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Abstract: This paper presents a new approach for control synthesis of non-deterministic
transition systems under Linear Temporal Logic specifications with applications to multiple
Unmanned Aerial Vehicles (UAV) motion planning problems. The consideration of such systems
is motivated by the non-determinism possibly introduced while abstracting dynamical systems
into finite transition systems. More precisely, we consider transition systems enhanced with a
progress set describing the fact that the system cannot stay indefinitely in some subset of states.
The control synthesis problem is firstly translated into a terminating planning problem. Then,
a backward reachability strategy searches for a path from the initial set to the goal set. At each
iteration, subsets of states contained in the progress set are added to the path, thus ensuring
the reachability to the goal set in finite time. If a solution to the terminating problem is found,
the obtained controller is translated back to the initial problem formulation. This approach is
validated through an experiment involving two UAVs with a surveillance specification.
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1. INTRODUCTION

Robot motion planning with temporal logic specifications
has received a lot of attention in the control community.
More recently, the expressiveness of temporal specifica-
tions coupled with automated control synthesis methods
brought powerful tools. Such tools can be used for provably
correct control and planning design of robotic systems
under high-level specifications in the form of temporal
logic formulas (Belta et al., 2007).
The Linear Temporal Logic (LTL) specification language
provides an expressive framework where safety, reachabil-
ity and reactive properties are suitably formulated (Baier
and Katoen, 2008). More importantly, they can be trans-
lated to finite automata (Clarke et al., 1999; Babiak et al.,
2012) which makes relevant the use of computer science
tools (e.g., graph search and fix point algorithms). In
this work, we use LTL formulas that can be expressed as
deterministic automata (Alur and La Torre, 2004; Fainekos
et al., 2006).
Common approaches for control synthesis under high-level
specifications involve the construction of an abstraction
of the system. This abstraction is supposed to be used
in place of a dynamical system and aims at reducing
the overall complexity of the initial synthesis problem. If
the system and the abstraction verify some behavioural
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relationship (see e.g., Tabuada, 2009), then the controller
synthesized on the abstraction under the LTL specification
can be refined into a controller such that the original
system satisfies the same specification. Although some
methods result in deterministic abstractions (Kloetzer and
Belta, 2008b; Boskos and Dimarogonas, 2015), other ab-
straction approaches induce some non-determinism (i.e., a
control input can induce several successors from the same
initial state, see e.g., Moor and Raisch, 2002; Nilsson and
Ozay, 2014). Non-deterministic transitions in the abstrac-
tion can arise due to the state space partitioning or because
of initial disturbances of the continuous system. Methods
to lower these effects exist, such as partitioning the state
space according to the system flow (see e.g., Lafferriere
et al., 2000; Tabuada, 2009) or designing local controllers
that confine disturbances in each cell of the partition
(see e.g., Kloetzer and Belta, 2008b). However, none of
them can guaranty to get ride of the non-determinism
(see e.g., Habets et al., 2006), and, in such cases, the non-
deterministic nature of the system needs to be taken into
account.
While control synthesis problems with deterministic mod-
els can easily be solved through a reformulation into a
model checking problem (Clarke et al., 1999), the same
approach cannot be applied with non-deterministic models
(Kloetzer and Belta, 2008a). Fixed points methods have
been widely used in correct-by-design control synthesis for
non-deterministic models (see e.g., Cimatti et al., 2003;
Kloetzer and Belta, 2008a). They determine the set of valid
controllers by trying to maximize some winning region
which corresponds to the subspace of states where there



exists a control strategy solving the synthesis problem.
As it has been highlighted in Cimatti et al. (2003), such
planner prevents any cycle (path of state-transition that
starts and ends at the same state) from being part of a
solution as they might keep the state away from the goal
set forever. Other approaches use a fairness assumption:
for any infinite run, every transition will be taken an
infinite number of times (Cimatti et al., 2003; Fu et al.,
2011). A direct consequence of this assumption is that
every trajectory cannot stay indefinitely in a cyclic path,
and thus, these cycles can be part of the solution plan.
This fairness assumption is justified in probabilistic models
where the probability of any transition is not zero. For
this reason, it has been used in action planning where any
action can be assigned to a success probability, and an
infinite number of attempts will almost surely result in a
success. Such probabilistic approaches cannot always hold
in the case of control synthesis of a dynamical system:
any transition from one state of the abstraction to itself
might correspond to an equilibrium point in the original
continuous system, and any cycle in the abstraction might
correspond to a stable orbit of the system. Therefore the
global fairness property is not granted.
Models with local fairness property have been investigated
in De Giacomo et al. (2010) where the fairness assumption
is modelled as an LTL formula �3ϕ⇒ �3ψ which stands
for: “by trying ϕ infinitely often, ψ will happen infinitely
often”. This formulation can then be integrated in a general
reactivity framework. In this approach, and contrary to
fixed point techniques where cycles are all eliminated, or
all accepted (when fairness property stands), only non-
blocking cycles identified by the model can be part of
the solution plan. Other common approaches in control
synthesis have been using the quotient transition system
in order to deal with cycles in motion planning: this
abstraction suppresses any self-transition of the model and
only considers a fragment of the LTL formulas (Tůmová
et al., 2010; Pappas, 2003).
In this paper we propose a new method for control syn-
thesis of non-deterministic transition systems under LTL
specifications. We consider a non-deterministic augmented
Finite Transition System (FTS) (firstly introduced for
switching systems by Nilsson and Ozay, 2014). This model
extends the standard FTS structure with the knowledge of
a progress set that identifies local control strategies that
are terminating (trajectories cannot stay indefinitely in the
subset of states using the associated control inputs). We
use this model as an abstraction for a dynamical system
where the size of the progress set was large, and for this
reason, the approach of De Giacomo et al. (2010), that
efficiently deals with small progress sets, was not appro-
priate. We first introduce the model and the problem to
be solved (Section 2). Then the product automaton of the
model and the Büchi Automaton is defined and trans-
lated to a terminating planning problem (Section 3.1).
A backward reachability algorithm is used (Section 3.3)
to find a path through a terminating control strategy
(Section 3.2) bringing the initial state deterministically in
finite time to the goal set. Correctness and termination
of the solutions are investigated. This approach is then
validated in an experiment (Section 4) involving multiple
Unmanned Aerial Vehicles (UAV).

2. PRELIMINARIES

2.1 Definitions

Let N denote the set of natural numbers and R the set
of real numbers. Given two sets X,Y , let |X| ∈ N denote
the cardinality of X, 2X its power set and Xω the set of
infinite words with elements chosen in X. For a word w of
Xω, Inf(w) ⊆ X denotes the set of elements appearing
infinitely often in w. For Z ⊆ X × Y , Z|X ⊆ X denotes
the projection of the set Z on the set X. Let X \Y be the
set of elements of X not in Y . If K is R or N, let a, b ∈ K,
[a, b]K be the set {x ∈ K | a ≤ x ≤ b} ⊂ K.
We use a Finite Transition System (FTS) enhanced with
a progress set adapted from Nilsson and Ozay (2014):
Definition 1. An Augmented Finite Transition System
(AFTS) is defined by T = 〈S, S0, UT , δT ,PT 〉 where: S
is the set of states; S0 ⊆ S is the set of initial states; UT
is the input alphabet; δT : S × UT → 2S is the transition
function; PT ⊆ 2S×UT is the progress set. An execution of
the AFTS T is an infinite sequence r ∈ (S×UT )ω of state-
control input pairs r = {(sk, uk)}k∈N such that: s0 ∈ S0;
∀k ∈ N, sk+1 ∈ δT (sk, uk); and ∀m ∈ PT , Inf(r) 6⊆ m.

The progress set PT identifies local control strategies that
are terminating, i.e., any execution reaching an element
m ∈ PT is guaranteed to exit m in finite time. Note that
the condition ∀m ∈ PT , Inf(r) 6⊆ m does not forbid any
execution r to visit infinitely often an element m ∈ PT
as long as the execution also leaves m infinitely often.
A similar definition of the AFTS suitable for switching
systems can be find in Nilsson and Ozay (2014) where the
progress set is a subset of 2S × UT .
For each execution r of T , we call ρ = r|Sω ∈ Sω its
associated run. In the present work, we assume that the
AFTS T is well-formed meaning that we have: S0 6= ∅; for
every reachable state s ∈ S there exists at least one control
action leading to another state, i.e., ∃u ∈ UT , |δT (s, u)| ≥
1; and all elements of PT have an outgoing transition, i.e.,
∀m ∈ PT ,∃(s, u) ∈ m, δT (s, u) 6⊆ m|S .
The reader is referred to the dedicated literature about
formal methods (such as Baier and Katoen, 2008) for
a formal definition of the LTL language. In summary,
an LTL formula over a set S is defined inductively by
ϕ ::= > | a | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2 where the logical
operators > (true), ¬ (negation), ∧ (conjunction), the
temporal operators © (next) and U (until) are combined
with elements a ∈ S and LTL formulas ϕ1 and ϕ2. Useful
operators ∨ (disjunction), ⇒ (implication), � (always)
and 3 (eventually) can be derived from the previous ones.
These LTL formulas provide a user-friendly language to
express specifications such as “avoid area d, visit area
c, and avoid area a until you reach area b” that can be
expressed by the LTL formula ϕ = (�¬d)∧(3c)∧((¬a)Ub).
Every LTL formula over an input alphabet S can be
translated into a Büchi Automaton (Clarke et al., 1999):
Definition 2. A Büchi Automaton is a tuple Aϕ = 〈Qϕ,
Qϕ0, S, δϕ,Fϕ〉 where: Qϕ is the finite set of states; Qϕ0 ⊆
Qϕ is the set of initial states; S is the input alphabet;
δϕ : Qϕ × S → 2Qϕ is the transition function; Fϕ is the
set of accepting states.



If Qϕ0 is a singleton and |δϕ(q, a)| ∈ {0, 1} for all a ∈ S
and all q ∈ Qϕ, then Aϕ is called Deterministic Büchi
Automaton (DBA). It is called a Non-deterministic Büchi
Automaton (NBA) otherwise. In this paper, we use LTL
specifications that can be represented with DBA. Such
DBA can be generated using a NBA of a given LTL
formula and applying determinization processes (Alur and
La Torre, 2004; Babiak et al., 2012). However, this is not
always achievable, and only a fragment of LTL formulas
are translatable into DBA (see Theorem 4.50 in Baier
and Katoen, 2008, pp. 190). Nonetheless, this fragment
allows to express a wide range of specifications (Fainekos
et al., 2006). For an infinite input word w = w1w2w3... ∈
Sω, there exists a set of infinite state trajectories in Aϕ

produced by w that we denote as Rϕ(w) ⊆ Qϕ
ω.

Definition 3. The input word w ∈ Sω is said to be accepted
by Aϕ if there exists r ∈ Rϕ(w) such that Inf(r)∩Fϕ 6= ∅.
Remark 4. The input alphabet S of Aϕ is chosen as the
set of states of T so that a run of T produces an input
word for Aϕ. A run T can then be accepted or not by Aϕ.

2.2 Problem statement

The considered problem is formulated as follows:
Problem 5. Given a non-deterministic and well-formed
AFTS T = 〈S, S0, UT , δT ,PT 〉 and a DBA Aϕ = 〈Qϕ,
Qϕ0, S, δϕ,Fϕ〉, find a control strategy such that all runs
of the controlled system are accepted by Aϕ.

To satisfy the acceptance condition of Aϕ (see Defini-
tion 3), the control strategy of the system T should pro-
duce trajectories in Aϕ that reach the acceptance set Fϕ

in finite time. Therefore, in the case of an FTS (AFTS
with no progress set, i.e., PT = ∅), every control strategy
creating cyclic trajectories in Aϕ outside of the acceptance
set Fϕ cannot be a solution of the problem. For the AFTS
T , if these corresponding cyclic executions are in one ele-
ment of the progress set PT , then these cycles are escaped
in finite time, and the controller might be a solution of
Problem 5.

3. SOLUTION

Problem 5 is solved in several steps. First, we create the
product automaton of T and Aϕ, and translate it into an
equivalent formulation as a terminating planning problem
(Section 3.1). Then, we identify control strategies on sub-
sets of the state space which can reach, deterministically
and in finite time, given sets of states (Section 3.2). Finally,
we use these local terminating controllers to find a non-
blocking control strategy starting the search from the goal
set until the initial set is found (Section 3.3).

3.1 Terminating formulation

Let the product automaton of a DBA and an AFTS be:
Definition 6. The product automaton Ap of the DBA Aϕ

and of the AFTS T is defined by Ap = T ⊗Aϕ = 〈Qp, Qp0,
Up, δp,Fp,Pp〉 where: Qp = S × Qϕ is the set of states;
Qp0 = S0 × Qϕ0 is the set of initial states; Up = UT
is the input set; δp : Qp × Up → 2Qp is the transition
function defined by (s′, q′) ∈ δp((s, q), u) iff s′ ∈ δT (s, u),

Qp \ Fp Fp ≡ G0
t Qt \ (G0

t ∪Gt) Gt

Fig. 1: Construction of At (right) from Ap (left). Similar
node shape (resp. line style) represents equivalent state
sets (resp. transition function between sets).

q′ ∈ δϕ(q, s); Fp = S × Fϕ is the acceptance set; Pp ⊆
2Qp×Up is the progress set defined for m ∈ 2Qp×Up by
m ∈ Pp ⇔ m|S×UT ∈ PT .

Ap is a Büchi Automaton augmented with the progress set
of T . An execution r ∈ (Qp × Up)ω of Ap is valid if ∀m ∈
Pp, Inf(r) 6⊆ m (condition inherited from Definition 1). A
valid execution r of Ap is accepted if the corresponding
state trajectory ρ = r|Qp

ω satisfies Inf(ρ) ∩ Fp 6= ∅.
An accepted execution of Ap thus corresponds to a valid
execution of T that is accepted by Aϕ.
A controller of Ap is a map π : Qp → Up that associates
to each state p ∈ Qp an available control action u ∈ Up(p)
where Up(p) = {u ∈ Up | |δp(p, u)| ≥ 1}. The controller
π is closed if every state reachable from the initial set
Qp0 using π is associated with a control action; and
is terminating if all the reachable states can reach the
acceptance set Fp in finite time. Finding a controller for
Problem 5 consists in finding a closed and terminating
controller over Ap. In what follows, this control problem
is translated into a terminating formulation.
Proposition 7. (Theorem 4 in Patrizi et al., 2013). Let a
non-deterministic product automaton Ap = 〈Qp, Qp0, Up,
δp,Fp,Pp〉, where Fp = {g1, ..., gn}, |Fp| = n, and Qp =
{p1, ..., pm, g1, ..., gn}, |Qp| = n + m. Let G0

t = {g0
1 , .., g

0
n}

be a duplicate definition of Fp (with different names for the
corresponding states so that G0

t∩Fp = ∅). The terminating
formulation of Ap is denoted as At = 〈Qt, Qt0, Ut, δt,
Gt,Pt〉 such that: Qt = Qp ∪ G0

t is the set of states;
Qt0 = Qp0 ∪ G

0
t is the set of initial states; Ut = Up is

an input alphabet; δt : Qt × Ut → 2Qt is the transition
function defined by p′ ∈ δp(p, u) ⇔ p′ ∈ δt(σ(p), u);
Gt = Fp is the goal set; Pt = Pp is the progress set.
where σ : Qp → Qt is a function mapping Qp \ Fp to
Qt\(Gt∪G0

t ) and Fp to G0
t , namely: σ(p) = p if p ∈ Qp\Fp

and σ(gj) = g0
j for j ∈ [1, n]N. At is said to be well-formed

if Ap is well-formed. A controller πt : Qt → Ut of At is said
to be closed (resp. terminating) if the associated controller
πp = πt ◦ σ of Ap is closed (resp. terminating).

The terminating formulation At of Ap is built by mapping
all transitions from Fp to transitions from a duplicate set
G0

t of Fp and by adding G0
t to the initial set Qt0. Figure 1

illustrates the construction of the transition function δt

and of the set of states Qt of At. Ap is supposed to be
well-formed (see Problem 5), thus At is also well-formed
(meaning that ∀q ∈ Qt\Gt,∃u ∈ Ut(q) where Ut(q) = {u ∈
Ut | |δt(q, u)| ≥ 1}). Let an execution of At be a finite or
infinite sequence r = {(qk, uk)}k<I of length I ∈ N ∪ {∞}
with elements chosen in Qt × Ut such that: q0 ∈ Qt0;
∀k < I, qk+1 ∈ δt(qk, uk); and ∀m ∈ Pt, Inf(r) 6⊆ m.
For a closed controller πt, a πt-execution corresponds to
a sequence of At such that r = {(qk, πt(qk))}k≤I with
I ∈ N∪{∞}. From Proposition 7, we can now equivalently
solve Problem 5 by trying to find a closed and terminating



controller πt for the system At such that all the πt-
executions of At reach the goal set Gt in finite time.

3.2 Terminating modules search

Any control strategy in At creating cyclic execution might
produce runs that loop ad infinitum, hence keeping the
state away from Gt forever. If, however, each of these
potential cycles is included into elements of the progress
set Pt, then none of them can block the system indefinitely.
Thus, if πt brings the state from terminating modules
(defined in the sequel) to other terminating modules
strictly closer to the goal set Gt, then the termination
property is ensured. This section details the search of a
terminating module that reaches, deterministically and in
finite time, a given set of states.
We first introduce some definitions. Let a module m ⊆ Qt×
Ut of At be a set of state-control input pairs such that
∀(q, u) ∈ m,u ∈ Ut(q) and every state is associated to a
unique control action (∀q ∈ m|Qt

, |m ∩ ({q} × Ut)| = 1).
We call M the set of modules of At. For m ∈ M , let
Post(m) =

⋃
(q,u)∈m δt(q, u) be the set of successor states

of m and let Post(m) = Post(m) \ m|Qt
be the set of

outgoing successor states of m.
Definition 8. m ∈ M is a terminating module of At if
all executions of A′t = 〈Qt,m|Qt , Ut, δt, Gt,Pt〉 exit m in
finite time, i.e., for every execution r = {(qk, uk)}k<I ,
I ∈ N∪{∞} of A′t, there exists i < I such that qi /∈ m|Qt ,
and ∀k < i, (qk, uk) ∈ m.

Note that each module m ∈ M in the progress set Pt

or such that Post(m) ∩ m|Qt
= ∅ (i.e., without self-

transitions) is terminating. For a goal set g ⊆ Qt,
let PrecedingSingletonModules(g) ⊆ M be defined as the
set of singleton modules with states chosen in Qt \ g
that have one or more successors in g, namely: {(q, u)} ∈
PrecedingSingletonModules(g) iff q ∈ Qt \ g and δt(q, u) ∩
g 6= ∅. For a modulem ∈M , let ExpandModule(g,m) ⊆M
be defined by m′ ∈ ExpandModule(g,m) iff m′|Qt = m|Qt∪
(Post(m) \ g) and m ⊂ m′. ExpandModule(g,m) is the set
of possible expansions of m with states chosen in Qt \ g.
For At the terminating problem formulation, g ⊆ Qt a set
of states to be reached, and W ⊆ 2Qt a set of winning
regions where a teminating control strategy exists (see
Section 3.3), let m = PrecedingModule(At, g,W ) be
the module in M of smallest cardinality that verifies:
• Post(m) ⊆ g: all outgoing successor states are in g,
• m ∈ Pt or Post(m) ⊆ g: m is a terminating module,
• g ∪m|Q /∈W : the set of winning regions.

If no module verifies the previous properties, then m = ∅.

3.3 Backward Reachability Algorithm

In this section, PrecedingModule is used to iteratively
expand a winning region where a terminating and closed
control strategy exists. Algorithm 1 implements this as a
Depth-First Search (DFS) using a backward reachability
strategy: preceding terminating modules are searched and
added to a terminating controller starting from the goal
set Gt until all initial states in Qt0 are found.

Function BackwardSearch(At)
Data: At: the terminating problem formulation
Result: K if a solution is found, Fail otherwise

1 L← {KG} ; // plans to visit
2 Lv ← ∅ ; // visited plans
3 repeat
4 K ← arg maxx∈L(|x|) ; // biggest

cardinality plan
5 if Qt0 ⊆ K̃|Qt

then // initial set found
6 return K ; // return valid plan
7 Lv ← Lv ∪ {K} ; // Add K to Lv

8 W ← {l̃|Qt
| l ∈ L ∪ Lv} ; // set of visited

sets of states
9 m← PrecedingModule(At, K̃|Qt

,W ) ;
10 if m 6= ∅ then
11 L← L ∪ {K ∪ {m}} ; // add the new plan

to L
12 else
13 L← L \ {K} ; // remove the plan from L
14 end
15 until |L| = 0;
16 return Fail ; // no valid plan found

Algorithm 1. Backward reachability algorithm (BRA)

Let a plan K ⊆M ∪{m0} be a set of terminating modules
of At (see Definition 8) with an additional fake module
m0 = {(g, ∅) | g ∈ Gt} comprised of each goal state
associated to none of the control actions. Let K̃ =

⋃
k∈K k

be the corresponding set of state-control action pairs. L
corresponds to the set of plans to visit and is initialized
(line 1) with KG = {m0}. At each step, the highest
cardinality plan K is selected from L (line 4). If the initial
set belongs to K̃|Qt , then plan K is returned (line 6).
Otherwise, a terminating module m preceding K̃|Qt

(line
9) is returned by PrecedingModule, and the new plan
K∪{m} is added to L (line 11). Note that m is chosen such
that m|Qt

∪ K̃|Qt
/∈ W (see Section 3.2) where W ⊂ 2Qt

is the set of winning regions. If no valid module is found
(lines 9 and 10), then plan K is removed from L (line 13).
When L is empty (line 15), that means that among all
the possible configurations of reachable states comprised
of terminating modules, none of them could find a solution
and a Fail flag is returned (line 16).
Theorem 9. LetK be a valid plan returned by Algorithm 1
(K 6= Fail) and πK be the controller associated with K
defined by πK(q) = u for all (q, u) ∈ K̃ =

⋃
k∈K k. The

controller πK is closed and terminating 1 .

As the controller πK is closed and terminating, the con-
troller (after mapping with σ - previously defined by
∀p ∈ Qp \ Fp, σ(q) = q and ∀j ∈ [1, n]N , σ(gj) = g0

j ) is
a valid solution of Problem 5.
Corollary 10. Let K be a valid plan returned by Algo-
rithm 1 (i.e., K 6= Fail) and πK be the controller associ-
ated to K defined by πK(q) = u for all (q, u) ∈ K̃. The
controller πp = πK ◦ σ is a solution of Problem 5.

1 The proof can be found in the extended version of this paper:
https://hal.archives-ouvertes.fr/hal-01502558
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Fig. 2: (a) is a DBA that represents ϕ = (¬G)U(�G)
(with Fϕ = {b1} and Qϕ0 = {b0}). (b) is an illustration
of Algorithm 1. The agent goes from Q0 (in red) to reach
and stay in G (in blue) following the control actions (black
arrows). Four control actions are available ( , , and
) and each of them points in the direction of the 3

successors of the considered state (square cell). Each red
box corresponds to a terminating module and the green
box corresponds to the goal set Gt of At.

3.4 Illustration

Figure 2b illustrates how Algorithm 1 finds a solution plan.
An agent starting in Q0 needs to verify ϕ = (¬G)U(�G),
namely “reach and stay in G”. A DBA of ϕ is represented
in Figure 2a. The progress set PT is partially described
by {a, b, c, d} ⊂ PT . T is unformally defined in Figure 2b.
Due to the special form of the LTL formula ϕ, At can
be defined equivalently than in Section 3.1 by: Gt = G;
G0

t = {g0
1 , ..., g

0
4} duplicate of G = {g1, ..., g4}; Qt = S ∪

G0
t ; Qt0 = Q0 ∪ G0

t ; Pt = PT ; and s′ ∈ δT (s, u) ⇔ s′ ∈
δt(σ(s), u) (where σ : S → Qt is defined by: σ(s) = s
iff s ∈ S \ Gt and σ(gi) = g0

i for i ∈ [1, 4]N). Note that
in Figure 2b, Gt and G0

t are superimposed however, we
remind that Gt ∩G0

t = ∅.
Algorithm 1 is initialized with a plan K0 = {m0} where
m0 is the fake goal module introduced in Section 3.3 (i.e,
m0|Qt = Gt, green box in Figure 2b). At the first iteration,
the plan K0 is selected from the set L = {K0} of plans
to visit. PrecedingModule searches for a terminating
module preceding the set of states Gt = K̃0|Qt : e.g.,
m1 = g0

1 = {(g0
1 , )} is returned as all successors Post(m1)

of m1 are in K̃0|Qt
. The new plan K1 = K0 ∪ {m1} is

added to L. At the next iteration of Algorithm 1 (and
at each iteration in this example), the highest cardinality
plan of L is the last one added to L. For the same reasons
than for module m1 with plan K0, modules m2 = g0

2,
m3 = g0

3 and m4 = g0
4 are successively added to plans

K2 = K1 ∪ {m2}, K3 = K2 ∪ {m3} and K4 = K3 ∪ {m4}.
At the 5th iteration of Algorithm 1, K4 is the biggest plan
of L = {K0, ...,K4} and PrecedingModule searches
for a terminating module going to K̃4|Qt

= Gt ∪ G0
t

deterministically and in finite time; there is no singleton
terminating module, the smallest valid ones are composed
of at least 2 elements, e.g., a is returned as it belongs
to Pt and goes to Gt ⊂ K̃4|Qt

. m5 = a is added to
K5 = K4 ∪ {m5}.
In the next iteration, the terminating module b is returned
as it goes to a|Qt

⊂ K̃6|Qt
and as b ∈ Pt, then m6 = b is

added to the plan K6 = K5 ∪ {m6}. m7 = c is added to
K7 = K6∪{m7} as it goes deterministically to a|Qt

∪b|Qt
⊂

K̃6|Qt
and as c ∈ PT . Note that the transition between

the modules is not deterministic (Post(c) ⊆ (a|Qt
∪ b|Qt

)).
Finally, m8 = d is added to K8 = K7 ∪ {m8}, and as
d|Qt
∪c|Qt

= Qt0 ⊂ K̃8|Qt
, K8 is a plan that brings all the

trajectories starting in Qt0 to the goal set in finite time.
Algorithm 1 returns the solution plan K = K8. Every
trajectory of the system T controlled by πp = πK ◦ σ
(Theorem 9 and Corollary 10) verifies the specification ϕ.

4. EXPERIMENT

Multiple quadricopters (Iris Plus, 3DRobotics) are tracked
with a motion capture system (Qualisys) and controlled
from an offboard computer. Algorithms are implemented
in python, and the LTL translation to DBA is done using
ltl3ba (Babiak et al., 2012).
Let the discrete time dynamical system Sd (sampling
time of 1s) of 2 quadricopters be defined for i ∈ N by:
xi+1 = xi + u + w, where x = [x1, x2, x3, x4]> ∈ R4

is the state, with [x1, x2]> (resp. [x3, x4]>) the position
of agent 1 (resp. agent 2), u ∈ U = {−0.2, 0.2}4 is
the control input, and w ∈ W = [−0.1, 0.1]4R is a dis-
turbance. For x, y ∈ R4, we define the closed interval
[x, y] = {z ∈ R2n | x ≤ z ∧ z ≤ y} ⊂ R4 (where ≤ is
the component-wise inequality). Let the following intervals
of R4 be defined by: X =

[
[-1, -1, -1, -1]>, [1, 1, 1, 1]>

]
,

Xa =
[
[-1, -1, 0.2, 0.2]>, [-0.2, -0.2, 1, 1]>

]
, and Xb =[

[0.2, 0.2, -1, -1]>, [1, 1, -0.2, -0.2]>
]
.

To create the FTS structure of T , the state space R4 of
Sd is partitioned (uniformely on X with a step xd = 0.4
for every dimension of R4, R4 \ X is mapped to a single
symbol), let Ξ : X → S be the resulting partitioning func-
tion. As in Meyer (2015), a non-deterministic abstraction
is created after the computation of reachable set over-
approximations of Sd. The set PT is defined by m ∈ PT
iff the set of continuous states covering the symbols of
m|Qt

(Xm = {x ∈ X | Ξ(x) ∈ m|S} ⊆ X) is bounded
and mindx∈Cm

‖dx‖ > 0 where Cm is the convex hull of
m|UT + W (with + the Minkowski sum). For m ∈ PT ,
as Xm is bounded and as the time average of the state
displacement has a strictly positive norm, every trajectory
of Sd starting in Xm will escape the set Xm in finite
time (details are omitted due to space limitation). This
guarantees the existence of some behavioural relationship
(see Nilsson and Ozay, 2014) between the abstraction and
the system Sd.
Let the atomic propositions be: out⇔ x /∈ X, a⇔ x ∈ Xa,
b⇔ x ∈ Xb, collide⇔ maxi∈{1,2} |xi − xi+2| < 0.4. Label
a (resp. b) corresponds to agent 1 in region blue (resp.
in region red) and agent 2 in region red (resp. in region
blue; see Figure 3), The system must verify the following
specification: ϕ = (�¬out)∧(�¬collide)∧(�3a)∧(�3b).
The controller πp solution of Problem 5 is found with
Algorithm 1 and Corrolary 10. Figure 3 shows a few steps
of the experiment and a video is available at 2 . All states
of T have non-deterministic transitions with 16 possible
successors per control input. Modules of the solution plan
2 https://youtu.be/yj0_olU1tYI



Fig. 3: Agent 1 (in blue) and agent 2 (in red) need to
exchange position infinitely often. At timestep T, the
current state of the agents (cell in plain color) is associated
to a control input (thick blue arrows) and have multiple
successors (thin black arrows and cells in light color).

K (see Algorithm 1) have a cardinality of 8 when one of
the agents has already reached its region and must wait
for the other one to reach its own region, and a cardinality
of 4 otherwise. Agents start in b. The discrete state p of
Ap is initialized by measuring the starting position x0:
p = (Ξ(x0), p0) ∈ Qp0. At each step, the state x of Sd is
measured and mapped to a symbol s = Ξ(x) of S, then the
current discrete state p ∈ Qp ofAp is updated with the new
state p′ = (t, b), unique element of δp(p, πp(p)) such that
t = s. Steps T ∈ {14, 15} highlight the cyclic transitions
of the AFTS in one of the terminating module of the plan
K. Step T = 40 shows the end of the experiment where
the agents reached a.

5. CONCLUSION

We proposed a solution to the control synthesis problem
of a non-deterministic transition system under Linear
Temporal Logic specifications that can be represented by
Deterministic Büchi Automata. The considered system is
modelled as a finite transition system enhanced with a
progress set. Elements of the progress set identify local
control strategies that are terminating (the state will
escape a given set of states in finite time). Experiments
with multiple UAVs show that this approach is relevant
for real world applications where the non-determinism of
the system cannot be narrowed after the abstraction of it.
Only a fragment of LTL formulas are translatable into
DBA, and if there is no deterministic translation possible,
then the product automaton of the FTS and the NBA is
not fully observable (2 successors of the same state and
input control might produce the same observation), and
our approach is not valid anymore. How to handle such
situations will be the topic of future works.
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