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1. INTRODUCTION

During the last decade there has been an emerging focus on
the problem of high level planning for multi-agent systems
by leveraging methods from formal verification (Loizou
and Kyriakopoulos, 2004). In order to exploit these tools
for dynamic agents, it is required to build a discretized
model of the continuous system which allows for the al-
gorithmic synthesis of high level plans. Specifically, the
use of an appropriate abstract representation enables the
conversion of discrete paths into sequences of feedback
controllers which enable the continuous time model to im-
plement the high level specifications. This control synthesis
problem has lead to a significant research effort for the
derivation of discrete state analogues of continuous control
systems, also called abstractions, which can capture reach-
ability properties of the original model. Abstractions for
piecewise affine systems on simplices and rectangles were
introduced in (Habets and van Schuppen, 2001) and have
been further studied in (Brouke and Gannes, 2014). Closer
related to the control framework that we adopt here for
the derivation of the discrete models is the paper (Helwa
and Caines, 2014) which builds on the notion of In-Block
Controllability (Caines and Wei, 1995). Abstractions for
nonlinear systems include (Reissig, 2011), which is focused
on general discrete time systems and (Abate et al., 2009),
where box abstractions are derived for polynomial and
other classes of systems. Furthermore, abstractions for
interconnected systems have been recently developed in
(Tazaki and Imura, 2008; Pola et al., 2014, 2016; Rungger
and Zamani, 2015; Meyer et al., 2015; Dallal and Tabuada,
2015) and are primarily based on small gain criteria.
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In this work we consider multi-agent systems and pro-
vide an online abstraction methodology which enables
the exploitation of the system’s dynamic properties over
bounded reachable sets. Specifically, we focus on agents
whose dynamics consist of decentralized feedback intercon-
nection terms and additional bounded input terms which
allow for the synthesis of high level plans under the coupled
constraints. The analysis builds on parts of the framework
introduced in our recent work (Boskos and Dimarogonas,
2015), which focused on the discretization of the whole
workspace and required the assumption of global bounds
for the dynamics of the agents. In this framework, the
latter hypothesis is considerably weakened, since it is only
required that the system is forward complete. In addition,
it is also possible to obtain coarser discretizations, since (i)
the transition system of each agent is updated at the end of
the time interval and thus, heterogeneous discretizations
are considered for different agents, and (ii) the dynam-
ics bounds of each agent, which constitute a measure of
“coarseness” for its discretization, are evaluated for over-
approximations of the agent and its neighbors’ reachable
sets and can result in reduced size discrete models for
agents with weaker couplings over the time horizon. A rel-
evant abstraction approach can be also found in (Esmaeil
Zadeh Soudjani and Abate, 2013) where local Lipschitz
properties of probability densities for stochastic kernels
are exploited for the efficient abstraction of probabilistic
systems into finite Markov Chains.

The rest of the paper is organized as follows. Basic no-
tation and preliminaries are introduced in Section 2. In
Section 3, we formulate online abstractions for single inte-
grator multi-agent systems, over a specified time horizon.
Section 4 is devoted to the design of the controllers that
are exploited for the derivation of the discrete transitions.
Space-time discretizations that guarantee well posed ab-
stractions and their reachability properties are quantified



in Section 5 and we conclude in Section 6. Due to space
constraints, the proofs have been omitted. However, they
can be found in (Boskos and Dimarogonas, 2016).

2. PRELIMINARIES AND NOTATION

We use the notation |x| for the Euclidean norm of a vector
x ∈ Rn. For a subset S of Rn, we denote by int(S) its
interior and define the distance from a point x ∈ Rn
to S as d(x, S) := inf{|x − y| : y ∈ S}. Given R > 0
and x ∈ Rn, we denote by B(x;R) the closed ball with
center x ∈ Rn and radius R and B(R) := B(0, R). Given
two sets A,B ⊂ Rn their Minkowski sum is defined as
A + B := {x + y ∈ Rn : x ∈ A, y ∈ B}. We say that a
continuous function a : R≥0 → R≥0 belongs to class K+ if
it is positive and strictly increasing and that β : R≥0 ×
R≥0 → R≥0 is of class K+K+, if β(t, ·), β(·, s) ∈ K+

for all t, s ≥ 0. Consider a multi-agent system with N
agents. For each agent i ∈ N := {1, . . . , N} we use
the notation Ni for its neighbors’ set and Ni for its
cardinality. We also consider an ordering of the neighbors
which is denoted by j1, . . . , jNi and define the Ni-tuple
j(i) = (j1(i), . . . , jNi(i)). Whenever it is clear from the
context, the argument i will be omitted. The agents’
network is represented by a directed graph G := (N , E),
with vertex set N and edge set E the ordered pairs (`, i)
with i, ` ∈ N and ` ∈ Ni. The sequence i0i1 · · · im with
(iκ−1, iκ) ∈ E , κ = 1, . . . ,m, forms a path (of length m) in
G. A path i0i1 · · · im with i0 = im is called a cycle. Given
nonempty index sets I1, . . . , IN , their Cartesian product
I := I1 × · · · × IN and an agent i ∈ N with neighbors
j1, . . . , jNi , we define the map pri : I → Ii := Ii ×
Ij1 × · · · × IjNi assigning to each N -tuple (l1, . . . , lN ) the

Ni+1-tuple (li, lj1 , . . . , ljNi ), i.e., the indices of agent i and
its neighbors. Finally, a transition system is defined as a
tuple TS := (Q,Q0, Act,−→), where: Q is a set of states;
Q0 ⊂ Q is a set of initial states; Act is a set of actions;
−→ is a transition relation with −→⊂ Q × Act × Q. The
transition system is said to be finite, if Q and Act are finite

sets. We also denote an element (q, a, q′) ∈−→ as q
a−→ q′

and define Post(q; a) := {q′ ∈ Q : (q, a, q′) ∈−→}, for
every q ∈ Q and a ∈ Act.

3. ABSTRACTION OF THE AGENTS REACH SETS

We focus on multi-agent systems with single integrator
dynamics

ẋi = fi(xi,xj) + vi, xi ∈ Rn, i ∈ N , (1)

with xj(= xj(i)) := (xj1 , . . . , xjNi ) ∈ RNin. We assume
that the agents are in general heterogeneous and consider
decentralized control laws consisting of two terms, a locally
Lipschitz feedback term fi(·) which depends on the states
of i and its neighbors, and a free input vi. We assume
that vi ∈ Ui, i ∈ N where Ui is a bounded subset of
L∞(R≥0;Rn) taking values in a compact set Ui ⊂ Rn for
each i and define U := U1×· · ·×UN . The online abstraction
framework is based on the discretization of each agent’s
reachable set over a given time horizon and the selection
of a time step δt which corresponds to the duration of
the discrete transitions. We will consider specific types of
space discretizations, called cell decompositions (see also
(Grüne, 2002)). In particular, given a bounded domain

D of Rn, a cell decomposition S = {Sl}l∈I of D, is a
finite family of bounded sets Sl, l ∈ I with nonempty

interior, such that int(Sl) ∩ int(Sl̂) = ∅ for all l 6= l̂ and
∪l∈ISl = D. In addition, given a bounded domain D of
Rn, a cell decomposition S of D and a set A ⊂ D, we say
that S is compliant with A, if for any S ∈ S with S∩A 6= ∅
it holds that S ⊂ A.

In order to provide decentralized abstractions we follow
parts of the approach employed in (Boskos and Dimarog-
onas, 2015) and design appropriate hybrid feedback laws
in place of the vi’s in order to guarantee well posed tran-
sitions. We assume that system (1) is forward complete,
i.e., that for every initial condition x0 ∈ RNn and v ∈ U
the solution x(t, x0; v) is defined for all t ≥ 0. Hence,
there exists a function β ∈ K+K+ (Karafyllis, 2005) such
that |x(t, x0; v)| ≤ β(t, |x0|),∀t ≥ 0, x0 ∈ RNn, v ∈ U .
Additionally, we assume that each free input vi, i ∈ N is
bounded by a positive constant vmax(i), i.e., that

Ui = {vi ∈ L∞(R≥0;Rn) : |vi(t)| ≤ vmax(i),∀t ≥ 0}. (2)

We will consider a fixed time horizon [0, T ] on which we
aim to abstract the agents’ dynamics through a finite state
transition system. Thus, at time t = 0, given the agents’
initial positions, we will discretize an overapproximation
of their reachable set over [0, T ] and select a time step δt
which exactly divides T , in order to capture the motion
of the system over that time interval through a finite
transition system. After employing a discrete plan over
[0, T ], we repeat the same procedure for the positions of the
agents at t = T and the new horizon [T, 2T ], and proceed
analogously with the horizons [κT, (κ + 1)T ], κ ≥ 2.
For the subsequent analysis, we will assume fixed the
initial states X10, . . . , XN0 of all agents at the beginning
of the horizon [0, T ] and consider for each agent i ∈ N
an open overapproximation Ri(t) of its reachable set at
t ≥ 0. We also define the union of the reachable sets
Ri(t) over a time interval [a, b] ⊂ [0,∞) as Ri([a, b]) :=
∪t∈[a,b]Ri(t) and their inflation by a certain constant c > 0
as Rci (t) := Ri(t) + B(c), Rci ([a, b]) := ∪t∈[a,b]Rci (t). By
forward completeness, we may always assume that the sets
Ri([a, b]) are bounded. Thus, the feedback terms fi(·),
i ∈ N are bounded on the overapproximations of the
reachable sets. In particular, there exist positive constants
M(i) such that

|fi(xi,xj)| ≤M(i), (3)

for all xi ∈ Ri([0, T ]), xκ ∈ Rκ([0, T ]) and κ ∈ Ni.
Apart from the time horizon [0, T ] we will consider for
certain technical reasons an additional time duration 0 <
τ < T which corresponds to an upper bound on the
time discretization step δt. Based on this time duration

we consider for each i ∈ N the sets Rci(τ)i ([0, T − τ ]),
where ci(σ) := (M(i) + vmax(i))σ, σ > 0, with M(i)
and vmax(i) as given in (3) and (2), respectively. We
also assume that without any loss of generality it holds

Rci(σ)i ([0, T−τ ]) ⊃ Ri(T−τ+σ),∀σ ∈ (0, τ ]. Given a time
step 0 < δt < τ we depict the overapproximations of the
reachable sets Ri([0, T − τ ]) ⊂ Ri([0, T − δt]) ⊂ Ri([0, T ])
of agent i with the red areas in Fig. 1. They all contain the
exact reachable set Rexact

i ([0, T−τ ]) of i over [0, T−τ ] and
the initial condition Xi0 of i. We also depict the inflation

Rci(τ)i ([0, T−τ ]) ofRi([0, T−τ ]) which containsRi([0, T ]).
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Fig. 1. Illustration of agent’s i reachable sets over [0, T ].

Let {Sil}l∈I be a cell decomposition of Ri([0, T ]). Then,
we define the product cell decomposition {Sl}l∈I of
R1([0, T ]) × · · · × RN ([0, T ]) as the set S = {Sl}l∈I :=
{S1

l }l∈I1×· · ·×{SNl }l∈IN , with I := I1×· · ·×IN . Given a
cell decomposition {Sl}l∈I of R1([0, T ])×· · ·×RN ([0, T ]),
we use the notation li = (li, lj1 , . . . , ljNi ) ∈ Ii := Ii ×
Ij1 × · · · × IjNi to denote the indices of the cells where
agent i and its neighbors belong at a certain time instant
and call it the cell configuration of i. Similarly, we use the
notation l = (l1, . . . , lN ) ∈ I to specify the indices of the
cells where all the agents belong and call it a global cell
configuration. Thus, given a global cell configuration l it
is possible to determine the cell configuration li = pri(l)
of agent i through the mapping pri : I → Ii from
Section 2. We next provide the class of hybrid feedback
laws which are assigned to the free inputs vi in order to
obtain meaningful discrete transitions. The control laws
are parameterized by the agents’ initial conditions and a
set of auxiliary parameters which are responsible for the
agents’ reachability capabilities. The specific control laws
of this class which are exploited for the derivation of the
discretizations are provided in the next section.

Definition 1. Consider an agent i ∈ N , cell decomposi-
tions Si = {Sil}l∈Ii , Sκ = {Sκl }l∈Iκ of Ri([0, T ]) and
Rκ([0, T ]), κ ∈ Ni, respectively, a nonempty subset Wi of
Rn, and an initial cell configuration li of i. For each xi0 ∈
Sili and wi ∈Wi, consider the mapping ki,li(·, ·, ·;xi0, wi) :

[0,∞) × R(Ni+1)n → Rn, parameterized by xi0 ∈ Sili and
wi ∈Wi. We say that ki,li(·) satisfies Property (P), if: (P1)
The map ki,li(t, xi,xj ;xi0, wi) is continuous on [0,∞) ×
R(Ni+1)n × Sili ×Wi. (P2) The map ki,li(t, ·, ·;xi0, wi) is
globally Lipschitz continuous on (xi,xj) (uniformly with
respect to t ∈ [0,∞), xi0 ∈ Sili and wi ∈Wi). /

We next formalize our trasition requirement for each agent,
based on the knowledge of its neighbors’ discrete positions.
In order to define the transitions, we will consider for each
agent i ∈ N the following system with disturbances:

ẋi = gi(xi,dj) + vi, (4)

where dj1 , . . . , djNi : [0,∞) → Rn (also denoted dκ,

κ ∈ Ni) are continuous functions. The use of this auxiliary
system is inspired by the approach in (Girard and Martin,
2012), where piecewise affine systems with disturbances
are exploited for the construction of symbolic models for
general nonlinear systems. The map gi(·) constitutes a
bounded Lipchitz extension of the restriction of fi(·) on
Ri([0, T ])×Rj1([0, T ])× · · · × RjNi ([0, T ]) satisfying

|gi(xi,xj)| ≤M(i),∀(xi,xj) ∈ R(Ni+1)n (5)

|gi(xi,xj)− gi(xi,yj)| ≤ L1(i)|xj − yi|, (6)

|gi(xi,xj)− gi(yi,xj)| ≤ L2(i)|xi − yi|, (7)

for all xi, yi ∈ Rci(τ)i ([0, T − τ ]) and xj ,yj ∈ Rj1([0, T ])×
· · · × RjNi ([0, T ]), with M(i) as given in (3) and with

any constants L1(i) and L2(i) such that |fi(xi,xj) −
fi(xi,yj)| ≤ L1(i)|xj − yi|, |fi(xi,xj) − fi(yi,xj)| ≤
L2(i)|xi − yi|, for all xi, yi ∈ Rci(τ)i ([0, T − τ ]), xj ,yj ∈
Rj1([0, T ]) × · · · × RjNi ([0, T ]). This auxiliary system is
used in order to provide an overapproximation of each
agent’s discrete transition capabilities over the horizon, by
exploiting the global bounds of the auxiliary vector field
gi(·). Conditions under which these transitions are also
implementable by the original system (1) are given later
in Lemma 7. Notice that the Lipschitz constants above
are evaluated for xi ranging in the inflated reachable set

Rci(τ)i ([0, T − τ ]). This requirement comes from the fact
that the transition system of each agent will be based
on reachability properties of the auxiliary system with
disturbances over the time step [0, δt], for initial cells
lying in the overapproximation Ri([0, T − δt]) of agent’s
i reachable set. Since these cells may in principle contain
states which are outside the exact reachable state of the
agent, and the disturbances do not necessarily coincide
with trajectories of its neighbors over this time interval, it
is possible that the solution of (4) lies outside Ri([0, T ])
over [0, δt]. However, by (2), (5) and the definition of ci(·)
it follows that it will lie in the larger set Rci(τ)i ([0, T − τ ]).

Definition 2. Consider an agent i ∈ N , cell decomposi-
tions Si = {Sil}l∈Ii , Sκ = {Sκl }l∈Iκ of Ri([0, T ]) and
Rκ([0, T ]), κ ∈ Ni, respectively, a time step δt < τ and
assume that Si is compliant with Ri([0, T − δt]). Also,
consider a nonempty subset Wi of Rn, a cell configuration
li of i with Sili ⊂ Ri([0, T − δt]), a control law

vi = ki,li(t, xi,xj ;xi0, wi) (8)

as in Definition 1 that satisfies Property (P), and a cell

decomposition S ′i = {Sil}l∈I′i of Rci(τ)i ([0, T − τ ]) with

S ′i ⊃ Si, I ′i ⊃ Ii and compliant with Ri([0, T ]). Given
a vector wi ∈ Wi and a cell index l′i ∈ I ′i, we say that the
Consistency Condition is satisfied if the following hold.
There exists a point x′i ∈ Sil′

i
, such that for each initial

condition xi0 ∈ Sili and selection of continuous functions
dκ : R≥0 → Rn, κ ∈ Ni satisfying

dκ(t) ∈ (Sκlκ +B((M(κ) + vmax(κ))t)) ∩Rκ([0, T ]),

∀κ ∈ Ni, t ∈ [0, δt], (9)

the solution xi(·) of the system with disturbances (4) with
vi = ki,li(t, xi,dj ;xi0, wi), satisfies d(xi(t), S

i
li

) < (M(i) +

vmax(i))t, ∀t ∈ (0, δt]. Furthermore, xi(δt) = x′i ∈ Sil′
i

and

|ki,li(t, xi(t),dj(t);xi0, wi)| < vmax(i),∀t ∈ [0, δt]./

Notice that when the Consistency Condition is satisfied,
agent i can be driven to cell Sil′

i
precisely in time δt under

the auxiliary dynamics (4), with the feedback law ki,li(·)
corresponding to the given parameter wi in the definition.
The latter is possible for all disturbances which satisfy
(9) and capture the possibilities for the evolution of i’s
neighbors over the time interval [0, δt], given the knowledge
of its neighbors’ cell configuration. Under some additional
asumptions, which are provided in Lemma 7, the latter
transitions can be also implemented by the original system
(1) and the control law ki,li(·). We proceed with the



definition of a well posed online abstraction for each agent
in order to extract a finite transition system.

Definition 3. Consider cell decompositions Si = {Sil}l∈Ii
ofRi([0, T ]), i ∈ N , their product decomposition S, a time
step δt < τ with T = `δt, nonempty subsets Wi, i ∈ N of
Rn and assume that each Si is compliant with Ri([0, T −
δt]). (i) Given an agent i ∈ N , a cell decomposition

S ′i = {Sil}l∈I′i of Rci(τ)i ([0, T − τ ]) with S ′i ⊃ Si, I ′i ⊃ Ii
and compliant with Ri([0, T ]), an initial cell configuration
li ∈ Ii of i with Sili ⊂ Ri([0, T − δt]), and a cell index

l′i ∈ I ′i, we say that the transition li
li−→ l′i is well posed

with respect to the space-time discretization S−δt, if there
exist a feedback law vi = ki,li(·, ·, ·;xi0, wi) as in Definition
1 that satisfies Property (P), and a vector wi ∈ Wi, such
that the Consistency Condition of Definition 2 is fulfilled.
(ii) We say that the space-time discretization S − δt is
well posed, if for each agent i ∈ N , cell decomposition

S ′i = {Sil}l∈I′i of Rci(τ)i ([0, T − τ ]) with S ′i ⊃ Si, I ′i ⊃ Ii
and compliant with Ri([0, T ]), and cell configuration li of
i, there exists a cell index l′i ∈ I ′i such that the transition

li
li−→ l′i is well posed with respect to S − δt.

Based on Definition 3(i), we define the discrete transition
system which serves as an abstract model for the behavior
of each agent. The transitions are established through the
verification of the Consistency Condition which exploits
the auxiliary system with disturbances (4).

Definition 4. Consider cell decompositions Si = {Sil}l∈Ii
of Ri([0, T ]), i ∈ N , their product decomposition S, a
time step δt < τ with T = `δt, nonempty subsets Wi,
i ∈ N of Rn and assume that each Si is compliant with
Ri([0, T − δt]). The individual transition system TSi :=
(Qi, Q0i, Acti, −→i) of each agent i ∈ N is defined as:
Qi := Ii (the indices of the decomposition Si); Q0i :=
{li ∈ Ii : Xi0 ∈ Sili}; Acti := Ii (the cell configurations
of i); Transition relation −→i⊂ Qi ×Acti ×Qi defined as
follows. For any li, l

′
i ∈ Q and li = (li, lj1 , . . . , ljNi ) ∈ Ii,

li
li−→i l

′
i, iff li

li−→ l′i is well posed (implying also that
Sili ⊂ Ri([0, T − δt])).
Remark 5. The auxiliary cell decomposition S ′i which is
exploited for the verification of the Consistency Condi-
tion can provide according to Definition 3(i) well posed
transitions which lead to a cell Sil′

i
outside Ri([0, T ]).

These transitions are excluded from the definition of each
agent’s transition system, since they do not capture any
possible behavior of the system over [0, T ]. In particular,
the transitions of possible interest over the horizon are
the ones where the initial and final state of the agent
lie in the exact reachable sets over [0, T − δt] and [0, T ],
respectively. In addition, for the case where the cells of an
agent and its neighbors have nonempty intersection with
the corresponding agents’ reachable cells at certain time
instant t = mδt with m ∈ {0, . . . , `−1}, it will be validated
in Theroem 12 that there is always an outgoing transition
for well posed discretizations.

In the subsequent analysis we will consider well posed
discretizations which implies that their time step δt has
been selected so that T = `δt and will focus on transition
sequences of length m ≤ ` originating from cells which
contain the agents’ initial positions Xi0, i ∈ N . Such

sequences are defined below for the individual transition
system of each agent. In addition, it will be shown in
the sequel that the projection of a transition sequence
originating from the discrete state containing X0 in the
product discrete model (of all agents) to the individual
transition system of each agent will provide such a se-
quence of transitions for each agent, which can also be
implemented by the continuous time system.

Definition 6. Consider cell decompositions Si = {Sil}l∈Ii
ofRi([0, T ]), i ∈ N , their product decomposition S, a time
step δt < τ with T = `δt, nonempty subsets Wi, i ∈ N of
Rn and assume that each Si is compliant with Ri([0, T −
δt]). Given an agent i ∈ N , an integer m ∈ {1, . . . , `}, cell
configurations lκ = (lκi , l

κ
j1
, . . . , lκjNi

) ∈ Ii, κ = 0, . . . ,m−1

of i and a cell index lmi ∈ Ii, we say that l0i l
1
i · · · l

m−1
i lmi

is a strongly well posed transition sequence of order m, if

Xi0 ∈ Sil0
i

and lκi
lκi−→i l

κ+1
i . We also define l0i as a strongly

well posed transition sequence of order 0 if Xi0 ∈ Sil0
i
.

The following lemma establishes that for well posed dis-
cretizations and cell configurations of all agents which in-
tersect their exact reachable cells at a certain time instant
t = mδt with m ∈ {0, . . . , ` − 1} there exists a transition
for each agent that can be implemented by the continuous
time system (1).

Lemma 7. Consider cell decompositions Si = {Sil}l∈Ii of
Ri([0, T ]), i ∈ N , their product S, a time step δt < τ with
T = `δt, nonempty subsets Wi, i ∈ N of Rn and assume
that each Si is compliant with Ri([0, T − δt]) and that
the space-time discretization S − δt is well posed. Also,
consider a cell configuration l = (l1, . . . , lN ), an integer
m ∈ {0, . . . , ` − 1}, an input v = (v1, . . . , vN ) ∈ U and
assume that each component xi(·,X0; v) of the solution
of (1) satisfies xi(mδt,X0; v) ∈ Sili . (i) Then, it holds
that Posti(li; pri(l)) 6= ∅ for all i ∈ N . In particular,

Posti(li; pri(l)) = {l′i ∈ I ′i : li
li−→ l′i is well posed} ⊂ Ii,

for any cell decomposition S ′i = {Sil}l∈I′i of Rci(τ)i ([0, T −
τ ]) with S ′i ⊃ Si, I ′i ⊃ Ii and compliant with Ri([0, T ]),
and is uniquely defined, irrespectively of the cell decom-
position S ′i. (ii) In addition, for any selection of l′i ∈
Posti(li; pri(l)), i ∈ N , the following hold. There exist
feedback laws vi = ki,pri(l) as in (8) and wi ∈ Wi for all
i ∈ N , such that the solution ξ(·) of the closed loop system
(1), (8) with initial condition ξ(0) = x(mδt,X0; v) satisfies
ξi(δt) ∈ Sil′

i
and |ki,li(t, ξi(t), ξj(t);xi0, wi)| ≤ vmax(i) for

all t ∈ [0, δt] and i ∈ N . Furthermore, there exists u ∈ U
with u(t) = v(t) for all t ∈ [0,mδt), such that the solution
of (1) satisfies xi((m+ 1)δt,X0;u) ∈ Sil′

i
for all i ∈ N .

Based on Lemma 7, we show that consistent discrete
sequences of all agents which project to strongly well
posed individual transition sequences, have always outgo-
ing transitions.

Proposition 8. Consider cell decompositions Si = {Sil}l∈Ii
of Ri([0, T ]), i ∈ N , their product S, a time step δt < τ
with T = `δt, nonempty subsets Wi, i ∈ N of Rn and
assume that each Si is compliant with Ri([0, T − δt]) and
that the space-time discretization S−δt is well posed. Also,
consider a sequence l0 · · · lm of global cell configurations
with m ∈ {0, . . . , `} such that pri(l

0) · · · pri(l
m−1)lmi is



a strongly well posed transition sequence of order m for
each i ∈ N . (i) Then, there exists v ∈ U such that
each component xi(·,X0; v) of the solution of (1) satisfies
xi(κδt,X0; v) ∈ Silκ

i
, for all κ ∈ {0, . . . ,m}. (ii) If in

addition m < `, then Posti(l
m
i ; pri(l

m)) 6= ∅ for all i ∈ N .

From Proposition 8 we can derive the desired properties of
the product transition system corresponding to the space-
time discretization, which will be defined recursively. In
particular, given the product I = I1× · · · × IN of the cell
indices corresponding to the decompositions of the sets
Ri([0, T ]), i ∈ N , we define the operator P : I → 2I as
P(l) := Post1(l1; pr1(l)) × · · · × PostN (lN ; prN (l)), l ∈ I,
where Posti(·; ·), i ∈ N are the post operators for the
agent’s individual transition systems. We also recursively
define the operators Pκ : 2I → 2I , κ ∈ N ∪ {0}, as
P0(I) := I; Pκ(I) := P(Pκ−1(I)), κ ≥ 1, I ⊂ I. We next
provide the definition of the product transition system.

Definition 9. (i) Consider cell decompositions Si = {Sil}l∈Ii
of Ri([0, T ]), i ∈ N , their product S, a time step δt < τ
with T = `δt, nonempty subsets Wi, i ∈ N of Rn and
assume that each Si is compliant withRi([0, T−δt]). Also,
consider for each agent i ∈ N its individual transition
system TSi as provided by Definition 4. The product
transition system TSP := TS1⊗· · ·⊗TSN is the transition
system (Q,Q0,Act,−→) with: Q := I = I1×· · ·×IN (the
indices of the product decomposition); Q0 := Q10 × · · · ×
QN0, Q0i := {li ∈ Ii : Xi0 ∈ Sli}, i ∈ N ; Act := {∗};
Transition relation −→⊂ Q × Act × Q defined as follows.

For any l, l′ ∈ Q, l
∗−→ l′, iff there exists m ∈ {0, . . . , `−1}

such that l ∈ Pm(Q0) and l′ ∈ P(l). (ii) A path of
length m ∈ {0, . . . , `} originating from l0 in TSP , is a
finite sequence of states l0l1 · · · lm such that l0 ∈ Q0 and

lκ−1
∗−→ lκ for all κ ∈ {1, . . . ,m} (when m 6= 0).

We will show in the sequel that for well posed discretiza-
tions the sets Pm(Q0), m ∈ {0, . . . , `} in Definition 9
are always nonempty and that there exists an outgoing
transition in the product transition system from any l ∈
Pm(Q0), m ∈ {0, . . . , `− 1}.
Proposition 10. Assume that the space-time discretization
S − δt is well posed. Then, for each m ∈ {0, . . . , `−1} and
l ∈ Pm(Q0)( 6= ∅) it holds Post(l) = P(l) 6= ∅.

The proposition below constitutes our main result in this
section and guarantees the existence of paths of length m
for any m ∈ {0, . . . , `} originating from certain l0 ∈ Q0

in TSP . Additionally, it is shown that any such path can
be realized by a sampled trajectory of the continuous time
system (1) initiated from X0 over the subinterval [0,mδt]
of the time horizon [0, T ] = [0, `δt].

Proposition 11. Consider cell decompositions Si = {Sil}l∈Ii
of Ri([0, T ]), i ∈ N , their product S, a time step δt < τ
with T = `δt, nonempty subsets Wi, i ∈ N of Rn and
assume that each Si is compliant with Ri([0, T − δt]) and
that the space time discretization S − δt is well posed.
Then: (i) For any m ∈ {0, . . . , `} there exists a path
l0l1 · · · lm of length m originating from l0 in the product
transition system TSP . (ii) For any path l0l1 · · · lm of
length m originating from l0 in TSP , there exists an input
v ∈ U such that each component xi(·,X0; v) of the solution
of (1) satisfies xi(κδt,X0; v) ∈ Silκ

i
, for all κ ∈ {0, . . . ,m}.

4. DESIGN OF THE HYBRID CONTROL LAWS

In this section, we define the control laws that are exploited
in order to derive well posed transitions in accordance to
Definition 3. Consider for each agent i a cell decomposition
{Sil}l∈Ii of Ri([0, T ]) and a time step δt. We define the
diameter dmax(i) of each cell decomposition {Sil}l∈Ii as

dmax(i) := inf{R > 0 : ∀l ∈ Ii,∃x ∈ Sil , S
i
l ⊂ B(x; R2 )}

and select a reference point xli,G for every cell Sili , with

|xli,G − x| ≤ dmax(i)
2 ,∀x ∈ Sili , li ∈ Ii, i ∈ N . For each

agent i and cell configuration li of i, we define the family of
feedback laws ki,li : [0,∞)×R(Ni+1)n → Rn parameterized
by xi0 ∈ Sili and wi ∈ Wi as ki,li(t, xi,xj ;xi0, wi) :=
ki,li,1(t, xi,xj) + ki,li,2(xi0) + ki,li,3(wi), where Wi :=
B(vmax(i)) ⊂ Rn and

ki,li,1(t, xi,xj) := gi(χi(t),xlj ,G)− gi(xi,xj), (10)

ki,li,2(xi0) :=
1

δt
(xli,G − xi0), ki,li,3(wi) := λ(i)wi. (11)

The function χi(·) in (10) is defined for all t ≥ 0 through
the solution of the initial value problem

χ̇i = gi(χi,xlj ,G), χi(0) = xli,G, (12)

with the globally Lipschitz function gi(·) as given in (5).
The parameter λ(i) stands for the part of the free input
that can be further exploited for motion planning. In
particular, for each wi ∈W , the vector λ(i)wi provides the
“velocity” of a motion that we superpose to the reference
trajectory χi(·) of agent i over [0, δt]. The latter allows
the agent to reach all points inside a ball with center the
position of the reference trajectory at time δt by following
the curve x̄i(t) := χi(t) + λ(i)wit, as depicted in Fig. 2
below. This ball has radius

ri := λ(i)δtvmax(i), (13)

namely, the distance that the agent can cross in time δt by
exploiting ki,li,3(·), which corresponds to the part of the
free input that is selected for reachability purposes. Hence,
it is possible to perform a well posed transition to any cell
which has a nonempty intersection with B(χi(δt); ri).

Sili
Sil′
i

χi(δt)

xi(δt) = x

B(χi(δt); ri)

χi(δt) + tλ(i)wi

xi(t)

x̄i(t)

xi0

xli,G

Fig. 2. Illustration of the reference trajectory and reacha-
bility capabilities of the control laws.

5. WELL POSED SPACE-TIME DISCRETIZATIONS

In this section, we exploit the controllers introduced in
Section 4 to provide sufficient conditions for well posed
space-time discretizations. Since the space discretization
of each agent is affected by the local in time properties of
its dynamics, it is convenient to consider different diam-
eters for the decomposition of each agent, which require
certain design constraints on the diameters of neighboring
decompositions. In particular, for each agent’s neighbors
we impose the restriction that the diameters of their de-
compositions satisfy dmax(j) ≤ µ(j, i)dmax(i). For these
restrictions to be meaningful, we also impose the condition



that µ(i0, i1)µ(i1, i2) · · ·µ(im−1, im) ≥ 1, for all cycles
i0i1 · · · im in the graph G, which is always satisfied if we
select µ(j, i) = 1 for all i ∈ N and j ∈ Ni. For the
acceptable values of the discretizations, it is also conve-
nient to define for each agent the local network parameters
µ(i) := (

∑
j∈Ni µ(j, i)2)

1
2 and M(i) := (

∑
j∈Ni(M(j) +

vmax(j))2)
1
2 . Also, for each i ∈ N and cell configuration

li ∈ Ii of i, consider the family of feedback laws in (10),
(11), with the reference trajectory χi(·) generated by (12).
We now provide sufficient conditions for well posed space-
time discretizations and their transition capabilities.

Theorem 12. Consider cell decompositions Si = {Sil}l∈Ii
of the sets Ri([0, T ]) with diameters dmax(i), their product
S, a time step δt, the constant ri in (13), the parameters
λ(i) ∈ (0, 1) and assume that each Si is compliant with
Ri([0, T − δt]). We also assume that dmax(i), i ∈ N
satisfy the requirements above, `δt = T for certain ` ∈
N and that δt ∈ (0, (1−λ(i))vmax(i)

L1(i)M(i)+L2(i)λ(i)vmax(i)
), dmax(i) ∈

(0,min{ 2(1−λ(i))vmax(i)δt
1+(L1(i)µ(i)+L2(i))δt

, (2(1−λ(i))vmax(i)δt−2(L1(i)

M(i) + L2(i)λ(i)vmax(i))δt2)/(1 + L1(i)µ(i)δt)}), with
L1(i), L2(i) and vmax(i) as given in (6), (7) and (2),
respectively, and µ(i), M(i) as defined above. Then, the
space-time discretization is well posed for system (1). In
particular: (i) For each agent i ∈ N , cell decomposition

S ′i = {Sil}l∈I′i of Rci(τ)i ([0, T − τ ]) with S ′i ⊃ Si, I ′i ⊃ Ii
and compliant with Ri([0, T ]), and cell configuration li
of i with Sili ⊂ Ri([0, T − δt]) it holds B(χi(δt); ri) ⊂
Rci(τ)i ([0, T − τ ]) and li

li−→ l′i is well posed for all
l′i ∈ {l ∈ I ′i : Sil ∩ B(χi(δt)ri) 6= ∅}, with the reference
trajectory χi(·) as given by (12) and ri as defined in
(13). (ii) For each agent i ∈ N , cell configuration li
of i, integer m ∈ {0, . . . , ` − 1} and input v ∈ U such
that each component xκ(·,X0; v), κ ∈ Ni ∪ {i} of the
solution of (1) satisfies xκ(mδt,X0; v) ∈ Sκlκ , it holds

Post(li; li) ⊃ {l ∈ I ′i : Sil ∩B(χi(δt); ri) 6= ∅}.

6. CONCLUSIONS AND FUTURE WORK

We have provided a distributed online abstraction frame-
work for forward complete multi-agent systems under cou-
pled constraints. The derived abstractions provide for each
agent an individual discrete model for an overapproxi-
mation of its reachable set over a finite time horizon. In
addition, the composition of the individual agent models
provides transitions which capture the evolution of the
continuous time system over the horizon. Future work
directions include the study of specific network structures
and quantifying the tradeoff between the depth of the
planning horizon and the depth of the required information
in the network graph for the investigation of the agents’
reachability properties.
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