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Abstract: In this paper, we propose a framework to generate communication schedulings for
nonlinear model predictive control. The proposed method considers the case where multiple
plants share a communication network, and the goal is to pre-plan for each plant a timing
to communicate with the controller to solve an optimal control problem. The desired commu-
nication schedulings are generated such that: (i) no network collisions occur; (ii) convergence
to a prescribed local set around the origin is guaranteed for all plants. When formulating an
algorithm, we additionally propose an optimization problem that is similar to the standard
collision avoidance problem of controlling multi-agent systems. To validate our proposed scheme,
a control problem of three inverted pendulums is simulated.
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1. INTRODUCTION

Networked Control Systems (NCSs) are defined as control
systems where multiple sensors, actuators, and controllers
are connected over a common wired/wireless network
channel. Due to the progress in communication technology
and many practical advantages such as low-cost mainte-
nance and the possibility to build more complex control
architectures, a wide variaty of control strategies for NCSs
has been developed and investigated over the past decades
(Hespanha et al. (2007)).

In NCSs, one of the most typical situations is that multiple
plants share a common communication network, and these
are controlled by the remote controllers (Dai et al. (2010)),
see such illustration in Fig. 1. In this situation, only a
limited number of plants can occupy the network at the
same time due to limited communication capabilities, i.e.,
if too many plants transmit information at the same
time, a network collision may occur which leads to a
transmission failure. Therefore, it is crucial to design
a communication strategy in addition to guaranteeing
the desired control performance, such that the network
restrictions illustrated above can be taken into account.

Communication schedulings for controlling multiple plants
that have been investigated so far can be mainly divided
into two categories; namely, static scheduling (Zhang et al.
(2008); Dai et al. (2010)) and dynamic scheduling (Zhang
et al. (2008); Reimann et al. (2012); Cervin and Alriks-
son (2006)). In the static scheduling case, communication
schedulings over the network are determined in the off-line
stage based on the knowledge of dynamics and the control
strategy. In the dynamic case, on the other hand, commu-
nication times are determined on-line based on the state
information and given the state feedback policy. Many
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Fig. 1. Networked Control System considered in this paper.
Each plant Pi (i ∈ M) is controlled by the corre-
sponding controller i through a shared network.

criteria and design techniques for obtaining the commu-
nication strategy for multiple plants have been addressed,
such as sensitivity function (Zhang et al. (2008)), infinite
horizon quadratic cost (Cervin and Alriksson (2006)) and
Lyapunov functions (Reimann et al. (2012)).

In this paper, we investigate how communication schedul-
ings can be obtained in a Model Predictive Control (MPC)
framework. MPC plays an important role for NCSs espe-
cially when one of the control objectives is to handle con-
straints, such as actuator saturations and physical limita-
tions. Communication co-design techniques for MPC have
been pursued for linear systems with no disturbances, see,
e.g., Görges et al. (2009); Henriksson et al. (2015). In Hen-
riksson et al. (2015), a network collision-free scheduling
method has been proposed for multiple-loop linear control
systems. In the proposed method, a dynamic scheduler is
designed based on a self-triggered strategy. A related work
is also reported in Cervin and Alriksson (2006), where a
dynamic scheduling method is proposed for linear systems
by evaluating an infinite horizon quadratic cost.



In this paper, we propose a new framework for generating
communication schedulings for MPC. The main contri-
bution with respect to afore-cited papers (Görges et al.
(2009); Henriksson et al. (2015); Cervin and Alriksson
(2006)) is to derive the network scheduling protocol for
nonlinear systems, where the dynamics are perturbed by
additive bounded disturbances. Our goal is to generate
communication sequences for multiple plants as illustrated
in Fig. 1, under the communication constraint that only a
single plant can occupy the network at a certain transmis-
sion time.

The proposed framework is inspired by our previous work
presented in Hashimoto et al. (2015), where an event-
triggered strategy for MPC has been proposed for a single
plant. While we follow a basic problem set-up, the analysis
and the approach taken in this paper differs from the
previous result in the following two directions:

(1) Feasibility and stability are further analyzed to design
the communication strategy. In particular, stability
is proven in a different manner from the approach
presented in Hashimoto et al. (2015), in the sense
that the maximum time of convergence is explicitly
obtained here, aiming to generate the desired com-
munication schedulings.

(2) We translate the network scheduling problem into
an additional optimization problem, where new dy-
namics, cost, and constraints are defined. Since the
additional problem is formulated to be similar to the
standard collision avoidance problem of controlling
multi-agent systems, we could utilize several exist-
ing related tools to efficiently solve the optimisation
problem, such as mixed integer linear programming
(see e.g., Richards et al. (2002)) or sequential linear
programming (see e.g., Augugliaro et al. (2000)).

This paper is organized as follows. In Section 2, the OCP
and the main problem to be solved are formulated. In
Section 3, several conditions to guarantee feasibility and
stability are given. In Section 4, the main strategies of de-
termining network scheduling are proposed. In Section 5,
a simulation example is provided to validate our proposed
scheme. Finally, we conclude in Section 6.

Notations. R, R>0, N≥0, N≥1 are the real, non-negative
real, non-negative integers and positive integers, respec-
tively. For a matrix Q, we use Q � 0 to denote that Q is
positive definite. Given a compact set Φ ⊆ Rn, we denote
by ∂Φ the boundary of Φ. The function f : Rn×Rm → Rn
is called Lipschitz continuous with a weighted matrix P
and Lipschitz constant Lf in x ∈ Rn, if ||f(x1, u) −
f(x2, u)||P ≤ Lf ||x1 − x2||P for all x1, x2 ∈ Rn, u ∈ Rm.

2. PROBLEM FORMULATION

2.1 System description and Problem statement

Consider the networked control system depicted in Fig. 1,
where there existM ∈ N≥1 number of plants P1,P2, · · · ,PM
in total. We assume that each i-th plant (i ∈ {1, 2, · · · ,M})
is controlled by the corresponding i-th controller through
a shared network, and the dynamics of the i-th plant is
given by the following nonlinear continuous-time system:

ẋi(t) = fi(xi(t), ui(t)) + wi(t), (1)

where xi ∈ Rni is the state, ui ∈ Rmi is the control input,
and wi ∈ Rni is the additive bounded disturbance. For
notational simplicity in the sequel, we denote by M the
set given byM = {1, 2, · · · ,M}. We consider the following
standard assumptions (Chen and Allgöwer (1998)):

Assumption 1. For all i ∈ M: (i) The function fi :
Rni ×Rmi → Rni is twice continuously differentiable, and
fi(0, 0) = 0 (i.e., the origin is an equilibrium point). (ii)
ui, wi are subject to the following constraints;

ui ∈ Ui, wi ∈ Wi, (2)

where Ui and Wi are compact and convex sets containing
the origin in their interiors. 2

Let ti,k, k ∈ N≥0 be the transmission time instants when
the i-th (i ∈ M) plant requests a communication to the
i-th controller for solving an optimal control problem.

Due to the network constraint that only a limited amount
of information can be transmitted over the network, we
consider that only a single plant is capable of occupying
the network at each transmission time instant; if multiple
plants request communication at the same time (e.g.,
ti,k = tj,` for some i 6= j and k, ` ∈ N≥0), then
a network collision occurs leading to a communication
failure. Therefore, our goal is to obtain the transmission
schedulings ti,0, ti,1, · · · for all i ∈M, such that no network
collisions arise while at the same time fulfilling the desired
control performances. Regarding the network constraints,
we further consider the following:

Assumption 2. Once the network is occupied by a plant at
a certain transmission time, all the other plants are not
allowed to use the network at least for the time interval
δmin > 0 afterwards.

In Assumption 2, we consider that once a plant occupies
the network, say at ti,k, the network cannot be free again at
least for the time interval [ti,k, ti,k + δmin]. This situation
needs to be considered in NCSs for several reasons; for
instance, when a time interval between two transmissions
needs to be large enough to avoid network interferences
(especially when indoor enviroments and wireless commu-
nication is used), or when it requires some time to release
the network once it is occupied. Assumption 2 leads to the
constraint that for every two plants i, j (i 6= j), every
difference between two transmission times needs to be
larger than δmin. That is, for all i ∈M and j ∈M\{i}, it
must hold that |ti,k − tj,m| > δmin, ∀k ∈ N≥0, ∀m ∈ N≥0.
A more specific definition of the problem statement is
given later in this subsection.

For each transmission time ti,k, the i-th controller solves an
OCP based on the i-th plant’s state information xi(ti,k),
and the predictive behavior of the system from (1). We
consider the following quadratic cost function to be mini-
mized:

Ji(xi(ti,k), ui(·)) =

∫ ti,k+Tp

ti,k

||x̂i(ξ)||2Qi
+||ui(ξ)||2Ri

dξ, (3)

where Qi and Ri are the matrices for the stage cost satis-
fying Qi = QT

i � 0, Ri = RT
i � 0, and x̂i(ξ) denotes the

nominal state from ti,k, i.e., ˙̂xi(ξ) = fi(x̂i(ξ), ui(ξ)), ξ ∈
[ti,k, ti,k + Tp], with x̂i(ti,k) = xi(ti,k). Tp ∈ R>0 denotes
the prediction horizon; for simplicity, we assume that Tp
is equal for all i ∈ M. In order to characterize the con-



vergence, we consider a local set Φi given by Φi = {x ∈
Rni : Vfi(x) ≤ ε2i }, where Vfi(x) = xTPix for given εi > 0,
Pi = PT

i � 0. Following the standard MPC set-up (Chen
and Allgöwer (1998)), we consider that the matrix Pi and
εi are designed such that the following is satisfied.

Assumption 3. For all i ∈M:

(i) There exists a local state feed-back controller κi(x) =
Kix ∈ Ui, satisfying

∂Vfi
∂x

fi(x,Kix) ≤ −xT(Qi +KT
i RiKi)x (4)

for all x ∈ Φi.
(ii) The nonlinear function fi : Rni × Rmi → Rni is

Lipschitz continuous with the weighted matrix Pi and
the Lipschitz constant 0 ≤ Lfi <∞ in x ∈ Rni . 2

Assumption (i) implies the existence of a stabilizing con-
troller if the state is inside the local set Φi. If the linearized
system of (1) around the origin is stabilizable, appropriate
κi and Φi satisfying Assumption (i) can be found off-
line by following Chen and Allgöwer (1998). The second
Lipschitz assumption (Assumption (ii)) will be utilized to
derive several conditions to guarantee recursive feasibility.

The main problem to be solved in this paper is now
described as follows:

Problem 1. For each i ∈ M, given the initial com-
munication time ti,0 and the corresponding initial state
xi(ti,0), find a communication scheduling ti,0, ti,1, · · · , ti,Ni

for some Ni ∈ N≥1, such that:

(1) The state xi(t) is steered to the local region Φi, i.e.,
xi(ti,Ni) ∈ Φi;

(2) For a given δmin > 0, there exist no network colli-
sions. That is, for all j ∈M\{i}, it holds that

|ti,k − tj,m| > δmin,

∀k ∈ {1, · · · , Ni}, ∀m ∈ {1, · · · , Nj}.
(5)

2

As shown in Problem 1, our goal is to generate communi-
cation schedulings for all the plants based on their initial
states, ensuring both stability (convergence to the local
set Φi for all i ∈ M) and that no network collisions
arise. Note that the scheduling will be generated under
a static fashion; communication sequences are generated
off-line before the MPC implementation. In Problem 1,
Ni represents the number of transmissions for the i-th
plant and needs to be appropriately selected such that
xi(ti,Ni

) ∈ Φi holds. A more specific condition for selecting
Ni will be given in later sections when presenting the
communication strategy (Section 4).

2.2 Optimal Control Problem

In this subsection, we formulate the OCP for each con-
troller as a first step to solve Problem 1. In addition to the
local set Φi, we consider a restricted local set Φfi given by
Φfi = {x ∈ Rni : Vfi(x) ≤ ε2fi}, where 0 < εfi < εi.
The illustration of Φi, Φfi is depicted in Fig. 2. At a
communication time ti,k, the objective of the OCP given
by the i-th controller is to obtain a pair of optimal control
and state trajectory (u∗i (ξ), x̂

∗
i (ξ)) for all ξ ∈ [ti,k, ti,k+Tp],

Fig. 2. Illustration of two regions Φi, Φfi . T
∗
i,k denotes

the time interval when the optimal state trajectory
obtained at ti,k enters Φfi .

such that the cost function Ji(·) in (3) is minimized. In this
paper, we impose the constraint that the optimal state
trajectory enters Φfi ; the illustration is depicted in Fig. 2.
Due to this constraint, there exists a time interval when
the optimal state trajectory reaches the boundary of Φfi ;
denote by T ∗

i,k the time interval given by

T ∗
i,k = inf{Ti,k ∈ R>0 : x̂∗i (ti,k + Ti,k) ∈ ∂Φfi}. (6)

In the following, we formulate the OCP such that this time
interval is strictly decreasing over time:

Problem 2. (OCP for the i-th plant) At any non-initial
times ti,k, k ∈ N≥1, given the state xi(ti,k) and Tp > 0,
find a pair of an optimal control and the corresponding
state trajectories u∗i (ξ), x̂∗i (ξ) for all ξ ∈ [ti,k, ti,k + Tp] by
minimizing Ji(xi(ti,k), ui(·)) in (3), subject to:

˙̂xi(ξ) = fi(x̂i(ξ), ui(ξ)), x̂i(ti,k) = xi(ti,k), (7)

ui(ξ) ∈ U , ξ ∈ [ti,k, ti,k + Tp] (8)

x̂i(ti,k + T ∗
i,k−1 − γiδi,k−1) ∈ Φfi (9)

for given 0 < γi < 1, where δi,k−1 = ti,k − ti,k−1. For the
initial time ti,0, minimize Ji(xi(ti,k), ui(·)) in (3), subject
to (7), (8), and x̂i(ti,0 + Tp) ∈ Φfi . 2

For the initial time ti,0, Problem 2 is solved with a
standard terminal constraint x̂i(ti,0 + Tp) ∈ Φfi . For
the non-initial times, on the other hand, we impose a
terminal-like constraint in (9); the predictive state needs
to enter Φfi within T ∗

i,k−1 − γδi,k−1, where T ∗
i,k−1 is the

time interval obtained at the previous update time ti,k−1.

From the constraint (9) and from (6), we obtain T ∗
i,k ≤

T ∗
i,k−1−γiδi,k−1 < T ∗

i,k−1, which means that the time inter-
val to reach Φfi becomes strictly smaller than the previous
time (see also the illustration in Fig. 2). This property
is one of the important ideas to guarantee stability and
obtain a suitable communication scheduling, as provided
in subsequent sections.

In this paper, we consider that the controller transmits the
obtained optimal control trajectory to the plant, and the
plant applies it until the next update time, i.e., ui(t) =
u∗i (t), t ∈ [ti,k, ti,k+1).

3. GUARANTEEING FEASIBILITY AND
CONVERGENCE

Before providing the scheduling algorithm, we first limit
our attention to a single plant and investigate several
useful properties to guarantee the control performance;
namely, feasibility and stability. Regarding feasibility, we
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Fig. 3. We can recursively obtain a finite time sequence
ti,0, ti,1, ti,2, · · · such that both feasibility and stability
are guaranteed.

will derive the following recursive feasibility, which states
that the existence of a feasible solution to Problem 2 at
the initial time ti,0, implies the feasibility at all the time
afterwards ti,k, k ∈ N≥1:

Lemma 1. Consider the networked control system in Fig. 1,
where the dynamics of each plant is given by (1). For the
i-the plant (i ∈M), suppose that Problem 2 has a solution
at ti,k, k ∈ N≥0, providing a pair of optimal control and
the corresponding state trajectories given by u∗i (ξ), x̂

∗
i (ξ)

for all ξ ∈ [ti,k, ti,k+Tp]. Then, Problem 2 has a solution at
the next time step ti,k+1 (> ti,k) if the following conditions
are all satisfied;

(1) The maximum size of the disturbance wi satisfies
||wi(t)||Pi ≤ wi,max for all t ∈ [ti,k, ti,k+1], where

wi,max =
λmin(QPi

)

2eLfi
T∗
i,0

(1− γi)εfi , (10)

with QPi
= P

−1/2
i (Qi +KT

i RiKi)P
−1/2
i .

(2) It holds that

ti,k < ti,k+1 ≤ ti,k + δ̄i(ti,k), (11)

where δ̄i(ti,k) is given by

δ̄i(ti,k) = min

{
Tp,

αiγi
1 + αi

(ti,k − ti,0)

+
1

Lfi
ln(1 + αi)

}
,

with a given αi =
2Lfi

(εi−εfi )
λmin(QPi

)(1−γi)εfi
> 0. 2

The proof is given by extending our previous result
in Hashimoto et al. (2015) and is omitted for brevity.
Lemma 1 states that recursive feasibility is guaranteed if
the size of the disturbance is small enough to satisfy (10),
and the next time to solve the OCP is upper bounded as
shown in (11).

An important property of Lemma 1, is that we can recur-
sively obtain the communication scheduling ti,0, ti,1, ti,2, · · ·
off-line such that feasibility of Problem 1 is guaranteed; for
a given initial time ti,0, the feasibility at the next time step
ti,1 is guaranteed if (11) (by letting k = 0) holds. Suppose
then, that ti,1 is selected such that (11) is satisfied. Then,
for a given ti,1, the next time ti,2 can be selected such
that (11) holds with k = 1. By following this procedure,
we can recursively generate ti,0, ti,1, ti,2 · · · such that the
feasibility is guaranteed. The illustration of this recursive
procedure is depicted in Fig. 3.

As another important property, we next show that the
state trajectory enters Φi in finite time. Regarding this
convergence property, the following lemma holds:

Lemma 2. For the i-th (i ∈M) plant, suppose that:
(i) ||wi(t)||Pi

≤ wi,max, ∀t ≥ t0, where wi,max is given by
(10); (ii) Problem 2 is solved at ti,k, k ∈ N≥0, which are
all chosen such that (11) holds to guarantee the feasibility.

Then, the trajectory xi(t) enters Φi within ti,0 + T ∗
i,0/γi.

Proof. We prove the statement by contradiction. Assume
that at ti,k we have xi(ti,k) /∈ Φi and that it satisfies
ti,k − ti,0 ≥ T ∗

i,0/γi. As xi(ti,k) /∈ Φfi , the time interval
when the optimal state trajectory enters Φfi is guaranteed
to be positive, i.e., T ∗

i,k > 0. Since wi satisfies (10) and

ti,0, ti,1, · · · , ti,k are selected such that (11) holds, the fea-
sibility of Problem 2 is guaranteed for all ti,0, ti,1, · · · , ti,k.
Thus, from the constraint (9), we obtain

T ∗
i,k ≤ T ∗

i,k−1 − γiδi,k−1

≤ T ∗
i,k−2 − γi(δi,k−1 + δi,k−2)

≤ · · · ≤ T ∗
i,0 − γi

k−1∑
l=0

δi,l

= T ∗
i,0 − γi(ti,k − ti,0).

(12)

From the above in-equality, we have T ∗
i,k ≤ T ∗

i,0− γi(ti,k −
ti,0) and by assumption ti,k ≥ ti,0 + T ∗

i,0/γi, we have
T ∗
i,k ≤ 0. However, this contradicts the fact that T ∗

i,k > 0.
Therefore, it holds that the state enters Φi if ti,k ≥ ti,0 +
T ∗
i,0/γi. This completes the proof. 2

An important property of Lemma 2 is that we can explic-
itly obtain the maximal convergence time when the state
enters Φi. From Lemma 1 and Lemma 2, we can recursively
obtain the communication scheduling ti,0, ti,1, · · · , to en-
sure the feasibility through the above procedure, and once
it attains ti,k ≥ ti,0+T ∗

i,0/γi for some k ∈ N>0, then we ob-
tain xi(ti,k) ∈ Φi (see the illustration in Fig. 3). Therefore,
it is possible to generate a communication scheduling for
each plant off-line, such that both feasibility and stability
are guaranteed.

So far, we have limited our attention to a single plant
to guarantee feasibility and stability. In the next section,
we make use of the above properties to generate desired
communication schedulings for all the plants, such that
any network collisions can be avoided.

4. COMMUNICATION SCHEDULING VIA
INTER-SAMPLING TIME ANALYSIS

Based on the analysis in the previous section, we now
present a framework of generating the desired collision-
free communication schedulings as a solution to Problem 1.
To achieve this, we will in the following formulate a new
optimization problem, in which dynamics, cost, and several
constraints are defined.

4.1 Inter-sampling behavior as Dynamics

To ensure the feasibility of Problem 2, we require that
communication scheduling times ti,k are generated to
satisfy (11). To this end, we translate the inequality (11)
into the following equality condition;

ti,k+1 = ti,k + δi,k, (13)
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Fig. 4. The cost function is given by (15) such that
ti,k approaches ti,max as soon as possible. Due to
the constraint (16), ti,Ni is guaranteed to be placed
between ti,0 + T ∗

i,0/γi and ti,max.

where δi,k is defined as an auxiliary variable satisfying both
the following linear constraints:

0 < δi,k <
αiγi

1 + αi
(ti,k − ti,0) +

1

Lfi
ln(1 + αi)

δi,k ≤ Tp.
(14)

Thus, (13) is considered as a linear dynamics to describe
an inter-sampling time behavior, where ti,k represents
the state variable, and δi,k represents the control variable
subject to the constraints (14).

4.2 Cost to be minimized

To define a cost function, we first let t̂i,0, t̂i,1, t̂i,2, · · ·
(i ∈M) be the time sequence where t̂i,0 = ti,0 and t̂i,k+1 =

t̂i,k + δ̄i(t̂i,k), i.e., when equality holds in (11). Then, let

Ni,min be given by Ni,min = min{k ∈ N≥1 | t̂i,k ≥ t̂i,0 +
T ∗
i,0/γi}. From Lemma 2, Ni,min represents the minimal

number of transmissions to guarantee xi(ti,Ni,min) ∈ Φi.

Let Ni ∈ N≥1 (i ∈ M) be a given number satisfying
Ni ≥ Ni,min, and also let ti,max, (i ∈ M) be a given time
instant satisfying ti,max > ti,0 + T ∗

i,0/γi. Based on these
notations, we define the following quadratic cost function
to be minimized:

Jt
(
ti,(1:Ni), δi,(1:Ni)

)
=

M∑
i=1

Ni∑
k=0

|ti,max − ti,k|2 (15)

where for simplicity we denote the arguments as ti,(1:Ni) =
{ti,1, · · · , ti,Ni

}, δi,(1:Ni) = {δi,1, · · · , δi,Ni
}. From above,

the cost is defined by summing the difference between
ti,k and ti,max over all plants i ∈ M and the number
of transmissions, i.e., the cost becomes smaller as ti,k
gets closer to ti,max. This implies, that by minimizing
(15) the communication sequence ti,1, · · · , ti,Ni

will be
selected to approach ti,max as soon as possible to guarantee
the convergence. The illustration of this interpretation is
depicted in Fig. 4. As shown in (15), the parameter Ni
represents the total number of transmissions for the i-th
plant. Although the parameter can be arbitrary selected
as long as Ni ≥ Ni,max is fulfilled, it should not be selected
too large to keep the computational complexity of the
optimization problem to manageable levels.

4.3 Constraints

Finally, several constraints to formulate the optimization
problem are given. To guarantee the convergence for each
plant, we first impose the following terminal-like constraint
for ti,Ni ;

T ∗
i,0/γi + ti,0 ≤ ti,Ni ≤ ti,max, (16)

see also the illustration in Fig. 4. Since Ni is selected
in the previous subsection to satisfy Ni ≥ Ni,max, there
always exists a time sequence ti,0, · · · , ti,Ni

such that ti,0+
T ∗
i,0/γi ≤ ti,Ni

holds to fulfill (16).

Additionally, we need to ensure a collision-free scheduling
under δmin. That is, for all j ∈M\{i}, it must hold that

|ti,k − tj,m| > δmin, ∀k ∈ {1, · · · , Ni}, ∀m ∈ {1, · · · , Nj}.
(17)

4.4 Optimal communication scheduling generation

Combining the dynamics, cost, and the constraints defined
in the previous subsections, we are now ready to formulate
the following optimization problem in order to find the
desired collision-free communication schedulings:

Problem 3. (Communication scheduling problem):
For given ti,0, Ni, ti,max for all i ∈M, find communication
schedulings t∗i,0, t

∗
i,1, · · · , t∗i,Ni

for all i ∈M with t∗i,0 = ti,0,

by minimizing the cost Jt given by (15), subject to the
dynamics (13), control input (14), terminal constraint
(16), and the constraint for avoiding network collisions
(17). 2

Note that Problem 3 can be solved offline, since the initial
times ti,0 and all parameters used in the constraints are
known. Problem 3 is indeed a non-convex optimization
problem due to the constraint in (17). However, Problem 3
can be seen as a collision avoidance problem of controlling
multi-agent systems, where each i-th plant (agent) follows
the linear dynamics given by (13) subject to the input
constraints in (14). Thus, one can utilize several existing
tools for this problem to approximate the non-convex con-
straint into a convex one, such as sequential convex linear
programming (see Augugliaro et al. (2000)). Moreover,
one can also utilize a mixed integer linear programming
approach to translate the collision avoidance constraint
into the constraint involving integers, see e.g., Richards
et al. (2002). If Problem 3 provides a feasible solution,
then the obtained scheduling sequences t∗i,0, t

∗
i,1, · · · , t∗i,Ni

can ensure the feasibility of Problem 2, the convergence
of the state trajectory to the local set Φi, and that no
network collisions arise for all i ∈ M. The following is
thus an immediate consequence:

Theorem 1. Suppose that Problem 3 admits a feasible so-
lution providing the optimal communication schedulings
t∗i,0, t

∗
i,1, · · · , t∗i,Ni

, for all i ∈ M. Then, the obtained com-
munication schedulings provide a solution to Problem 1.

5. SIMULATION RESULTS

As a simulation example, we consider a problem of con-
trolling three inverted pendulums (Wang and Lemmon
(2011)). For simplicity, we linearize each system around

Table 1. Parameter settings

i mi Mi `i ti,0 xi(ti,0)

1 0.2 1.0 1.5 0 [ 1.5; 0; 0; 0]
2 0.4 1.0 1.0 0.3 [-0.5; 0; 0; 0]
3 0.6 1.0 0.5 0.6 [ 1.0; 0; 0; 0]
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(a) Communication schedulings for Plant 1 (blue), Plant 2 (red)
and Plant 3 (green). Each color bar represents the communi-
cation time instant ti,k with minimal channel occupancy, i.e.,
[ti,k, ti,k + δmin], i ∈ {1, 2, 3}, k ∈ {1, · · · , 8}.
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(b) State trajectories of xi,1 for all i ∈ {1, 2, 3}.

Fig. 5. Generated communication schedlings obtained by
Problem 3 and the resulting state trajectories.

the origin to get ẋi(t) = Aixi(t) + Biui(t) + wi(t) where
we denote xi = [xi,1; xi,2; xi,3; xi,4]T ∈ R4, wi ∈ R4,
ui ∈ R, and Ai and Bi are given by;

Ai =

 0 1 0 0
0 0 −mig/Mi 0
0 0 0 1
0 0 g/`i 0

 , Bi =

 0
1/Mi

0
−1/(Mi`i)

 .
mi, Mi, li, i ∈ {1, 2, 3} are the point mass, mass of the
cart, length of the mass-less rod respectively. We assume
Ui = {ui ∈ R : |ui| ≤ 8.0} for all i ∈ {1, 2, 3}, and
the parameters mi, Mi, li, initial times ti,0 and the initial
states xi(ti,0) are given in Table 1. The matrices for the
stage cost are Qi = 0.1I4, Ri = 0.05 for all i ∈ {1, 2, 3},
and the prediction horizon is set to Tp = 8. We set γi = 0.8
for all i ∈ M, and it is assumed that the time interval
δmin is given by δmin = 0.15. The matrix Pi and the
local controller κi are computed appropriately by following
the procedure presented in Chen and Allgöwer (1998).
The parameters for the local sets Φi,Φfi are given by
εi = 0.2, εfi = 0.05 for all i ∈ {1, 2, 3}, and we assume
Wi = {wi ∈ R4 : ||wi||Pi

≤ 4.2× 10−3} for all i ∈ {1, 2, 3}
based on the allowable size of disturbance given by (10).
From Lemma 2, the maximal time when the state enters Φi
is apriori obtained as ti,0+T ∗

i,0/γi, and these are illustrated
in Table ??. Based on this, we set ti,max = 12 and Ni = 8
for all i ∈ {1, 2, 3}.
Fig. 5(a) illustrates the communication schedulings up to
the time ti,max = 12 obtained by solving Problem 3, where
each color bar represents the time interval [ti,k, ti,k + δmin]
in order to check no network collisions. While solving
Problem 3, a sequential convex linear programming has
been applied. From Fig. 5(a), the generated communica-
tion schedulings are feasible solution to Problem 3, in the
sense that no network collisions are present until ti,max

and satisfy the terminal constraint in (16).

Fig. 5(b) represents the resulting state trajectories of
xi,1, i ∈ {1, 2, 3} by solving Problem 2 according to
the given communication schedulings. It is shown from
Fig. 5(b), that all state trajectories are stabilized to Φi
until the maximal convergence time.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a scheduling algorithm for
MPC of nonlinear continuous-time systems. The proposed
method provides the network scheduling sequence for each
plant, such that no network collisions arise, while feasi-
bility and convergence can be guaranteed. A simulation
example has validated our proposed method. Future work
involves relaxing the constraint (10) to allow larger size
of disturbances, and make some comparisons with other
proposed schemes.
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