Control Synthesis for Multi-Agent Systems
under Metric Interval Temporal Logic

Specifications

*

Sofie Andersson* Alexandros Nikou *
Dimos V. Dimarogonas *

* ACCESS Linnaeus Center, School of Electrical Engineering and
KTH Center )7;07" Autonomous Systems, KTH Royal Institute of

Tec

nology, SE-100 44, Stockholm, Sweden.

E-mail: {sofa, anikou, dimos} @kth.se

Abstract: This paper presents a framework for automatic synthesis of a control sequence for
multi-agent systems governed by continuous linear dynamics under timed constraints. First, the
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Second, each agent is assigned with an individual formula given in Metric Interval Temporal
Logic (MITL) and in parallel, the team of agents is assigned with a collaborative team formula.
The proposed method is based on a correct-by-construction control synthesis method, and hence
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has been performed in order to demonstrate the efficiency of the proposed methodology.
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1. INTRODUCTION

Multi-agent systems are composed by N > 2 number
of agents which interact in an environment. Cooperative
control for multi-agent systems allows the agents to collab-
orate on tasks and plan more efficiently. In this paper, the
former is considered by regarding collaborative team spec-
ifications which requires more than one agent to satisfy
some property at the same time. The aim is to construct a
framework that will start from an environment and a set
of tasks, both local (i.e. specific to an individual agent)
and global (i.e. requires collaboration between multiple
agents), and yield the closed-loop system that will achieve
satisfaction of the specifications, by control synthesis.

The specification language that has been introduced to ex-
press such tasks is Linear Temporal Logic (LTL) (see e.g.,
[Loizou and Kyriakopoulos 2004]). The general framework
that is used is based on a three-steps procedure ([Kloetzer
and Belta 2008, Kress-Gazit et al. 2007]): First the agent
dynamics is abstracted into a Transition System. Second a
discrete plan that meets the high level task is synthesized.
Third, this plan is translated into a sequence of continuous
controllers for the original system.

Control synthesis for multi-agent systems under LTL spec-
ifications has been addressed in [Kloetzer et al. 2011, Guo
and Dimarogonas 2015, Kantaros and Zavlanos 2016]. Due
to the fact that we are interested in imposing timed con-
straints to the system, the aforementioned works cannot be
directly utilized. Timed constraints have been introduced
for the single agent case in [Gol and Belta 2013, Raman
et al. 2015, Fu and Topcu 2015, Zhou et al. 2016] and
* This work was supported by the H2020 ERC Starting Grand
BUCOPHSYS, the Swedish Research Council (VR), the Swedish

Foundation for Strategic Research (SSF) and the Knut och Alice
Wallenberg Foundation.

for the multi-agent case in [Karaman and Frazzoli 2008,
Nikou et al. 2016b]. Authors in [Karaman and Frazzoli
2008] addressed the vehicle routing problem, under Metric
Temporal Logic (MTL) specifications. The corresponding
approach does not rely on automata-based verification,
as it is based on a construction of linear inequalities and
the solution of a resulting Mixed-Integer Linear Program-
ming (MILP) problem. In our previous work [Nikou et al.
2016b], we proposed an automatic framework for multi-
agent systems such that each agent satisfies an individual
formula and the team of agents one global formula.

The approach to solution suggested in this paper follows
similar principles as in [Nikou et al. 2016b]. Here how-
ever, we start from the continuous linear system itself
rather than assuming an abstraction, by adding a way
to abstract the environment in a suitable manner such
that the transition time is taken explicitly into account.
The suggested abstraction is based on the work presented
in [Gol and Belta 2013], which considered time bounds
on facet reachability for a continuous-time multi-affine
single agent system. Here, we consider multi-agent systems
and suggest an alternative time estimation and provide
a proof for its validity. Furthermore, we present alterna-
tive product definitions, compared to the work presented
in [Nikou et al. 2016b]. The definitions suggested here
requires a smaller number of states and hence, a lower
computational demand. The drawback of the suggested
definitions is an increased risk of a false negative result
and a required modification to the applied graph-search-
algorithm. However, this will have no effect on the fact that
the method is correct-by-construction. The method, in
its entirety, has been implemented in simulations, demon-
strating the satisfaction of the specifications through the
resulting controller.



The contribution of this paper is summarized in four parts;
(1) it extends the method suggested in [Nikou et al. 2016b]
with the ability to define the environment directly as a con-
tinuous linear system rather than treating the abstraction
as a given, (2) it provides for a less computationally de-
manding alternative, (3) simulation results which support
the claims are included, (4) it considers linear dynamics
in contrast to the already investigated (in [Nikou et al.
2016b)]) single integrator. Due to space limitations, we refer
to [Andersson et al. 2017] for detailed proofs of the claimed
results as well as a more detailed example.

This paper is structured as follows. Section 2 introduces
some preliminaries and notations that will be applied
throughout the paper, Section 3 defines the considered
problem and Section 4 presents the main result, namely
the solution framework. Finally, simulation result is pre-
sented in Section 5, illustrating the framework when ap-
plied to a simple example, and conclusions are made in
Section 6.

2. PRELIMINARIES AND NOTATION

In this section, notations and preliminary definitions from
formal methods that are required for this paper are intro-
duced.

Given a set S, we denote by |S|, 27 its cardinality and the
set of all its subsets respectively. Let A € R"*™ B € R"
be a matrix and a vector respectively. Denote by [A];;
the element in the i-th row and j-th column of matrix A.
Similarly, denote by [B]; the i-th element of vector B.

An atomic proposition ap is a statement over the system
variables that is either true (T) or false (.L).

Definition 1. A p-dimensional rectangle Ry(a,b) C RP is
characterized by two vectors a, b, where a = (a1, ag, .., ap),
b= (by,ba,...,b,) and a; < b;, Vi = 1,2, ..., p. The rectangle
is then given by R,(a,b) = { € R? : a; < z; < b;,Vi €
{17 23 "ap}}a

Definition 2. A Weighted Transition System (WTS) is a
tuple T = (IL, I;p¢, 2, —, AP, L, d) where

e II={r;:i=0,..,M} is a set of states,

e II;,;; CIIis a set of initial states,

e X ={0;:9=0,...,1} is a set of inputs,

e —C II x ¥ x II is a transition map; the expression
T NE r, is used to express transition from r; to 7y
under the action o;,

AP is a set of observations (atomic propositions),

L : 11 — 247 is an observation map and
e d:—— R, is a positive weight assignment map; the

expression d(r;,0;,7%) is used to express the weight

assigned to the transition r; NE Tk.

Definition 3. A timed run v* = (r(0),7)(r(1),71)... of a
WTS T is an infinite sequence where 7(0) € IL;,;, and
r(j) €, r(5) Br(+1)Vj>1s.t.

® 70 =V,

b TJ-‘rl _T] +d( ( ) O, T (]+1))7 v.] Z 17
for some o; € X.
Definition 4. A timed word produced by a timed run is an
infinite sequence of pairs w(rt) = (L(r(0)), 70)(L(r(1)),
71)..., where 7t = (r(0),79)(r(1),71)... is the timed run.

Deﬁmtzon 5. The sgntaa: of MITL over a set of atomic
propositions AP is defined by the grammar

p:=Tlap| = ¢ oV |dUqy ¥ (1)

where ap € AP, a,b € [0,00] and ¢, ¢ are formulas over
AP. The operators are Negation (—), Disjunction (V) and
Until (U) respectively. The extended operators Eventually
(0) and Always (O) are defined as:

Q[a,b]q5 = Tu[a,b](bv (28‘)

Oja,5)¢ = 70a,5) 79 (2b)
Given a timed run 7' = (r(0),70)(r(1),71),... of a WTS,
the semantics of the satisfaction relation is then defined

(rt, i) Eap < ap € L(r(i)),
(r',i) E—d & (r',0) ¥ ¢,
(r',i) E oA & (rh)i) | dand (r') i) | 9,
(r',4) | dUpap < 37 € [a,b], s.t. (r',j) E v and

Vi <, (rt,i) F .
Definition 6. A clock constraint ®, is a conjunctive for-
mula on the form x > a, where e {<,>, <, >}, z is a

clock and a is some non-negative constant. Let &, denote
the set of clock constraints.

The TBA was first introduced in [Alur and Dill 1994] and
is defined as

Definition 7. A Timed Biichi Automaton (TBA) is a tuple
A=(5,5,X,I,E,F,AP, L) where

S={s;:1=0,1,..., M} is a finite set of locations,
Sp € S is the set of initial locations,

X is a finite set of clocks,

I:S — &y is a map labelling each state s; with some
clock constraints ® v,

ECSx®dy x2% xS is a set of transitions and

F C Sis a set of accepting locations,

AP is a finite set of atomic propos1t10ns

L is a labelling function, labelling every state with a
subset of atomic proposmons

A state of A is a pair (s,v) where s € S is a location and
v is a clock valuation that satisfies the clock constraint
I(s). The initial state of A is a pair (s, (0,0, ...,0)), where
so € Sp and the null-vector (0,0,...,0) is a vector of
|X| number of valuations v; = 0. For the semantics and
examples of the above TBA definition we refer the reader
to [Nikou et al. 2016a].

It has been shown in [Alur et al. 1996] that any MITL
formula can be algorithmically translated to a TBA such
that the language that satisfies the MITL formula is also
the language that produces accepting runs by the TBA.
The TBA expresses all possibilities, both satisfaction and
violation of the MITL formula. All timed runs which
result in the satisfaction of the MITL formula are called
accepting:

Definition 8. An accepting run is a run for which there are
infinitely many j > 0 s.t. g; € I, i.e. a run which consists

of infinitely many accepting states.

In motion-planning, the movement of an agent can be
described by a timed run. For the multi-agent case, the
movement of all agents can be collectively described by a
collective run. The definition is

Definition 9. [Nikou et al. 2016b] The collective timed run
ra = (rq(0),7¢(0))(rg(1), 7¢(1))... of N agents, is defined
as follows

rn(0),76(0))

e (rc(0),7¢(0)) = ( 1(0), ..., 7

0 (ra{it U rli+1) = (1 (G0)s oy G 7+ 1),

fordz > 0 where (rg(i), 7¢(4)) = (r1(2), ..., rn (i), 7¢ (7))

-l =argmin{r(ix + 1)},
kel

TG(i + 1) = Tl(il + 1),



. LN Tl(il+1), if k=1
(k) = { (i), otherwise.

3. PROBLEM DEFINITION
3.1 System Model

Consider N agents performing in a bounded workspace
X C R™ and governed by the dynamics
T = Amxm + Bm“mv me I)

T (0) = 22 2, € X, (3)
where Z = {1,..., N} is a set containing a label for each
agent.

3.2 Problem Statement

The problem considered in this paper consists of synthe-
sizing a control input sequence, u,,, m € Z, such that each
agent satisfies a local individual MITL formula ¢,, over
the set of atomic propositions AP,,. At the same time,

the team of agents should satisfy a team specification
MITL formula ¢g over the set of atomic propositions

APz = |J AP,,.The problem can be defined as:
meL

Problem 1. Synthesize a sequence of individual timed runs
ri,...,r% such that the following holds:

(ra Eda) AN (riEdL A AT EdN), (4)
where the collective run r¢ was defined in Definition 9.
Remark 1. Initially it might seem that if a run rg that
satisfies the conjunction of the local formulas i.e., r¢ E
i A ... Atk can be found, then the Problem 1 is solved
in a straightforward centralized way. This does not hold
since by taking into account the counterexample in [Nikou
et al. 2016b, Section III], the following holds:

rélz/\@kébrikgal/\...Arf\,h@N. (5)
keT

4. PROPOSED SOLUTION
The solution approach involves the following steps:

(1) For each agent, we abstract the continuous-time linear
system (3) into a WTS which describes the possible
movements of the agent considering the dynamics and
limitations of the state space (section 4.1).

(2) For each agent, we construct a local Biichi Weigthed
Transition System (BWTS) out of its WTS and a
TBA representing the local MITL specification. The
accepting timed runs of the local BWTS satisfy the
local specification (section 4.2).

(3) Next, we construct a product BWTS out of the local
BWTSs. The accepting timed runs of the product
BWTS satisty all local specifications (section 4.3).

(4) Next, we construct a global BWTS out of the product
BWTS and the TBA representing the global MITL
specification. The accepting runs of the global BWTS
satisfy both the global specification and all local
specifications (section 4.4).

(5) Finally, we determine the control input by applying
a graph-search algorithm to find an accepting run of
the global BWTS and projecting this accepting run
onto the individual WTSs (section 4.5).

The computational complexity of the proposed approach
is discussed in Section 4.6.

4.1 Constructing a WTS

In this section we consider the abstraction of the envi-
ronment into a WTS. The definition of a WTS was given
in Section 2. The abstraction is performed for each agent
m € T, resulting in N number of WTSs.

Following the idea of [Gol and Belta 2013], we begin by

dividing the state space X, into p-dimensional rectangles,

defined as in Definition 1 such that formula (6) is satisfied
for each rectangle.

ap; = (T, Vz € Ry(a,b)) or

ap; = (L, Vo € Ry(a,b)),Yap;, € AP,,. (6)

The set of states IT = {rg,r1,...,7ar} of the WTS is then

defined as the set of rectangles R = {R,(a", %), R,(at,b"),

ey Rp(a™,6M)}. From this, the definition of the initial

state I1;,;¢, transitions — and labelling L follows directly:

Wit = {r; € |a)), € Ry(a’,b")} (7)

ri — r; iff Rp(a’,b*) and Ry(a’,b’) (8)

have a common edge,

L(r;) = {ap; € APy |ap; = T Yz € Ry(a’,0")} (9)

The set ¥ is given as the set of control inputs which induce

transitions. In particular, a control input must be defined

for each possible transition such that it guarantees the

transition, that is no other transition can be allowed to

occur and the edge of which the transition goes through

must be reachable. These conditions on control inputs

are required both to ensure that the synthesized path

is followed and to guarantee that the following time

estimation holds. A suggested low-level controller for a

transition 7, — r; in direction ¢, based on [Gol and Belta
2013], is given by

max  [&mli
Um €EUm
s. t. [:Em]] < —e,Vj 7é i,j = {17 7p},lf ['rm]j = b§7
[im]; > €V #i,j = {1,....p},if [pm]; = af,
[m]; > €>0. (10)
where U, = [~Umaz, Umae] 18 some bound on u,, and e

is a robustness parameter. The idea is to maximize the
transition speed, under the conditions that the speed in
direction j is negative at the edge with norm direction j,
for j # i.

Finally, the weights d are assigned as the maximum tran-
sition times. These times are given according to Theo-
rem 1 below. The theorem depends on the assumption
B, uym = Bni1@m + Be, where B,,1 and B,,» are matrices
of dimension N x N and N x1 respectively. The assumption
corresponds to u,, being affine.

Theorem 1. The maximum time T (ry, ;) required for
the transition ry, — r; to occur, where R,(a*,bF) and
R,(al,b') share the edge ey, € is the edge located
opposite to e in R,(a* b¥), i is the direction of the

transition, and assuming that ey is reachable from all
points within r, is defined as:

Tmaa:(?nk rl) —In (([A;kn]uxo + C; + [B;kn]z)> 1
’ [

(i Jua? + Ci - B1) ) Tzl
where N
O* = . n . |
=2 min (400 (o)
JF#

and 20 = 2;(0) € ey, 2t = 2;(T™%) € ey , AL, = A, +
By and B:n = B2, where &, = Ap2p + Bpum =
Amxm + Bmlxm + Bm2-

See Figure 1 for illustration of the variables of Theorem 1
in 2 dimensions. The full proof of the theorem can be
viewed in [Andersson et al. 2017].
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Fig. 1. 2D-illustration of the variables in Theorem 1.

Remark 2. If C}, = 0 or [&,,]; = 0 Vj, then T™* is
the maximal time required for the transition to occur.
Otherwise T™?* is an over-approximation.

Finally, the weights of the WTS are defined as

d(rs,rj) = T™(rs,r;) where (r;,0,7;) €=, (11)

for o = wp, (14, 75).

4.2 Constructing a Local BWTS

Next, a local BWTS is constructed out of the WTS and a
TBA representing the local MITL specification for each
agent. As stated in Section 2 any MITL formula can
be represented by a TBA [Alur et al. 1996]. Approaches
for the translation were suggested in [Maler et al. 2006],
[Brihaye et al. 2013] and [Nickovi¢ and Piterman 2010].
Note that the time-intervals considered by the MITL
formulas must be on the form < a due to the over-
approximation of time in the abstraction. The local BWTS
is defined as:
Definition 10. Given a weighted transition system T =
(I1, ;pe, 2, —, AP, L, d) and a timed Biichi automaton
A = (S, Sinit, X, I, E,F, AP, L) their local BWTS is de-
fined as TP = T ® A = (Q, Q" ~,dP, FP, AP, L”, I?, C)
with:

e QC{(r,s) eI x S:L(r)=L(s)},

o Q" =Tlinit X Sinit

o g~ ¢ iff

g4 = (7’,8), q/ = (T/asl) € Q

- (ryr’) €= and

- 34,R, s.t. (s,7,R,s') € E,
d?(q,q") = d(r,r') if (¢, ') €~,
FP={(r,s) €Q:s € F} and
L?(r,s) = L(r)
IP(q) = I(s)
C=A{c1y.,em}
c¢i={(¢,¢) | 3 R st. (s,R,s') € E and z; € R}
where M =|X|.

It follows from the construction and automata-based LTL
model checking theory [Baier and Katoen 2007] that all
possible runs of the local BWTS correspond to a possible
run of the WTS. Furthermore, all accepting states of the
local BWTS corresponds to accepting states in the TBA.
This is formalized in Lemma 1.

Lemma 1. An accepting timed run r}, = (gx(0), 7(0))(gx (1),
Tr(1))... of the local BWTS projects onto the timed run
rt = (r(0),7(0))(r(1),7(1))... of the WTS that produces
the timed word w(rt) = (Li(r(0)),7(0))(Lx(r(1)),7(1))...
accepted by the TBA. Also, if there is a timed run that

produces an accepting timed word of the TBA, then there
1s an accepting timed run of the local BWTS.

4.8 Constructing a Product BWTS

The definition of the Product BWTS is:
Definition 11. Given N local BWTSs T7,...T%, de-
fined as in Definition 10, and M; = |X| for k €
{1,.., N}, the product BWTS T = T} @ ... ® Tx,
Where T;p = (QZ,Q;nH,’\»“df,FZp,APZ,Lf,IZp,C“Mz) and
TG = (QG7Qi(?it7_>G7dG7FG7APG7LG>IGaCGaM) is de-
fined as:
Qo CQix.xQx
° Qzént — Qzlnzt X ... X Q%th
* (96,9¢) €—c iff
s qdg = (q17"'7QN) S QG7
“qg = (g1, 4y) € Qa,
- g, € Qr st (qr,q),) €k, VEET,
* d6(96:4G) = dmaz = max(dy),if (g6, 45) €0,

o Fo={(q1,...an) € Qg s.t. g € F} \Vk € T},
[ ] APG = U APk7
keT
o La(qr, - anv) = U Li(ar),
kel

e Ig(qc) = U I} (qr),
kel ) ) ]
e Co={CH...,CN}, C' = {c, e Cor }
i _ {(ec.q96),9¢ = (a1, - an), a6 = (41, - )

%= st (¢5,q) € cryox € Ci}
o M= {M17"7MN}

It follows from the construction that an accepting collec-
tive run of the product BWTS corresponds to accepting
runs of each local BWTS. Formally

Lemma 2. An accepting collective run 74 of the product
BWTS projects onto an accepting timed run r}, of a local

BWTS, for each k& € I. Moreover, if there exists an
accepting timed run for every local BWTS, then there
exists an accepting collective run.

Remark 3. Note that the definition does not allow for the
agents to start transitions at different times. This causes
an overestimation of required time which increases the risk
for false negative result. An alternative definition which

allows the mentioned behaviour was suggested in [Nikou
et al. 2016b]. However, the definition suggested here re-

quires less number of states and hence less computational
time.

4.4 Constructing a Global BWTS

Finally, a global BWTS is constructed from the product
BWTS and a TBA representing the global MITL specifi-
cation.

Definition 12. Given a product BWTS

TG = (Qg,Qg”-t,—)g,d(;,Fg,Apg,Lg,Ig,OG,M) and a
global TBA Ag = (Sg,Sglit,Xg,Ig,Eg,Fg,ﬁg), with
Mg = |Xgl|, their global BWTS Tg = T ® Ag =
(Qg, Qgit,vc,d(;,ﬁg,Apg,ig) iS deﬁned as:

e Q¢ C {(q,8) € Qg x Sg s.t. La(q) = Eg(s)} X
Zo X ... x Zn x {1,2}, where Z; = {2},...,2}, } for
i=1,..,N and Zo = {z{, ..., 23, }

o QU = QU x S {1, 1} .. x {1, ..., 1} x{1,2},
where {1,...,1} x ... x {1,...,1} consists of N + 1

sets, where the first set contains Mg ones, and the
remaining sets contains M; ones each,

* (4c,q5) €~ iff A
- qa =(¢,8,20,..., Zn, 1) € Qq,
e =(q,8,Z, ..., ZN, ) € Qay
- (¢:¢) €—a,



- 3y, R s.t. (s,7,R,8') € Eg s.t,
For all i € {1,..,N}, Z; and Z! are such
that ) ‘
z; =0and z;, =1, if (¢,¢) € ¢},
Zp, = Zp, otherwise
Zy and Z|) are such that
0 __ 0 if T € R
#k =\ 1 otherwise
o’ 1 if T € R
2 = 0 .
zp, otherwise
1,ifl=1and q € Fg
= orl=2and s € Fg
2, otherwise

d:G(qc:,qlg) =da(q,q) if (g6, 46) €~a,

Fo = {(q,S,Zo, ey ZN, 1) €EQqgst.qge Fg} and
Lg<q,5, Z()7 ...,ZN,l) = LG(T).

I(gc) = Ic(q) U I(s)

It follows from the construction that an accepting run of
the global BWTS corresponds to an accepting run of the
product BWTS as well as an accepting run of the TBA
representing the global specification. Formally

Lemma 3. An accepting timed run rf, of the global BWTS
projects onto an accepting collective run 7 of the prod-
uct BWTS that produces a timed word w(rf,) which is

accepted by the TBA representing the ﬁlobal specifica-
tion. Also, if there exists an accepting collective run that
produces a timed word accepted by the TBA, then there

is an accepting timed run 7%, of the global BWTS.

4.5 Control Synthesis

The controller can now be designed by applying a modified
graph-search algorithm (such as a modified Dijkstra) to
find an accepting run of the global product. The modifi-
cation of the algorithm includes a clock valuation when
considering a transition. A sketch of the modification is
given in [Andersson et al. 2017]. The idea is to calculate
the clock valuation for each clock given the predecessors of
the current state, if a valuation does not satisfy the clock
constraint the transition is not valid. When the algorithm
is complete the accepting run is projected onto the WTSs
following Lemma 1, Lemma 2 and Lemma 3. Finally, the
set of controllers are given as the sequences of control
inputs which induces the timed runs (rf,r%,...r%;) which
in turn produce accepted timed words of all local TBAs as
well as of the global TBA.

4.6 Complezity
The framework proposed in this paper requires at most
N

ol = JJUT:] x |Ai] x 2M) x |Ag| x 2M¢ x 2
i=1
number of states. The method suggested in [Nikou et al.
2016b] requires
N

(T =TT (741 Ai ¢ (Caat 1)) x| A xaX(Crgyrt 1) M
i=1

number of states, where all possible clock values are

integers in the set [0,C! 1 and [0,CS,.] for the lo-

cal and global TBA’s respectively. Hence the number of
states required in the proposed framework is a factor

Hil(cmaz,i + 1)M1 X (Cmaz,G + ]-)MG
92,y (Mi)+ Mo

(12)

less.

Agent/s 1

4
. State: 3 State: 6 State: 9
“|AP: 1 AP: r2 AP: 3
3
O ®
. State: 2 State: 5 - State: 8
“|AP: ¢ AP: ¢ AP: ¢
2
15 State: 1 State: 4 State: 7
AP: r4 AP: 15 AP: 16

1

1 1.5 2 25 3 35 4 45 5 55

Fig. 2. Environment considered in the example. The circles
represents the initial states of each agent.

5. SIMULATION RESULTS

Consider N = 2 agents with dynamics in the form:

. 21 10

= [O 2} x+ [0 1] u, (13a)

. 10 01

= [O J x + [1 O] u, (13b)
evolving in a bounded workspace X = {(x1,z2) : 1 <

z1 < 5.5,1 < x5 < 4}, divided into 6 rooms and a
corridor in accordance with the partition illustrated in
Figure 2. Each agent is assigned with the local MITL
formula ¢, = Qo172 Ars — Oo.376¢ ("Eventually, within 0.1
time units, the agent must be in room 2, and if the agent
enters room 2 it must then enter room 6 within 0.3 time
units.’). Furthermore, they are assigned with the global

MITL formula ¢g = O1(a1 = 1 A ag = r2) ("Eventually,
within 1 time units, agent 1 must be in room 1 and agent
2 must be in room 2, at the same time.’). The initial
positions of each agent is indicated in Figure 2.

Remark 4. As can be seen in figure 2, some walls have
been added to the environment. Transitions through these
are forbidden. This is handled by the abstraction since the
edges on which the walls are placed aren’t reachable.
MATLAB was used to simulate the problem by construct-
ing all transition systems and applying a modified Dijkstra
algorithm to find an accepting path as well as a control
sequence that satisfies the specifications. The result was
a global BWTS with 248832 number of states and an
accepting path of 9 transitions. The projection of the
accepting run onto each WTS, yields the paths illustrated
in Figure 3, which shows the evolution of each closed-
loop system for the given initial positions. The figure was
constructed by implementing the built-in function ode45
for the determined controllers in each state. The switch-
ing between controllers is position-triggered; namely the
switching from controller u;; to wu;; is performed when
the agent has entered far enough into state j, where ”far
enough” was defined as 5 iterations of ode45 upon exiting
the previous state. A comparison between the estimated
time distances and the actual times for each transition is
given in table 1. That is, the worst case transition times
yields that ¢, @2 and ¢¢ are all satisfied by the real run,
where ¢1 = Qo.008072 AT2 == 00.208476, P2 = Qo0.058072 A
ro = Q0.248476, ¥ = Qo.ra0a(ar = r1 A az = r2) and
Treql 1S the actual run. From this, it is clear that the given
path will satisfy the MITL formulas.

The simulation presented in this section was run in MAT-
LAB on a laptop with a Core i7-6600U 2.80 GHz processor,
the runtime was approximately 30min.



Table 1. The worst case estimation and the actual

required time for each joined transition. The actual

time is the time required for all agents to transition.

*These transitions require agent 2 to stay in place, hence

the actual time is here defined as the time agent 1

requires to complete the transition.xNumbered in order
of transitions, see figure 3.

Positionx Agent 1 Agent2  Worst Case  Actual
Time Estimation Time
0 2 5 0 0
1 5 6 0.0589 0.0368
2 6 6 0.04 0.026*
3 5 5 0.0771 0.0212
4 8 8 0.0645 0.0403
5 7 7 0.0668 0.0551
6 8 8 0.0465 0.0151
7 5 5 0.2027 0.1115
8 2 6 0.1438 0.1366
9 3 6 0.04 0.027*
B Agent 1 0-0
1-0.036807 wait till 0.058892
25 PBtate: 3 PBtate: 6 [State: 9
A nP: 2 s 2 -0.084905 wait till 0.098913
s 9 R 3-0.12011 wait till 0.17599
\ 8 4-0.2131 wait till 0.24053
2Pl gt ,,qj:.“\“ 5-0.29561 wait till 0.30729
Ve 6 - 0.32009 wait till 0.35381
: 5 7 - 0.46532 wait till 0.55655
o et biote 4 bote:7 8 - 0.69319 wait till 0.70039
AP: 14 AP: 15 AP: 16
9 - 0.7274 wait till 0.74041
! 1 15 2 25 3 35 45 5 55
(a) Agent 1
B Agent2 0-0
1 - 0.029446 wait till 0.058892
PBtate: 3 Btate: 6 [State: 9
35 [ap: a2 89 s 2-0.098913
. -2 3-0.12011 wait ill 0.17599
Bl “ 4-0.21632 wait till 0.24053
‘
25Pa? Saes 0 ‘;7, AT 5 - 0.28893 wait till 0.30729
e 6 - 0.32241 wait till 0.35381
’ i 7-0.40956 wait ill 0.55655
1 Bate: 1 btate: 4 fstate: 7 8 - 0.60329 wait till 0.70039
AP: 4 AP: 5 AP: 16
9-0.74041
1

1 15 2 25 3 35 4 45(b3 A5éent 2
Fig. 3. Illustration of the paths of each agent in the
example. The numbers 0-9 represent the end of each

ioined transition. The actual arrival time at each
ocation as well as the time the agent is required to
wait till it is guaranteed that all other agents have
transitioned, is noted to the right of the figure. It is
notable that both agents finish all transitions on less
time than the worst case estimation. Hence, run-time
can be reduced by allowing the agents to communicate
to each other.

6. CONCLUSIONS AND FUTURE WORK

A correct-by-construction framework to synthesize a con-
troller for a multi-agent system following continuous linear
dynamics such that some local MITL formulas as well as
a global MITL formula are satisfied, has been presented.
The method is supported by result of the simulations in
the MATLAB environment. Future work includes commu-
nication constraints between the agents.
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