominal model
in order to obtain a satisfying plan to be followed by the
real system. We then try to synthesize a controller for an
abstraction of the real system to follow this plan. When
this synthesis fails, some cost functions guide us towards
either refining the initially coarse partition to obtain a finer
abstraction, or looking for an alternative plan using the
nominal model as above. This tentative synthesis is then
repeated until we find a plan and an abstraction of the real
system able to follow this plan. The controller obtained on
this abstraction can then be used to define a controller for
the real system to satisfy the initial specification.

While this paper mainly focuses on providing the general
framework combining abstraction refinement with plan
revision, current efforts aim at optimizing the obtained
results based on the definition of the cost functions.
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