
Reciprocal Safety Velocity Cones for
Decentralized Collision Avoidance in

Multi-Agent Systems

Soulaimane Berkane ∗ Dimos V. Dimarogonas ∗∗

∗Department of Computer Science and Engineering, University of
Quebec in Outaouais, 101 St-Jean Bosco, Gatineau, QC, J8X 3X7,

Canada (e-mail: soulaimane.berkane@uqo.ca).
∗∗Division of Decision and Control Systems, School of Electrical

Engineering and Computer Science, KTH Royal Institute of
Technology, SE-100 44, Stockholm, Sweden (e-mail: dimos@kth.se).

Abstract: In this paper, we solve the inter-agent collision avoidance problem in an arbitrary
n−dimensional Euclidean space using reciprocal safety velocity cones (RSVCs). We propose a
decentralized feedback control strategy that guarantees simultaneously asymptotic stabilization
to a reference and collision avoidance. Our algorithm is purely decentralized in the sense
that each agent uses only local information about its neighbouring agents. Moreover, the
proposed solution can be implemented using only inter-agent bearing measurements. Therefore,
the algorithm is a sensor-based control strategy which is practically implementable using a
wide range of sensors such as vision systems and range scanners. Simulation results in a two
dimensional environment cluttered with agents shows that the number of possible deadlocks is
marginal and decrease with the decrease in the clutteredness of the workspace.

Keywords: Collision avoidance, multi-agent systems, sensor-based methods, motion planning,
feedback control.

1. INTRODUCTION

In the last few decades, multi-agent systems have received
great attention in the research community due to their
plethora of useful applications. In fact, multi-agent sys-
tems are able to efficiently carry out tasks that are either
impossible or inefficient to carry out using single-agent sys-
tems. In this paper, we focus on one of the central problems
in the control of multi-agent systems: inter-agent collision
avoidance. The approach proposed in this paper aims at
addressing both the stabilization (convergence to targets)
and the collision-free motion planning problems. Different
but closely related problems have been addressed as well
in the literature such as collision-free formation control
(Tanner and Kumar, 2005; Tanner and Boddu, 2012) and
the collision-free velocity synchronization (Chopra, 2008).

One of the important approaches in the area of feedback-
based collision avoidance are based on Koditschek–Rimon
navigation functions (Koditschek and Rimon, 1990) and
control barrier functions (Ames et al., 2017) which were
extended to multi-robot systems in (Dimarogonas et al.,
2006a,b; Roussos and Kyriakopoulos, 2013; Wang et al.,
2017; Verginis and Dimarogonas, 2019, 2021); to name a
few. Some approaches such as (Dimarogonas et al., 2006b)
consider a “partially” decentralized method where each
agent has global knowledge of the position of the others
but has knowledge only of its own desired destination.
Purely decentralized motion planners such as (Van Berg
et al., 2008; Snape et al., 2011) need local knowledge of
both the position and the velocity of the neighbouring

agents. A totally distributed motion control of multi-agent
systems using decentralized navigation functions has been
proposed in (Dimarogonas et al., 2006a) but global conver-
gence cannot be guaranteed in all scenarios. Cooperative
control laws based on the idea of avoidance control (Leit-
mann and Skowronski, 1977) has been applied to multi-
agent systems in (Stipanovic et al., 2007). The proposed
approach may be appended to already designed optimal
control laws of independent agents. A differential game ap-
proach has been recently proposed in (Mylvaganam et al.,
2017) but under a centralized framework, in which the
positions of each agent are available to the remaining mem-
bers of the group at all times. Safety barrier certificates are
designed both in a centralized and a decentralized manner
in (Wang et al., 2017) to ensure collision-free behaviors in
multirobot systems by modifying the nominal controllers
to formally satisfy safety constraints. The resulting com-
putation of the safety controllers is done by solving in real-
time a quadratic program (QP). Finally, a different type of
decentralized barrier functions has been used in (Verginis
and Dimarogonas, 2019, 2021) for collision-avoidance in
multi-agent systems with uncertain dynamics.

In this paper, we propose a purely decentralized collision-
free feedback stabilization approach for multi-agent sys-
tems. The proposed strategy relies on projection onto
reciprocal safety velocity cones (RSVCs), which are an ex-
tension to multi-agent systems of the safety velocity cones
(SVCs) (Berkane, 2020)–introduced for safe navigation in
unknown environments filled with static obstacles. The
proposed algorithm has two main advantages compared

to the existing approaches. First, the decentralized control
laws can be computed using only inter-agent bearing mea-
surements of those neighbouring agents instead of their
full position information. This is useful in sensor-based
applications where sensors are limited (e.g., monocular
cameras) and do not provide exact agents’ positions. Note
however that we still have to detect neighboring agents and
that proximity sensors can be used for this purpose. Sec-
ond, the algorithm is very simple both in terms of design
(closed-form solution) and efficient real-time computation.
Furthermore, one of the most attractive features of the
proposed multi-agent navigation algorithm is the fact that
collision avoidance is activated only when other agents
enter the local sensing region of an individual agent, and,
therefore, it does not interfere with the agents’ individual
nominal controllers outside of these regions.

The key drawback of the proposed algorithm, as in other
decentralized schemes (Dimarogonas et al., 2006a; Wang
et al., 2017), is that global convergence cannot be guar-
anteed from all initial conditions. This is the price to
pay for the lack of a central coordination signal which
leads to possible deadlocks among multiple agents with
conflicting tasks. However, Monte Carlo simulations has
shown that the number of deadlocks decreases when the
environment has fewer agents. In other words, the number
of deadlocks is commensurate with the clutteredeness of
the environment.

2. NOTATION AND PRELIMINARIES

Let N denote the set of natural numbers. R and R+ denote,
respectively, the set of reals and non-negative reals. Rn is
the n-dimensional Euclidean space. For vectors in Rn, the
relation operators <,≤, >,≥ stand for the element-wise
relations. For a given matrix A ∈ Rm×n and a subset
I ⊆ N, we denote by A[I] the |I| × n matrix obtained
by considering only the kth rows of A, with k ∈ I. The
interior (resp. boundary) of a subset A ⊂ Rn is denoted
by int(A) (resp. ∂A). The complement of A in Rn is
denoted by {A and its closure by A. The Euclidean norm

of x ∈ Rn is defined as ‖x‖ :=
√
x>x. We denote by

B(x, r) := {y ∈ Rn : ‖x−y‖ < r} the open ball of radius r
that is centered at x. Given a non-empty subset A ⊂ Rn,
the distance function from a point x ∈ Rn to A is defined
as dA(x) := infy∈A‖y − x‖ and the projection of x onto

A is given by the set-valued map PA(x) := {y ∈ A : ‖y −
x‖ = dA(x)}.
Definition 1. (Cone). A subset C of Rn is a cone if for
every x ∈ C and λ ∈ R+, we have λx ∈ C.
Definition 2. (Convex Cone). A subset C of Rn is a convex
cone if for every x1, x2 ∈ C and λ1, λ2 ∈ R+, we have
λ1x1 + λ2x2 ∈ C.
Definition 3. (Polar Cone). The polar cone of a cone C is
the set Co = {x′ ∈ Rn : x>x′ ≤ 0, ∀x ∈ C}.
Definition 4. (Finitely Generated Cone). A cone C ⊂ Rn
is finitely generated if there is a finite set S ⊂ Rn such
that C = cone(S) where

cone(S) :=
{
y ∈ Rn : y =

∑
λixi : xi ∈ S, λi ∈ R+

}
.

Definition 5. (Hyperplane). An (n − 1)−dimensional hy-
perplane in Rn is defined by

P(ν, c) := {x ∈ Rn : ν>(x− c) = 0}, (1)

for some ν ∈ Rn \ {0} and c ∈ Rn.

Definition 6. (Halfspace). A (closed) halfspace is defined
as

H(ν, c) := {x ∈ Rn : ν>(x− c) ≤ 0}, (2)

for some ν ∈ Rn \ {0} and c ∈ Rn.

Every hyperplane P(n, c) divides Rn into two halfspaces.
In particular, H0(n) := H(n, 0) denotes the halfspace that
passes through the origin. Also, for convenience, we allow n
to be zero in (2) where in this case H(0, c) = H0(0) ≡ Rn.

Definition 7. (Polyhedron). A subset of Rn is a polyhe-
dron if it can be written as the intersection of finitely many
halfspaces, i.e. every polyhedron can be written, for some
m ∈ N, as P(A, b) = {x ∈ Rn : Ax ≤ b} where A ∈ Rm×n
and b ∈ Rm.

In particular, a polyhedral cone is a polyhedron formed by
the intersection of halfspaces that pass through the origin.

Definition 8. (Polyhedral Cone). For any matrix A, the
set P(A, 0) defines a polyhedral cone and is denoted as
C(A) = {x ∈ Rn : Ax ≤ 0}.

A polyhedral cone is in other words the solution set of
a system of homogeneous linear inequalities. One of the
most important results in the theory of polyhedra is that
every polyhedral cone is a finitely generated cone and vice
versa. We end the preliminaries with the following result.

Proposition 1. ((Ujvári, 2016)). The polar cone of a poly-
hedral cone C(A) is given by the finitely generate cone
Co(A) = {A>λ : λ ∈ Rn+}.

3. PROBLEM FORMULATION

Consider a set of N ≥ 1 spherical agents with radius ri > 0
and center of mass xi ∈ Rn. Each agent i occupies a ball
region defined by

Oi := {x ∈ Rn : ‖x− xi‖ ≤ ri}. (3)

We consider that each agent’s state (position) xi ∈ Rn is
subject to the following kinematics equation

ẋi = ui, i ∈ I := {1, · · · , N}. (4)

Here ui ∈ Rn denotes the velocity commands (control in-
put) applied to agent i. Our objective is to asymptotically
stabilize the position of each agent i to a desired position
xdi ∈ Rn while avoiding their collision, i.e. the constraint

‖xi − xj‖ > ri + rj , ∀i, j ∈ I, i 6= j, (5)

must hold for all times. The following is a feasibility
assumption.

Assumption 1. For all, i, j ∈ I, ‖xdi − xdj‖ > ri + rj and
‖xi(0)− xj(0)‖ > ri + rj .

In this work, we only require that each agent i knows the
inter-agent bearings of those agents that are in conflict
with the agent, i.e., those agents which are close enough
to the agent i. This is in contrast to other approaches
that assume knowledge of the velocity of the other agents
(Van Berg et al., 2008) and/or global position information
about all the agents (Dimarogonas et al., 2006b). We also
assume that each agent is unaware of the other agents
desired destinations. Therefore our problem formulation is
completely decentralized. To model this latter fact, we let

Ri

xi

Fig. 1. Agent i (solid blue) is able to sense the position
of two agents (green and red) since these are inside
its sensing region (light blue). However, agent i will
only use the position of the red agent in the collision
avoidance controller since it is inside the avoidance set
Ri (dark blue). The avoidance set Ri can be tuned
arbitrary small.

Ri > ri > 0 to be the radius of the avoidance set associated
to agent i which is defined as

Ri := {x ∈ Rn : ‖x− xi‖ ≤ Ri}. (6)

We then define the set of neighbouring agents as follows:

Ni := {j ∈ I : Oj ∩Ri 6= ∅}. (7)

Note that for our convenience, the set Ni contains the
index {i} of the agent i itself. Our assumption about the
available information to each agent is formally written as
follows.

Assumption 2. For all i ∈ I, agent i has access to the inter-
agent bearings

bij :=
xi − xj
‖xi − xj‖

of all agents j ∈ Ni and its own desired position xdi .

The inter-agent bearings of neighbouring agents can be ob-
tained practically using on-board sensors such as monoc-
ular/depth cameras or LiDARs. The neighbouring agents
can be detected using proximity sensors or range sensors.
LiDARs, for example, can provide both bearing and range
measurements. Note that the avoidance set can be tuned
as small as desired but no greater than the real sensing
region of agent i. In this sense, agents which are inside
the sensing region but outside of the avoidance set are not
taken into account in the collision avoidance controller of
agent i although the latter has access to their positions,
see Fig. 1.

4. MAIN RESULTS

Our proposed collision avoidance approach consists in
defining, for each agent i ∈ I, a velocity cone that contains
all the permissible velocities that guarantee safety with
respect to neighbouring agents inside the avoidance set
Ri. More concretely, during the avoidance maneuver, each
agent will try to keep the relative distances to the other
agents (inside Ri) non-decreasing, assuming these agents
are static. In fact, for each agent i, and if we assume that

the velocity of a neighbouring agent j ∈ Ni is zero, we
have

1

2

d

dt
‖xi − xj‖2 = u>i (xi − xj). (8)

Therefore, in order to guarantee the non-increase of the
relative distance ‖xi−xj‖, agent i must select its velocity
ui such that it lies in the half-space H0(bji) = H0(xj −
xi) ⊂ Rn. Now, assuming that the other agent j executes
the same collision avoidance strategy, both agents will stay
safe from each other: this is the concept of reciprocity.
In other words, reciprocity allows for an agent to take
only half of the responsibility for collision avoidance by
implicitly assuming that the other agent takes the other
half.

Extending this fact to all the neighbouring agents inNi, we
must restrict the velocity of agent i to lie in the intersection
set of all the half-spaces generated by the presence of these
agents, i.e., we impose the condition

ui ∈
⋂
j∈Ni

H0(bji). (9)

Note that, if Ni = {i}, the above inclusion yields ui ∈ Rn
which reflects the fact that the control input should not
be restricted if there are no neighbouring agents for agent
i. Since the above set is the intersection of finitely many
half-spaces passing through the origin, it defines a convex
polyhedral cone (see Definition 8) which has motivated
us to name this cone the reciprocal safety velocity cone
(RSVC). More precisely, if we let Ni = {j1, · · · , jNi

},
condition (9) is written as

ui ∈ C(A(xNi
)) (10)

where xNi = [x>j1 , · · · , x
>
jNi

]> ∈ RnNi is the concatenated

vector of all the neighbouring agents states (as well as xi)
and the matrix-valued function A(xNi

) is given by

A(xNi
) :=


(xj1 − xi)>

‖xj1 − xi‖
...

(xjNi
− xi)>

‖xjNi
− xi‖

 =

 −bi(j1)...
−bi(jNi

)

 ∈ RNi×n. (11)

The computation of this matrix requires only the inter-
agents bearings of those agents in Ni so this does not
violate Assumption 2. To sum up, provided that all other
agents restrict their control inputs to satisfy (9), the inter-
agent distance between each agent i and its neighbouring
agents j ∈ Ni cannot decrease; thus safety is ensured.

To further ensure that the desired stabilization tasks are
achieved, we should choose a control law that decreases
the distance to the desired target xdi . When the agent is
not in proximity of any other agent, the classical nominal
feedback law

u0i (xi, x
d
i) := −ki(xi − xdi), ki > 0, (12)

will achieve the required stabilization task. However, since
the input must be constrained to ui ∈ C(A(xNi

)), the
solution we propose is to project the nominal controller u0i
onto the closed convex cone C(A(xNi

)). This projection
is equivalent to solving the following convex optimization
problem

min
ui

1

2
‖ui − u0i ‖2 subject to ui ∈ C(A(xNi

)), (13)

x1

C(A(xN1
))

H0(b21)

H0(b31)

x3

x2

C̊(A(xN1
)))

u01

u1

Fig. 2. The velocity cone C(A(xN1
)) (hashed green area)

induced by the presence of two agents 2 and 3 inside
the avoidance set of agent 1. Agent 1 will restrict
its velocity to lie within the velocity cone C(A(xN1))
and, assuming that the other agents will reciprocally
cooperate in the same avoidance strategy, collision is
avoided. To further ensure that the agent converges
to its final destination, the nominal controller u0i is
projected onto the velocity cone C(A(xN1)). If the
nominal controller was in the polar velocity cone
C̊(A(xNi

)) (hashed red area), the resulting projection
is zero.

which is a quadratic programming problem with a set of
linear inequality constraints on Rn. Since C(A(xNi

)) is a
nonempty closed convex set, and by the Hilbert projection
theorem, the projection onto C(A(xNi)) is unique and
we will denote it by Π(C(A(xNi)), z) for any z ∈ Rn.
Fortunately, a closed-form expression of this projection
function has been derived recently in (Rutkowski, 2017)
for general polyhedral sets. This result is refined and fine-
tuned for a polyhedral cone C(A) in the following lemma.

Lemma 1. (Derived from (Rutkowski, 2017)). For a given
matrix A ∈ Rm×n and for any x ∈ Rn \ C(A), there exists
a non-empty subset I ⊆ {1, · · · ,m}, with |I| ≤ rank(A),
such that the projection onto C(A) is given by the linear
map

Π(C(A), x) = (In − Ā>(ĀĀ>)−1Ā)x, (14)

where Ā = A[I] and the following conditions hold:

• Ā is full row rank
• (ĀĀ>)−1Āx > 0
• AΠ(C(A), x) ≤ 0

Basically, the above lemma shows that the projection onto
the polyhedral cone is equal to the projection onto one of
its faces, i.e., there exists a face that lies in one of the
subspaces spanned by the rows of A such that the projec-
tion onto the polyhedral cone is equal to the projection
onto this given face; this fact has been mentioned also in
(Ujvári, 2016). The conditions in the above lemma allow
to check which face is valid for the projection and are
the results of the feasibility and the complementary slack-
ness conditions of the Karush–Kuhn–Tucker conditions
(Rutkowski, 2017). This lemma leads to Algorithm 1 which

summarizes the procedure to compute the projection map.

Algorithm 1 Projection onto a polyhedral cone

Require: a matrix A ∈ Rm×n and a vector x ∈ Rn
Ensure: y = Π(C(A), x)
if Ax ≤ 0 then y = x
else

Let ∆ = {I1, I2, · · · } . Collection of all non-empty
subsets Ik of {1, · · · ,m} with cardinality ≤ rank(A).

for k ∈ {1, 2, · · · } do
Ā = A[Ik]
if det(Ā) 6= 0 then

Solve ĀĀ>ν = Āx for ν
y = x− Ā>ν
if ν > 0 and y ∈ C(A) then return y
end if

end if
end for

end if

To sum up, the proposed control strategy for each agent
is given by (see Algorithm 2)

ui(xNi
, xdi) = Π(C(A(xNi

)), u0i (xi, x
d
i)), i ∈ I, (15)

where u0i is the nominal controller in (12) and
Π(C(A(xNi

)), ·) is the projection function onto the recipro-
cal velocity cone C(A(xNi

)). It is clear that the proposed
multi-agent control strategy is purely decentralized. Let
us define the vector x = [x>1 , · · · , x>N]> ∈ RnN which cor-
responds to the concatenated vector of all agents’ states.
The multi-agent closed-loop system can be written as

ẋ =

 Π(C(A(xN1
)), u01(x1, x

d
1))

...
Π(C(A(xNN

)), u0N (xN , x
d
N))

 =: f(x). (16)

Note that the vector field f(x) is discontinuous whenever
agents enter or leave the sensing region of other agents.
The collision avoidance task is then equivalent to the
forward invariance of the set under the dynamics (16)

W := {x ∈ RnN : ‖xi − xj‖ > ri + rj ,∀i, j ∈ I, i 6= j}.
(17)

The global target can be defined as

xd := [(xd1)>, · · · , (xdN)>]> ∈ RnN .

Algorithm 2 Collision Avoidance with Stabilization

Require: Current position xi and reference position xdi
Ensure: Results of Theorem 1.

Detect neighbouring agents set Ni
Compute inter-agents bearings bij with j ∈ Ni
Construct bearing matrix A(xNi

) in (11).
Calculate nominal controller u0i (xi, x

d
i) in (12).

Calculate projection Π(C(A(xNi
)), u0i (xi, x

d
i)) using Al-

gorithm 1.
Assign agent’s velocity ui = Π(C(A(xNi

)), u0i (xi, x
d
i)).

The following theorem summarizes the main results.

Theorem 1. Consider the multi-agent closed loop system
(16). Then:

(1) The set W is forward invariant (collision avoidance).
(2) All distances ‖xi − xdi ‖ are non-increasing.

(3) The equilibrium xd is locally exponentially stable.
(4) All solutions must converge to the largest invariant

set contained in {xd} ∪ E where

E := {(x1, · · · , xN) : (xdi − xi) ∈ C̊(A(xNi
))}.

In other words, each agent will either converge to the
desired goal or it will be stuck in a deadlock with a group
of other agents characterized by condition (4) in Theorem
1. The deadlock is present if, for each agent i in that
group, its nominal velocity is inside the polar velocity
cone C̊(A(xNi

)); hence its projection is zero causing the
agent to stop. Current investigation is carried out to study
the invariant properties of these deadlocks and possible
remedies.

5. SIMULATION RESULTS

In this section we conduct some simulations to confirm the
effectiveness of the proposed collision avoidance approach.
We consider a set of N agents moving inside a two
dimensional 1×1 squared region. The radius of each agent
is ri = 0.05 and the avoidance radius is Ri = 0.07. The
clutteredness of the environment is defined as:

ρN :=
total area covered by the agents

total area of the workspace
=

∑N
i=1 πr

2
i

1× 1
.

We assume that all agents are moving at the same speed
imposed by the gain ki = 0.5 in (12). The closed-loop
dynamics (16) are integrated on the time interval [0, 30]
using Euler method with a step size h = 0.001. The agents
are divided into four colored groups: yellow, green, red,
and blue. All the members of a given colored group will
be required to stabilize their position to a desired location
on the same edge of the square.

We consider 1000 random initial agents’ positions taken
from N position slots on the edges of the square (total
possibilities for the initial condition of the whole system
is N !). The desired locations coincide with these position
slots. For each random initial condition of the multi-agent
system, we calculate the success rate σ ∈ [0, 1] which
is defined as the complement of the ratio of deadlocked
agents:

σ = 1− number of deadlocked agents

total number of agents
.

We assume that the cumulative distribution function
(CDF) of the random variable σ is given by the exponential
function

Fβ(σ) =
eβσ − 1

eβ − 1
∈ [0, 1],

where β is a positive parameter that depends on the
given problem’s configuration (e.g., number of agents). It
is not difficult to show that Fβ(σ) is strictly decreasing
with respect to β when σ ∈]0, 1[. Therefore, the higher
β, the lower the probability of having deadlocks. We
compare two scenarios with N = 36 and N = 20
corresponding to clutteredness ρ36 ≈ 28.3% and ρ20 ≈
15.7%, respectively. The histograms of the two obtained
cumulative distribution functions are plotted in Fig 5. For
each scenario, the parameter β is obtained using maximum
likelihood estimation (MLE), where we have obtained
β =: β36 = 6.2 for N = 36 and β =: β20 = 7.1 for N = 20.
Since β20 > β36, we have Fβ20(σ) < Fβ30(σ) for σ ∈]0, 1[,

which proves that the likelihood of deadlocks is minimized
as the clutteredness of the environment decreases. As an
example, we consider two simulation scenarios with 36
agents and different initial conditions. The first scenario,
depicted in Fig. 3, results in a successful mission (with
σ = 1) while the second scenario, depicted in Fig. 4, results
in a failed mission (with σ = 0.58). Recall that for all
scenarios, safety is 100% guaranteed (hard constraint).

6. CONCLUSION

This work presents a multi-agent cooperative control strat-
egy with collision avoidance. The proposed framework is
sensor-based and fully reactive in the sense that each agent
acts solely based on the local sensor information to avoid
collision with other agents while converging to its desired
destination. In particular, we consider agents that are
equipped with sensors providing bearing measurements to
their neighbouring agents. We have shown that, under this
distributed control strategy, collision avoidance is guaran-
teed while progress towards the desired targets is ensured
if the agents do not arrive to a deadlock. Although the
deadlocks are explicitly identified, their region of attrac-
tion is yet to be characterized. Future work will consider
an additional mechanism to resolve deadlocks.

ACKNOWLEDGEMENTS

This research work is partially supported by NSERC-
DG RGPIN-2020-04759, ERC CoG LEAFHOUND, the
Swedish Research Council (VR) and the Knut och Alice
Wallenberg Foundation

REFERENCES

Ames, A.D., Xu, X., Grizzle, J.W., and Tabuada, P.
(2017). Control Barrier Function Based Quadratic Pro-
grams for Safety Critical Systems. IEEE Transactions
on Automatic Control, 62(8), 3861–3876. doi:10.1109/
TAC.2016.2638961.

Berkane, S. (2020). Navigation in Unknown Environ-
ments Using Safety Velocity Cones. arXiv:2007.06649
[math.OC].

Chopra, N. (2008). On Synchronization and Collision
Avoidance for Mechanical Systems. (2), 3713–3718.

Dimarogonas, D.V., Kyriakopoulos, K.J., and Theodor-
akatos, D. (2006a). Totally distributed motion control
of sphere world multi-agent systems using Decentralized
Navigation Functions. Proceedings - IEEE International
Conference on Robotics and Automation, 2006(May),
2430–2435. doi:10.1109/ROBOT.2006.1642066.

Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J.,
and Zavlanos, M.M. (2006b). A feedback stabilization
and collision avoidance scheme for multiple independent
non-point agents. Automatica, 42(2), 229–243. doi:
10.1016/j.automatica.2005.09.019.

Koditschek, D.E. and Rimon, E. (1990). Robot naviga-
tion functions on manifolds with boundary. Advances
in Applied Mathematics, 11(4), 412–442. doi:10.1016/
0196-8858(90)90017-S.

Leitmann, G. and Skowronski, J. (1977). Avoidance Con-
trol. Journal of Optimization Theory and Applications,
23(4), 581–591.

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

Fig. 3. Simulation results with 36 agents corresponding to a mission with 100% success rate. Complete simulation video
can be found at https://youtu.be/94Ws77ia6I8.

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

-1 0 1

-1

-0.5

0

0.5

1

Fig. 4. Simulation results with 36 agents corresponding to a mission with 58% success rate. Complete simulation video
can be found at https://youtu.be/u3qY-vAoTUY.

Fig. 5. Comparison between fitted cumulative distribution
function Fβ(σ) in two scenarios: N = 36 (blue) and
N = 20 (red). The histogram bars represent the real
CDFs when running simulations with 1000 random
initial conditions.

Mylvaganam, T., Sassano, M., and Astolfi, A. (2017). A
Differential Game Approach to Multi-agent Collision
Avoidance. IEEE Transactions on Automatic Control,
62(8), 4229–4235. doi:10.1109/TAC.2017.2680602.

Roussos, G. and Kyriakopoulos, K.J. (2013). Decentralized
and prioritized navigation and collision avoidance for
multiple mobile robots. In Distributed Autonomous
Robotic Systems, 189–202. Springer.

Rutkowski, K.E. (2017). Closed-Form Expressions for
Projectors Onto Polyhedral Sets in Hilbert Spaces.
SIAM Journal on Optimization, 27(3), 1758–1771.

Snape, J., Berg, J.V.D., Guy, S.J., and Manocha, D.
(2011). The hybrid reciprocal velocity obstacle. IEEE
Transactions on Robotics, 27(4), 696–706. doi:10.1109/
TRO.2011.2120810.

Stipanovic, D.M., Hokayem, P.F., Spong, M.W., and Sil-
jak, D.D. (2007). Cooperative Avoidance Control for
Multiagent Systems. Journal of Dynamic Systems,
Measurement, and Control, 129(September 2007). doi:
10.1115/1.2764510.

Tanner, H.G. and Boddu, A. (2012). Multiagent naviga-
tion functions revisited. IEEE Transactions on Robotics,
28(6), 1346–1359. doi:10.1109/TRO.2012.2210656.

Tanner, H.G. and Kumar, A. (2005). Formation Stabiliza-
tion of Multiple Agents Using Decentralized Navigation
Functions. Robotics: Science and Systems I, 49–56.

Ujvári, M. (2016). On the Projection onto a finitely
generated cone. Acta Cybernetica, 22(3), 657–672. doi:
10.14232/actacyb.22.3.2016.7.

Van Berg, J.D., Lin, M., and Manocha, D. (2008). Recip-
rocal velocity obstacles for real-time multi-agent nav-
igation. Proceedings - IEEE International Conference
on Robotics and Automation, 1928–1935. doi:10.1109/
ROBOT.2008.4543489.

Verginis, C.K. and Dimarogonas, D.V. (2019). Closed-
form barrier functions for multi-agent ellipsoidal sys-
tems with uncertain lagrangian dynamics. IEEE Control
Systems Letters, 3(3), 727–732. doi:10.1109/LCSYS.
2019.2917822.

Verginis, C.K. and Dimarogonas, D.V. (2021). Adaptive
robot navigation with collision avoidance subject to 2nd-
order uncertain dynamics. Automatica, 123, 109303. doi:
10.1016/j.automatica.2020.109303.

Wang, L., Ames, A.D., and Egerstedt, M. (2017). Safety
barrier certificates for collisions-free multirobot systems.
IEEE Transactions on Robotics, 33(3). doi:10.1109/
TRO.2017.2659727.

