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Abstract: This paper presents a hybrid control framework for the motion planning of a multi-
agent system including N robotic agents and M objects, under high level goals. In particular, we
design control protocols that allow the transition of the agents as well as the transportation of
the objects by the agents, among predefined regions of interest in the workspace. This allows us
to abstract the coupled behavior of the agents and the objects as a finite transition system and
to design a high-level multi-agent plan that satisfies the agents’ and the objects’ specifications,
given as temporal logic formulas. Simulation results verify the proposed framework.
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1. INTRODUCTION

Temporal-logic based motion planning has gained signifi-
cant amount of attention over the last decade, as it pro-
vides a fully automated correct-by-design controller syn-
thesis approach for autonomous robots. Temporal logics,
such as linear temporal logic (LTL), provide formal high-
level languages that can describe planning objectives more
complex than the well-studied navigation algorithms, and
have been used extensively both in single- as well as in
multi-agent setups (Fainekos et al., 2009; Lahijanian et al.,
2016; Diaz-Mercado et al., 2015; Cowlagi and Zhang, 2016;
Belta et al., 2005; Bhatia et al., 2011; Guo and Dimarog-
onas, 2015).
Most works in the related literature consider tempo-
ral logic-based motion planning for fully actuated, au-
tonomous agents. Consider, however, cases where some
unactuated objects must undergo a series of processes in
a workspace with autonomous agents (e.g., car factories).
In such cases, the agents, except for satisfying their own
motion specifications, are also responsible for coordinating
with each other in order to transport the objects around
the workspace. When the unactuated objects’ specifica-
tions are expressed using temporal logics, then the abstrac-
tion of the agents’ behavior becomes much more complex,
since it has to take into account the objects’ goals.
Another issue regarding the temporal logic-based planning
in the related literature is the non-realistic assumptions
that are often considered. In particular, many works either
do not take into account continuous agent dynamics or
adopt single or double integrators (Fainekos et al., 2009;
Bhatia et al., 2011; Guo and Dimarogonas, 2015), which
can deviate from the actual dynamics of the agents, leading
thus to poor performance in real-life scenarios. Moreover,
many works adopt dimensionless point-mass agents and
therefore do not consider inter-agent collision avoidance
(Belta et al., 2005; Guo and Dimarogonas, 2015), which
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can be a crucial safety issue in applications involving
autonomous robots.
This paper presents a novel hybrid control framework for
the motion planning of a team of N autonomous agents
and M unactuated objects under LTL specifications. We
design feedback control laws for i) the navigation of
the agents and ii) the transportation of the objects by
the agents, among predefined regions of interest in the
workspace, while ensuring inter-agent collision avoidance.
This allows us to model the coupled behavior of the agents
and the objects with a finite transition system, which can
be used for the design of high-level plans that satisfy the
given LTL specifications.

2. NOTATION AND PRELIMINARIES

Vectors and matrices are denoted with bold lowercase
and uppercase letters, respectively, whereas scalars are
denoted with non-bold lowercase letters. The set of posi-
tive integers is denoted as N and the real n-space, with
n ∈ N, as Rn; Rn≥0 and Rn>0 are the sets of real n-
vectors with all elements nonnegative and positive, re-
spectively, and Tn is the n-D torus. Given a set S, 2S
is the set of all possible subsets of S, |S| is its cardinality,
and, given a finite sequence s1, . . . , sn of elements in S,
with n ∈ N, we denote by (s1, . . . , sn)ω the infinite se-
quence s1, . . . , sn, s1, . . . , sn, s1, . . . created by repeating
s1, . . . , sn. The notation ‖y‖ is used for the Euclidean
norm of a vector y ∈ Rn. Given x ∈ R and y, z ∈ Rn,
we use ∇zx = ∂x/∂z ∈ Rn and ∇zy = ∂y/∂z ∈ Rn×n;
Br(c) denotes the ball of radius r ∈ R>0 and center c ∈ R3.
Finally, we use N = {1, . . . , N},M = {1, . . . ,M},K =
{1, . . . ,K}, with N,M,K ∈ N, as well as M = R3 × T3.
We focus on the task specification φ given as a Linear
Temporal Logic (LTL) formula. The basic ingredients of
a LTL formula are a set of atomic propositions AP and
several boolean and temporal operators. LTL formulas are
formed according to the following grammar (Baier et al.,
2008): φ ::= true | a | φ1 ∧ φ2 | ¬φ | © φ | φ1 ∪ φ2, where
a ∈ AP and © (next), ∪ (until). Definitions of other
useful operators like � (always), ♦ (eventually) and ⇒
(implication) are omitted and can be found at (Baier et al.,



2008). The semantics of LTL are defined over infinite words
over 2AP . Intuitively, an atomic proposition ψ ∈ AP is
satisfied on a word w = w1w2 . . . if it holds at its first
position w1, i.e. ψ ∈ w1. Formula ©φ holds true if φ is
satisfied on the word suffix that begins in the next position
w2, whereas φ1 ∪ φ2 states that φ1 has to be true until φ2
becomes true. Finally, ♦φ and �φ holds on w eventually
and always, respectively. For a full definition of the LTL
semantics, the reader is referred to (Baier et al., 2008).

3. SYSTEM MODEL AND PROBLEM
FORMULATION

Consider N robotic agents operating in a workspace W
with M objects; W is a bounded sphere in 3D space,
i.e., W = Br0(p0) = {p ∈ R3 s.t. ‖p − p0‖ ≤ r0},
where p0 ∈ R3 and r0 ∈ R>0 are the center and radius,
respectively, of W. The objects are represented by rigid
bodies whereas the robotic agents are fully actuated and
consist of a moving part (i.e., mobile base) and a robotic
arm, having, therefore, access to the entire workspace.
Within W there exist K smaller spheres around points
of interest, which are described by πk = Brk(pπk) =
{p ∈ R3 s.t. ‖p − pπk‖ ≤ rk}, where pπk ∈ R3 is the
center and rk ∈ R>0 the radius of πk. The boundary
of region πk is ∂πk =

{
p ∈ R3 s.t. ‖p− pπk‖ = rk

}
. We

denote the set of all πk as Π = {π1, . . . , πK}. For the
workspace partition to be valid, we consider that the
regions of interest are sufficiently distant from each other
and from the workspace boundary, i.e., ‖pπk − pπk′‖ >
4 maxl∈K{rπl} and ‖pπk − p0‖ < r0 − 3rπk ,∀k, k′ ∈ K
with k 6= k′. Moreover, we introduce disjoint sets of atomic
propositions Ψi,ΨOj

, expressed as boolean variables, that
represent services provided to agent i ∈ N and object
j ∈ M in Π. The services provided at each region πk are
given by the labeling functions Li : Π → 2Ψi ,LOj : Π →
2ΨOj , which assign to each region πk, k ∈ K, the subset of
services Ψi and ΨOj

, respectively, that can be provided in
that region to agent i ∈ N and object j ∈M, respectively.
We denote by qi : R≥0 → Rni , i ∈ N the generalized
joint variables of the ith agent, and q = [[qTi ]i∈N ]T ∈ Rn,
with n =

∑
i∈N ni. We also denote as pi : R≥0 → R3 the

position of the ith agent’s end-effector derived from the
forward kinematics (Siciliano et al., 2010), expressed in
an inertial frame of reference. The differential kinematics
of agent i suggest that vi(t) = J i(qi(t))q̇i(t), where J i :
Rni → R6×ni is the Jacobian matrix and vi : R≥0 → R6,
with vi(t) = [ṗTi (t),ωTi (t)]T , is the velocity of the end-
effector, with ωi : R≥0 → R3 being its angular velocity
with respect to (and expressed in) an inertial frame. The
dynamics of agent i are given by (Siciliano et al., 2010):
Bi(qi)q̈i +N i(qi, q̇i)q̇i + gi(qi) = τ i − JTi (qi)f i, (1)

where Bi : Rni → Rni×ni is the positive definite inertia
matrix, N i : Rni × Rni → Rni×ni is the Coriolis matrix,
gi : Rni → Rni is the joint space gravity vector, τ i ∈ Rni

is the vector of joint torques and f i ∈ R6 is the vector of
generalized forces that the end-effector exerts on a surface,
in case of contact, ∀i ∈ N .
We consider that each agent i ∈ N consists of pi rigid bod-
ies rip, p ∈ p̄i, where p̄i = {1, · · · , pi} is the corresponding
index set, whose volume Rip is approximated by the union
of Ri

p generalized ellipsoids Rip,e, i.e., Rip =
⋃
e∈R̄i

p
Rip,e

with R̄i
p = {1, · · · ,Ri

p}. By denoting the principal semi-
axes lengths of Rip,e as aip,e, bip,e, cip,e, we define the function
λip,e : R3 × Rni → R that describes Rip,e as

λip,e(p∗, qi) = (p∗)T (diag{aip,e, bip,e, cip,e})−1p∗ − 1, (2)

where p∗ ∈ R3 is a 3D vector expressed in a local frame
at the center of Rip,e, aligned with its principal axes,
whose orientation depends on qi. We denote the solutions
of (2) as Ωi,∗p,e(qi) = {p ∈ R3 s.t. λip,e(p, qi) = 0}. We
also denote as Ωi,∗(qi) = {p ∈ R3 s.t. (∃e ∈ R̄i

p, p ∈
p̄i s.t. λip,e(p, qi) = 0)}, i.e., the set of solutions for all
ellipsoids that approximate the volume of agent i ∈ N .
Similarly to the robotic agents, we denote as pOj : R≥0 →
R3,ηOj : R≥0 → T3, the position and Euler-angle orien-
tation of object j ∈ M, which obeys the second order
dynamics:
MOj

(xOj )v̇Oj +COj
(xOj , ẋOj )vOj +gOj (xOj ) = fOj , (3)

where xOj = [pTOj ,η
T
Oj

]T ∈ M,vOj = [ṗTOj ,ω
T
Oj

]T ∈
R6,MOj

: M → R6×6 is the positive definite inertia
matrix, COj

: M × R6 → R6×6 and gOj : M → R6 are
the Coriolis and gravity terms, respectively, and fOj ∈
R6 is the vector of generalized forces acting on the ob-
ject’s center of mass. In case of a rigid grasp between
agent i and object j, f i and fOj are related through
f i = Gi,j(qi)fOj , where Gi,j : Rni → R6×6 is the
full-rank grasp matrix. The aforementioned inertia and
Coriolis matrices satisfy the skew-symmetric property (Si-
ciliano et al., 2010) Ḃi − 2N i = −(Ḃi − 2N i)T , ṀOj

−
2COj

= −(ṀOj
− 2COj

)T , ∀i ∈ N , j ∈ M. Object j is
a rigid body rjO and therefore we approximate its volume
RjO by a union of Rj

o ellipsoids, i.e., RjO =
⋃
e∈R̄j

o
RjO,e

with R̄j
o = {1, · · · ,Rj

o} and RjO,e described by the func-
tions λjO,e(xOj ,p∗) = (p∗)T (diag{ajO,e, bjO,e, cjO,e})−1p∗−1,
where ajO,e, bjO,e, cjO,e are the semi-axes lengths and p∗ ∈ R3

is a 3D vector expressed in a local frame at the center
of RjO,e, aligned with its principal axes. Also, we de-
note Ωj,∗O,e(xOj ) = {p ∈ R3 s.t. λjO,e(xOj ,p) = 0} and
Ωj,∗O (xOj ) = {p ∈ R3 s.t. (∃e ∈ R̄j

o s.t. λjO,e(xOj ,p) = 0)}.

We can now provide the following definitions:
Definition 1. Agent i ∈ N is in region πk, k ∈ K, at a
configuration qi, denoted as Ai(qi) ∈ πk, iff ‖p − pk‖ ≤
rk − ε, ∀p ∈ Ωi,∗(qi), with ε > 0 arbitrarily small.
Definition 2. Object j ∈ M is in region πk, k ∈ K, at
a configuration xOj , denoted as Oj(xOj ) ∈ πk, iff ‖p −
pk‖ ≤ rk− ε,∀p ∈ Ωj,∗O (xOj ), with ε > 0 arbitrarily small.

In the following, we use the notation Ωi,∗(qi(t0)) ∩
Ωi′,∗(qi′(t0)) = ∅, Ωi,∗(qi(t0)) ∩ Ωj,∗O (xOj (t0)) = ∅, and
Ωj,∗O (xOj (t0)) ∩ Ωj

′,∗
O (xO

j′ (t0)) = ∅, i, i′ ∈ N , j, j′ ∈ M,
with i 6= i′, j 6= j′, to describe collision-free cases at
t0 between the agents and the objects. In order for our
workspace discretization to be valid, we need the following
assumption, which implies that all regions of interest are
sufficiently large to contain an object along with an agent,
in a collision-free configuration.



Assumption 1. There exist qki ,xkOj s. t. A(qki ),O(xkOj ) ∈
πk and Ωi,∗(qki ) ∩ Ωj,∗O (xkOj ) = ∅,∀i ∈ N , j ∈M, k ∈ K.

We also use the boolean variable AGi,j(t∗) to denote
whether agent i ∈ N rigidly grasps an object j ∈ M at
the time instant t∗; AGi,0(t∗) = > denotes that agent i
does not grasp any object. Note that AGi,`(t∗) = >, ` ∈
{0} ∪ M ⇔ AGi,j(t∗) = ⊥,∀j ∈ {0} ∪ M\{`} (i.e.,
agent i can grasp at most one object at a time) and
Ωi,∗(qi(t∗))∩Ωj,∗O (xOj (t∗)) = ∅,∀j ∈M,⇒ AGi,0(t) = >.
The following definitions address the transitions of the
agents and the objects between the regions of interest.
Definition 3. Assume for agent i ∈ N that Ai(qi(t0)) ∈
πk, k ∈ K, and Ωi,∗(qi(t0))∩

(
Ωj,∗O (xOj (t0)) ∪ Ωn,∗(qn(t0))

)
= ∅, ∀j ∈ M, n ∈ N\{i}, for some t0 ∈ R≥0. Then,
there exists a transition for agent i from region πk to
πk′ , k′ ∈ K, denoted as πk →i πk′ , iff there exists a
finite tf ∈ R≥0 with tf ≥ t0 and a bounded control
trajectory τ i : [t0, tf ] → Rni such that Ai(qi(tf )) ∈ πk′

and Ωi,∗(qi(t))∩
(
∂πm ∪ Ωn,∗(qn(t)) ∪ Ωj,∗O (xOj (t))

)
= ∅,

∀t ∈ [t0, tf ], j ∈M, n ∈ N\{i},m ∈ K\{k, k′}.
Definition 4. Assume for agent i ∈ N and object j ∈
M that Ai(qi(t0)),Oj(xOj (t0)) ∈ πk, k ∈ K, and (i)
Ωi,∗(qi(t0)) ∩

(
Ωj

′,∗
O (xO

j′ (t0)) ∪ Ωn,∗(qn(t0))
)

= ∅, (ii)

Ωj,∗O (xOj (t0)) ∩
(

Ω`,∗O (xO`(t0)) ∪ Ωi′,∗(qi′(t0))
)

= ∅, ∀` ∈
M\{j}, n ∈ N\{i}, j′ ∈ M, i′ ∈ N , for some t0 ∈ R≥0.
Then, agent i grasps object j at region πk, denoted as
i

g−→ j, iff there exists a finite tf ∈ R≥0 with tf ≥ t0
and a bounded control trajectory τ i : [t0, tf ] → Rni

such that AGi,j(tf ) = >,Ai(qi(t)),Oj(xOj (t)) ∈ πk and
(i) Ωi,∗(qi(t)) ∩

(
Ωn,∗(qn(t)) ∪ Ω`,∗O (xO`(t))

)
= ∅, (ii)

Ωj,∗O (xOj (t)) ∩
(

Ω`,∗O (xO`(t)) ∪ Ωn,∗(qn(t))
)

= ∅, ∀t ∈
[t0, tf ], n ∈ N\{i}, ` ∈M\{j}.

The action of an agent releasing a rigid grasp with an
object at a region, denoted as i r−→ j, is defined similarly
and is omitted.
Definition 5. Assume for agent i ∈ N and object j ∈ M
thatAi(qi(t0)),Oj(xOj (t0)) ∈ πk, k ∈ K, withAGi,j(t0) =
> and (i) Ωi,∗(qi(t0)) ∩

(
Ωn,∗(qn(t0)) ∪ Ω`,∗O (xO`(t0))

)
=

∅, (ii) Ωj,∗O (xOj (t0)) ∩
(

Ω`,∗O (xO`(t0)) ∪ Ωn,∗(qn(t0))
)

= ∅,
∀n ∈ N\{i}, ` ∈ M\{j} for some t0 ∈ R≥0. Then,
agent i transports object j from region πk to region
πk′ , k′ ∈ K, denoted as πk

T−→i,j πk′ , if there exists a finite
tf ∈ R≥0 with tf ≥ t0 and a bounded control trajectory
τ i : [t0, tf ] → Rni such that Ai(qi(tf )),Oj(xOj (tf )) ∈
πk′ , AGi,j(t) = >, and (i)

(
Ωi,∗(qi(t)) ∪ Ωj,∗O (xOj (t))

)
∩

∂πm = ∅, (ii) Ωi,∗(qi(t)) ∩
(

Ωn,∗(qn(t)) ∪ Ω`,∗O (xO`(t))
)

=

∅, (iii) Ωj,∗O (xOj (t)) ∩
(

Ω`,∗O (xO`(t)) ∪ Ωn,∗(qn(t))
)

= ∅,
∀t ∈ [t0, tf ], n ∈ N\{i}, ` ∈M\{j},m ∈ K\{k, k′}.

Our goal is to control the multi-agent system such that
the agents and the objects obey a given specification
over their atomic propositions Ψi,ΨOj

,∀i ∈ N , j ∈ M.
Given the trajectories qi(t),xOj (t), t ∈ R≥0, of agent i

and object j, respectively, their corresponding behaviors
are given by the infinite sequences βi = (qi(t), σi) =
(qi(ti1), σi1)(qi(ti2), σi2) . . . , βOj = (xOj (t), σOj ) =
(xOj (tOj,1), σOj,1)(xOj (tOj,2), σOj,2) . . . with tim+1 > tim ≥
0, tOj,m+1 > tOj,m ≥ 0,∀m ∈ N. The sequences σi, σOj
are the services provided to the agent and the object,
respectively, over their trajectories, i.e., σim ∈ 2Ψi , σOj,l ∈
2ΨOj with Ai(qi(tim)) ∈ πkm , σim ∈ Li(πkm) and
Oj(xOj (tOj,l)) ∈ πkl , σOj,l ∈ LOj (πkl), km, kl ∈ K,∀m, l ∈
N, with Li and LOj as defined in Section 3.
Definition 6. The behaviors βi, βOj satisfy formulas φi, φOj
iff σi |= φi and σOj |= φOj , respectively.

The control objectives are given as LTL formulas φi, φOj
over Ψi,ΨOj

, respectively, ∀i ∈ N , j ∈ M. The LTL
formulas φi, φOj are satisfied if there exist behaviors βi, βOj
of agent i and object j that satisfy φi, φOj . Formally, the
problem treated in this paper is the following:
Problem 1. Consider N robotic agents and M objects in
W subject to the dynamics (1) and (3), respectively, and
(i) Ωi,∗(qi(0)) ∩ Ωj,∗O (xOj (0)) = ∅, (ii) q̇i(0) = 0,∀i ∈ N ,
(iii) Ai(qi(0)) ∈ πi0 ,Oj(xOj (0)) ∈ πOj,0 , with i0, Oj,0 ∈ K
and i0 6= n0, Oj,0 6= O`,0,∀i, n ∈ N , j, ` ∈ M with
i 6= n, j 6= `. Given the disjoint set Ψi,ΨOj

, N LTL
formulas φi over Ψi and M LTL formulas φOj over ΨOj

,
develop a control strategy that achieves behaviors βi, βOj
which yield the satisfaction of φi, φOj ,∀i ∈ N , j ∈M.

4. MAIN RESULTS

Continuous Control Design: The first ingredient of
our solution is the development of feedback control laws
that establish agent transitions and object transportations
as defined in Def. 3 and 5, respectively. Regarding the
grasping actions of Def. 4, we assume that there exists a
methodology that derives the corresponding control laws.
Transformation to Point World: In this work we employ
the algorithm proposed in (Tanner et al., 2003) to cre-
ate point worlds. In particular, there exists a sequence
of smooth transformations on the rigid body ellipsoids,
introduced in Section 3, that creates spaces where the
robotic agents and the objects are represented by points.
Since 3D spheres are a special case of 3D ellipsoids, we also
consider the regions of interest as obstacles that will be
transformed to points. For details on the transformation,
the reader is referred to (Tanner et al., 2003).
Assume that the conditions of Problem 1 hold for some
t0 ∈ R≥0, i.e., all agents and objects are located in
regions of interest and there is no more than one agent
or one object at the same region. We design a control
law such that a subset of agents performs a transition
between two regions of interest and another subset of
agents performs object transportation, according to Def.
3 and 5, respectively. Let Z,V,G,Q ⊆ N denote disjoint
sets of agents corresponding to transition, transportation,
grasping and releasing actions, respectively, with |V| +
|G| + |Q| ≤ |M| and Az(qz(t0)) ∈ πkz ,Av(qv(t0)) ∈
πkv ,Ag(qg(t0)) ∈ πkg ,Aq(qq(t0)) ∈ πkq , kz, kv, kg, kq ∈
K,∀z ∈ Z, v ∈ V, g ∈ G, q ∈ Q. Note that there might be
idle agents in some regions, not performing any actions,
i.e., Z ∪ V ∪ G ∪ Q ⊆ N . Let also S = {[sv]v∈V},X =
{[xg]g∈G},Y = {[yq]q∈Q} ⊆ M such that Osv (xOsv (t0)) ∈
πkv ,Oxg (xOxg (t0)) ∈ πkg ,Oyq (xOyq (t0)) ∈ πky , sv ∈



S, xg ∈ X , yg ∈ Y,∀v ∈ V, g ∈ G, q ∈ Q, i.e., there
exists one object at each πkv , πkg , πkq . Moreover, assume
that the conditions of Def. 3 hold for all z ∈ Z, the
conditions of Def. 5 hold for all v ∈ V and sv ∈ S, the
conditions of Def. 4 hold for all g ∈ G and xg ∈ X , and the
corresponding release conditions (which are omitted due
to space limitations), hold for all q ∈ Q and yq ∈ Y. In the
following, we design τ z and τ v such that πkz →z πk′

z
and

πkv
T−→v,sv πk′

v
, k′z, k

′
v ∈ K,∀z ∈ Z, v ∈ V, assuming that

there exist appropriate τ g and τ q that guarantee g g−→ xg
and q

r−→ yq in πg, πq, respectively.
Regarding the transitions πkz → πk′

z
by agents z ∈ Z,

we define the error function γz,k′
z

: Rnz → R≥0 with
γz,k′

z
(qz) = ‖pz(qz)− pπk′

z

‖2.

Regarding the transportations πkv
T−→v,sv πk′

v
of the

objects sv ∈ S by agents v ∈ V, note first that a
rigid grasp between agent v and object sv creates a
continuous dependence of xOsv on qv. Therefore, we can
write pOsv (t) = kv,sv (qv(t)), where kv,sv : Rnv → R3 can
be considered as the forward kinematics to the object’s
center of mass. Therefore, we define the error function
γsvv,k′

v
: Rnv → R≥0 as γsvv,k′

v
(qv) = ‖kv,sv (qv)− pπk′

v

‖2.

Each agent should avoid (i) collision with other agents and
objects and (ii) entering other regions of interest except
from its goal one, both in the transition and transportation
actions. Consider the agents z ∈ Z and v ∈ V performing
πkz →z πk′

z
and πkv

T−→v,sv πk′
v
, respectively. For each rigid

body rzp of z, all other rigid bodies rzp′ , p′ ∈ p̄z\{p}, rz
′

p , p ∈
p̄z′ , z′ ∈ V∪Z\{z} and objects rjO,∀j ∈M\{X∪Y} as well
as the spheres Brm(pπm),m ∈ K\{kz, k′z}, are considered
as obstacles for rzp. In the same vein, for each rigid body
rvp of v, all other rigid bodies rvp′ , p′ ∈ p̄v\{p}, rv

′

p , p ∈
p̄v′ , v′ ∈ V ∪ Z\{v} as well as the spheres Brm(pπm),m ∈
K\{kv, k′v}, are considered as obstacles for rvp . Note that
collision avoidance with the set of agents G,Q that perform
grasp and release actions does not need to be considered,
since Def. 4 implies that these agents are contained in
πkg , πkq during their action and therefore, the avoidance
of πkg , πkq is sufficient.

Singularity Avoidance: Singularity regions are sets of
measure zero within the joint space that depend on
the mechanical structure of the agent. The singularity
space for agent i ∈ N is defined as Qsi = {qi ∈
Rni s.t. det(JTi (qi)J i(qi)) = 0}. In well-designed ma-
nipulators, singularities can be decoupled to classes that
depend on a subset of the joint variables. Therefore, we can
enclose these regions inside ellipsoids representing artificial
obstacles that affect the motion of the robot end-effector.
Hence, each rigid body rip of agent i ∈ {z, v}, z ∈ Z, v ∈ V
has a number N i

p,obs obstacles to avoid, including the other
rigid bodies, the undesired regions of interest and the sin-
gularity ellipsoids, as analyzed above. Then, by employing
the point world transformation algorithm of (Tanner et al.,
2003), rip is transformed to the point hip(qi) ∈ R3 and
the obstacles to the points hi,obs

p,o (q̃) ∈ R3,∀o ∈ N̄ i
p,obs =

{1, . . . , N i
p,obs}, where q̃ = [[qTz ]z∈Z , [qTv ]v∈V ]T ∈ Rñ, ñ =∑

z∈Z nz +
∑
v∈V nv.

To form the “obstacle” function, we adopt the notion of
proximity relations of (Loizou and Kyriakopoulos, 2006),
which are all the possible collision schemes between the
aforementioned transformed points. A measure of the dis-
tance for each rip and its obstacles is the function βi,obs

p,o :
Rñ → R≥0 with βi,obs

p,o (q̃) = ‖hip(qi) − h
i,obs
p,o (q̃)‖2, o ∈

N̄ i
p,obs. By considering the relation proximity function,

which represents the sum of all distance measures in a spe-
cific relation between the transformed points, we can define
the relation verification function (RVF), as in (Loizou and
Kyriakopoulos, 2006). Then, the total “obstacle” function
βobs : Rñ → R≥0 is the product of the RVFs for all rela-
tions and resembles the possible collision schemes between
all rip, i ∈ {z, v}, z ∈ Z, v ∈ V, and the corresponding
obstacles. For more details on the technique, the reader is
referred to (Loizou and Kyriakopoulos, 2006). Regarding
the workspace boundaries, we form the function δip,e :
Rni → R≥0 with δip,e(qi) = (r0 −max{aip,e, bip,e, cip,e})2 −
‖pRip,e(qi)−p0‖2, that represents an over-approximation of
the distance of ellipsoidRip,e from the workspace boundary,
with pRip,e being the ellipsoid’s center. Then, δi : Rni →
R≥0, with δi(qi) =

∏
p∈p̄i,e∈R̄ip

δip,e(qi), encodes the dis-
tance of agent i from the workspace boundaries.
We construct now the following multi-agent navigation
function ϕ : Rñ → [0, 1] (Rimon and Koditschek, 1992;
Loizou and Kyriakopoulos, 2006), that incorporates the
desired behavior of the agents:

ϕ(q̃) = γ(q̃)
(γκ(q̃) + βobs(q̃)

∏
i∈Z∪V δ

i(qi) ) 1
κ

, (4)

where κ ∈ R>0 and γ : Rñ → R≥0 is defined as γ(q̃) =∑
z∈Z γz,k′

z
(qz)+

∑
v∈V γ

sv
v,k′

v
(qv). Note that, a sufficient con-

dition for avoidance of the undesired regions and avoidance
of collisions and singularities is ϕ < 1.
Next, we design the control protocols τ z : [t0,∞) →
Rnz , τ v : [t0,∞)→ Rnv :

τ z(t) =gz(qz)−∇qzϕ(q̃)−Kzq̇z(t), (5a)
τ v(t) =ḡv,sv (qv)−∇qvϕ(q̃)−Kvq̇v(t), (5b)

∀z ∈ Z, v ∈ V, where Ki = diag{ki} ∈ Rni×ni , with
ki ∈ R>0, is a constant positive definite gain matrix,
∀i ∈ {z, v}, z ∈ Z, v ∈ V, and ḡi,j = gi + Ḡ

T

i,jgOj is
the coupled agent-object gravity vector ∀i ∈ N , j ∈ M.
In the same vein, we also define the coupled matrices
B̄i,j = Bi + ḠT

i,jMOj
Ḡi,j , N̄ i,j = N i + ḠT

i,jMOj

˙̄Gi,j +
(Ḡi,j)TCOj

Ḡi,j , Ḡi,j = GT
i,jJ i, ∀i ∈ N , j ∈ M.

The following Proposition is needed for the subsequent
analysis:
Proposition 1. The matrix B̄i,j is positive definite and the
matrix ˙̄Bi,j − 2N̄ i,j is skew-symmetric, ∀i ∈ N , j ∈M.

Proof: The proof can be found in (Verginis and Dimarog-
onas, 2017).
Lemma 1. Consider the sets of agent Z,V and the set of
objects S as defined above, described by the dynamics (1)
and (3), such that the conditions of Def. 3 hold for all
z ∈ Z and the conditions of Def. 5 hold for all v ∈ V, sv ∈ S
for t0 = 0, kz, kv ∈ K. Then the control protocols (5)



guarantee that πkz →z πk′
z

and πkv
T−→v,sv πk′

v
, k′z, k

′
v ∈

K,∀z ∈ Z, v ∈ V, according to Def. 3 and 5, respectively.

Proof. The proof can be found in (Verginis and Dimarog-
onas, 2017).
Remark 1. During the transitions πzk →z πk′

z
, z ∈ Z,

once agent z leaves πkz , there is no guarantee that it
will not enter it again until it reaches πk′

z
. The same

holds for πv
T−→v,sv πv′ , v ∈ V, as well. For that reason,

we can modify (4) to include continuous switchings to a
navigation controllers that avoid πkz (or πkv ), once agent
z (or v) is out ot it, as in (Guo and Dimarogonas, 2015).

Considering the agents g ∈ G, q ∈ Q that perform
grasp and release actions, note that there exist posi-
tive and finite time instants tfg , tfq > t0 that these
actions will be completed, ∀g ∈ G, q ∈ Q. We define
t̄f = max{maxg∈G{tfg},maxq∈Q{tfq},max S}, where S =
{t ≥ t0 s.t. Az(qz(t)) ∈ πk′

z
,Av(qv(t)),Osv (xOsv (t)) ∈

πk′
v
,∀z ∈ Z, v ∈ V}, which represents a time instant that

all the agents i ∈ N will have completed their respective
action. Therefore, by choosing t′0 > t̄f , we can define a
new set of actions to be executed by the agents, starting
at t′0 (i.e., the conditions of Def. 3-5 hold at t′0 instead of
t0). In this way, we add a notion of synchronization to our
system, since each (non-idle) agent, after completing an
action, will wait for all other agents to complete their own,
so that they start the next set of actions simultaneously.

High-Level Plan Generation: The second part of
the solution is the derivation of a high-level plan that
satisfies the given LTL formulas φi and φOj and can be
generated by using standard techniques from automata-
based formal verification methodologies. Thanks to (i)
the proposed control laws that allow agent transitions
and object transportations πk →i πk′ and πk

T−→i,j πk′ ,
respectively, (ii) the assumed control laws that guarantee
grasp and release actions i g−→ j and i

r−→ j, respectively,
and (iii) the formulation for the synchronization of actions,
we can abstract the behavior of the agents using a finite
transition system as presented in the sequel.
Definition 7. The coupled behavior of the overall system
of all the N agents and M objects is modeled by the
transition system T S = (Πs,Πinit

s ,→s,AG,Ψ,L), where
(i) Πs ⊂ Π̄ × Π̄O × ĀG is the set of states; Π̄ = Π1 ×
· · · ×ΠN and Π̄O = ΠO1 × · · · ×ΠOM

are the set of states-
regions that the agents and the objects can be at, with
Πi = ΠOj

= Π,∀i ∈ N , j ∈ M; AG = AG1 × · · · ×
AGN is the set of boolean grasping variables introduced in
Section 3, with AGi = {AGi,0}∪{[AGi,j ]j∈M},∀i ∈ N . By
denoting π̄ = (πk1 , · · · , πkN ) , π̄O = (πkO1

, · · · , πkOM ), w̄ =
(w1, · · · , wN ), with πki , πkOj ∈ Π (i.e., ki, kOj ∈ K,∀i ∈
N , j ∈ M) and wi ∈ AGi,∀i ∈ N , then πs = (π̄, π̄O, w̄) ∈
Πs iff πki 6= πkn and πkOj 6= πkO` ,∀i, n ∈ N , j, ` ∈ M,
with i 6= n and j 6= `, i.e., we consider that there cannot
be more than one agent or more than one object at a time
in each region of interest,
(ii) Πinit

s ⊂ Πs is the initial set of states at t = 0, which,
owing to (i), satisfies the conditions of Problem 1,
(iii) →s⊂ Πs × Πs is a transition relation defined
as follows: given the states πs, π

′
s ∈ Π, with πs =

(π̄, π̄O, w̄) = (πk1 , . . . , πkN , πkO1
, . . . , πkOM , w1, . . . , wN ),

π′s = (π̄′, π̄′O, w̄′) = (πk′
1
, . . . , πk′

N
, πk′

O1
, . . . , πk′

O1
, w′1, . . . ,

w′N ), a transition πs →s π
′
s occurs iff there exist disjoint

sets Z,V,G,Q ⊆ N with |V| + |G| + |Q| ≤ |M | and
S = {[sv]v∈V},X = {[xg]g∈G},Y = {[yq]q∈Q} ⊆ M, s.t.:

(1) wz = w′z = AGz,0 = > and πkz →z πk′
z
,∀z ∈ Z,

(2) πkv = πkOsv , πk
′
v

= πk′
Osv

, wv = w′v = AGv,sv = >

and πkv
T−→v,sv πk′

v
, sv ∈ S,∀v ∈ V.

(3) πkg = πk′
g

= πkOxg = πk′
Oxg

, wg = AGg,0 = >, w′g =

AGg,xg = > and g
g−→ xg, xg ∈ X ,∀g ∈ G,

(4) πkq = πk′
q

= πkOyq = πk′
Oyq

, wq = AGq,yq = >, w′q =

AGq,0 = > and q
r−→ yq, yq ∈ Y,∀q ∈ Q,

(iv) Ψ = Ψ̄∪Ψ̄O with Ψ̄ =
⋃
i∈N Ψi and ΨO =

⋃
j∈MΨOj

,
are the atomic propositions of the agents and objects,
respectively, as defined in Section 3,
(v) L : Πs → 2Ψ is a labeling function defined as
follows: Given a state πs and ψ =

⋃
i∈N ψi

⋃
j∈M ψOj

with ψi ∈ 2Ψi , ψOj ∈ 2ΨOj , then ψ ∈ L(πs) if and only
if ψi ∈ Li(πki) and ψOj ∈ LOj (πkOj ),∀i ∈ N , j ∈M.

Next, we form the global LTL formula φ = (∧i∈Nφi) ∧
(∧j∈MφOj ) over the set Ψ. Then, we translate φ to a Buchi
Automaton BA and we build the product T̃ S = T S ×
BA. The accepting runs of T̃ S satisfy φ and are directly
projected to a sequence of desired states to be visited
in T S. Although the semantics of LTL are defined over
infinite sequences of services, it can be proven that there
always exists a high-level plan that takes the form of
a finite state sequence followed by an infinite repetition
of another finite state sequence. For more details on the
followed technique, the reader is referred to the related
literature, e.g., (Baier et al., 2008).
Following the aforementioned methodology, we obtain a
high-level plan as sequences of states and atomic propo-
sitions p = π1

sπ
2
s . . . and ψ = ψ1ψ2 . . . , with πms =

(π̄m, π̄mO , w̄m) ∈ Πs, ψ
m ∈ 2Ψ, ψm ∈ L(πms ), ∀m ∈ N,

and ψ |= φ. The path p is then projected to individual
sequences of regions πk1

Oj

πk2
Oj

. . . with πkm
Oj
∈ Π,∀m ∈ N,

πk1
i
πk2

i
. . . with πkm

i
∈ Π,∀m ∈ N, and boolean grasping

variables w1
iw

2
i . . . with wmi ∈ AGi,∀m ∈ N, i ∈ N , j ∈

M. The aforementioned sequences determine the behavior
of agent i ∈ N , i.e., the sequence of actions (transition,
transportation, grasp, release or stay idle) it must take.
By the definition of L in Def. 7, we obtain that ψmi ∈
Li(πkm

i
), ψmOj ∈ LOj (πkmOj ),∀i ∈ N , j ∈ M,m ∈ N.

Therefore, since φ = (∧i∈Nφi) ∧ (∧j∈MφOj ) is satisfied
by ψ, we conclude that ψi = (ψ1

i ψ
2
i . . . ) |= φi and

ψOj = (ψ1
Oj
ψ2
Oj
. . . ) |= φOj ,∀i ∈ N , j ∈M.

The sequence of the states (πk1
i
πk2

i
. . . , ψ1

i ψ
2
i . . . ) and

(πk1
Oj

πk2
Oj

. . . , ψ1
Oj
ψ2
Oj
. . . ) over (Π, 2Ψi) and (Π, 2ΨOj ), re-

spectively, produces the trajectories qi(t) and xOj (t),∀i ∈
N , j ∈ M. The corresponding behaviors are βi =
(qi(t), σi) = (qi(ti1), σi1)(qi(ti2), σi2) . . . and βOj =
(xOj (t), σOj ) = (xOj (tOj,1), σOj,1)(xOj (tOj,2), σOj,2) . . . , re-
spectively, according to Section 3, with Ai(qi(tim)) ∈
πkm

i
, σim ∈ Li(πkmi ) and Oj(xOj (tOj,m)) ∈ πkm

Oj
, σOj,m ∈

LOj (πkmOj ). Thus, it is guaranteed that σi |= φi, σOj |= φOj
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Fig. 1. The transition system T S. The information in each
state is depicted according to the state with thick blue
color. The initial state is colored with green and the
unreachable states are omitted.

(a) (b)

Fig. 2. The transitions π2
s →s π

7
s and π8

s →s π
4
s in (a) and

(b), respectively.
and consequently, the behaviors βi and βOj satisfy the
formulas φi and φOj , respectively, ∀i ∈ N , j ∈ M. The
aforementioned reasoning is summarized as follows:
Theorem 2. The execution of the path (p, ψ) of T S guar-
antees behaviors βi, βOj that yield the satisfaction of φi
and φOj , respectively, ∀i ∈ N , j ∈M, providing, therefore,
a solution to Problem 1.
Remark 2. Note that although the overall set of states of
T S increases exponentially with respect to the number of
agents/objects/regions (the maximum number of states is
KN+M (M + 1)N ), some states are either not reachable
or simply removed due to the constraints set of Def. 7,
reducing the state complexity.

5. SIMULATION RESULTS

To demonstrate the proposed methodology, we consider a
simplified scenario involving N = 2 agents, M = 1 object
in a workspace with p0 = [0, 0, 0]Tm, r0 = 6m, and K = 2
regions of interest π1, π2, with pπ1 = [−2,−3, 0.2]Tm,
pπ2 = [2, 3, 0.2]Tm, rπ1 = rπ2 = 1m. The object is a rigid
cube of dimensions 0.1× 0.1× 0.1 m3 and each agent con-
sists of a cubic mobile base of dimensions 0.3×0.3×0.3 m3,
able to move on the x−y plane, and two rigid rectangular
links of dimensions 0.05 × 0.05 × 0.3 m3 connected by a
cylindrical joint rotating around the negative y-axis. The
generalized variables for each agent are taken as qi =
[xci , yci , θi]T ∈ R3, i ∈ {1, 2, 3}, where [xci , yci ]T is the
base’s center of mass and θi is the joint’s angle. The initial
conditions are taken such that A1(q1(0)),O1(xO1(0)) ∈
π1,A2(q2(0)) ∈ π2 and Ω1,∗(q1(0)) ∩ Ω1,∗

O (xO1(0)) = ∅.
The resulting T S is pictured in Fig. 1, where we show
each state πms in the form (πkm1 , πkm2 , πkmO1

,AG1,j ,AG2,j),
as depicted with thick blue color in the figure, with j ∈

{0, 1}. The initial state is Πinit
s = (πk1

1
,πk1

2
,πk1

O1
,w1

1,w1
2) =

(π1,π2,π1,AG1,0,AG2,0) (depicted with green color in the
figure). Note that, due to our restriction that no more
than one agent is allowed to in the same region, the
number of states is reduced from KN+M (M + 1)N = 32
to 16. Moreover, since an agent i cannot have a grasp
with object j if πkm

i
6= πkm

Oj
,∀m ∈ N, some states are not

reachable, and thus the number of states is further reduced
to 8. We also consider the atomic propositions Ψ1 =
{“red”, “blue”},Ψ2 = {“green”, “yellow”} and ΨO1 =
{“Goal1”, ‘ ‘Goal2”}, with L1(π1) = {“red”},L1(π2) =
{“blue”},L2(π1) = {“green”},L2(π2) = {“yellow”}, and
LO1(π1) = {“Goal1”},LO1(π2) = {“Goal2”}. The formu-
las to be satisfied by the agents and the object are the
following: φ1 = �♦(“red” ∧ ♦“blue”), φ2 = �♦(“green” ∧
♦“yellow”) and φO1 = �♦(“Goal1” ∧ ♦“Goal2”). By fol-
lowing the procedure of Section 4, we obtain a path sat-
isfying φ = φ1 ∧ φ2 ∧ φO1 as π1

sπ
2
s(π7

sπ
8
sπ

4
sπ

3
sπ

6
sπ

5
sπ

1
sπ

2
s)ω,

which includes transitions, grasping/releasing as well as
transportation actions from both agents. Fig. 2 depicts two
indicative transitions, namely, π2

s →s π
7
s and π8

s →s π
4
s .

6. CONCLUSION

We have presented a novel hybrid control framework for
the motion planning of a system comprising of N agents
and M objects. Future works will address decentralization
of the framework as well as cooperative transportation of
the objects by agents with limited sensing information.
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