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1. INTRODUCTION

In the recent years, cooperative control for multi-agent
systems has attracted the attention of both the robotics
and control communities, due to its wide applications
(Ren, 2007; Lafferriere et al., 2005; Hong et al., 2006). In
general, each agent serves to accomplish a global objective
or fulfill a simple local goal such as reachability. However,
in practice, a group of agents encounters the request of a
sequence of tasks. Furthermore, deadline constraints on
the completion of each task is a common requirement
(Gombolay et al., 2018). One common approach to express
temporal specifications relies on Linear Temporal Logic
(LTL), and it has been applied to multi-agent systems
(Nikou et al., 2016). LTL allows proving the accomplish-
ment of the high-level tasks but it lies on the assumption
that simple control laws, e.g. turn-and-forward switching
control (Guo and Zavlanos, 2017), can be used, leaving out
the possibility of reusing advanced control strategies de-
signed in the single task case and applying their properties.

In this paper, we propose a novel strategy for the control
of a multi-agent systems, modeled as single-integrators, in
which the aim of the system is to complete a high level
plan, consisting of a sequence of cooperative tasks that
need to be accomplished before some given deadlines. This
plan is partially known by a subgroup of the agents (called
leaders). Moreover, the agents do not have communication
capabilities but are equipped with low-cost hardware to
detect close objects (other robots) that allow the mea-
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surement of relative distances. This constraint requires
that neighboring agents maintain geographical closeness,
and this problem is similar to maintaining connectivity
in robotic networks (Ji and Egerstedt, 2007). Hence, the
leaders have to command the rest of the agents to the
objective to reach it on time, but at the same time ensure
that the whole group remains connected. To achieve this
goal, a distributed self-triggered algorithm (Heemels et al.,
2012) is proposed to tune the parameters of the leaders’
controllers. Based on local measurements (distance and
remaining time to reach the objective, and the state of the
neighboring agents) that are taken only a discrete instants
of time which are computed from the last measurements
acquired, the leaders calculate an upper bound for the
feedback gain that ensures connectivity. Self-triggered con-
trol allows reducing the use of computational resources
since continuous monitoring is avoided. Hence, the contri-
butions of the paper in hand can be summarized as the de-
sign of a self-triggered algorithm to update the distributed
controllers in order to achieve each control objective that
corresponds to any individual task in the high level plan,
while guaranteeing the maintenance of relative-distance
constraints in each team of robots. This paper partially
builds on our earlier work Guinaldo and Dimarogonas
(2017), where all the agents are aware of the planning,
feedback gains are held constant, and the connectivity
maintenance is not considered.

2. PRELIMINARIES

Consider a set N of N agents. The topology of the multi-
agent system can be modeled as a static undirected graph
G. This section reviews some facts from algebraic graph
theory Godsil and Royle (2001). The graph G is described
by the set of agent-nodes V and the set of edges E . For each
agent i, Ni represents the neighborhood of i, i.e., Ni =
{j ∈ V : (i, j) ∈ E}. A path graph of N vertices, denoted



by PN , is a graph whose vertices can be listed in the order
v1, v2, . . . , vN such that the edges are (vj , vj+1) where
j = 1, 2, , N − 1. A path is a particularly simple example
of a tree, since no vertex has degree 3 or more. Assume that
the edges has been labeled as ek and arbitrarily oriented.
Then the incidence matrix E(G) = [εik] is defined as
εik = −1 if vi is the tail of the edge ek, εik = 1 if vi
is the head of ek, and εik = 0 otherwise. The Laplacian
matrix L(G) ∈ RN×N of a network of agents is defined
as L(G) = E(G)E(G)⊤. The Laplacian matrix L(G) is
positive semidefinite, and if G is connected and undirected,
then 0 = λ1(G) < λ2(G) ≤ · · · ≤ λN (G), where {λj(G)}
are the eigenvalues of L(G). Both matrices E(G) and L(G)
can be simply denoted by E and L, respectively, when it
is clear from the context.

The edge Laplacian is defined as Le(G) = E(G)⊤E(G),
and has the following properties (Zelazo et al., 2007): 1)
The non-zero eigenvalues of Le are equal to the non-zero
eigenvalues of L; 2) the rank of Le depends only on the
number of connected components; 3) the null space of Le,
N (Le), depends on the number of cycles in the graph
and it holds that N (Le) = N (E). Furthermore, N (E)
is spanned by all the linearly independent signed path
vectors 1 corresponding to the cycles of E; 4) if G is a
spanning tree, then Le has no zero eigenvalues and, hence,
N (Le) = ∅. The next lemma follows from Zelazo et al.
(2007).In the following, ∥·∥ denotes the Euclidean norm for
vectors and the induced 2-norm for matrices, respectively,
while | · | is the cardinality of a set.

Lemma 1. Suppose Le ∈ RNe×Ne is the edge Laplacian of
an undirected connected graph G. Then, for all t ≥ 0 and
all vectors z ∈ RNe with z = E⊤x and x ∈ RN , it holds
that ∥e−Letz∥ ≤ e−λ2(G)t∥z∥.

Proof. Let us assume that the graph G has nc inde-
pendent cycles. Then, the multiplicity of the zero eigen-
values of Le is nc. Since Le is symmetric, the eigenvec-
tors of Le can always be chosen such that they form
and orthonormal basis T and it holds that Le = T ·
diag(0, . . . , 0, λ2, . . . , λN ) ·T⊤, where the first nc vectors in
T correspond to the nc zero eigenvalues, and the rest cor-
responds to the eigenvalues λ2, . . . , λN of L. Then e−Let =
T diag(1, . . . , 1, e−λ2t, . . . , e−λN t)T⊤. For z = E⊤x ∈
RNe , it holds e−Letz = T diag(1, . . . , 1, 0, . . . , 0)T⊤z +
T diag(0, . . . , 0, e−λ2t, . . . , e−λN t)T⊤z. The first term is 0
using the property 3) described above Zelazo et al. (2007)
and, hence ∥e−Letz∥ = ∥T diag(0, . . . , 0, e−λ2t, . . . , e−λN t)T⊤z∥.
Note that ∥A·B∥ ≤ ∥A∥∥B∥ for any two matrices and that
∥T∥ = ∥T⊤∥ = 1 for an orthonormal basis, then it fol-
lows ∥e−Letz∥ ≤ ∥diag(0, . . . , 0, e−λ2t, . . . , e−λN t)∥∥z∥ =
e−λ2t∥z∥, which completes the proof. 2

3. PROBLEM FORMULATION

3.1 Planning description

For a multi-agent system, we assume the existence of a
high level plan ϕ consisting of a sequence of cooperative
tasks. This plan is partially known by a subgroup of the
agents (called leaders and denoted by L ∈ N ), whereas
the rest of the agents do not have a priori knowledge of

1 See Definition 3.1 (Zelazo et al., 2007)

the planning and follow the leaders. We can denote ϕ as a
sequence of Ntask ∈ N>0 objectives ϕ1, ϕ2, ..., ϕNtask

. Once
ϕp, p = 1, . . . , Ntask − 1, is completed, the agents proceed
to the next task ϕp+1. We consider that the set of agents
have to visit consecutively a set of regions {Bp} defined as

Bp = {y ∈ Rn : ∥y − cp∥ ≤ rp}, (1)

and denoted as Bp = (cp, rp). The task ϕp is completed
once all the agents lie inside the region Bp within some
time constraints, i.e., before some deadline Tp = tp − t0p,,

where t0p is the starting time of the task ϕp.

3.2 Agents model

Let the N agents obey the single-integrator dynamics:

ẋi(t) = ui(t), i = 1, . . . , N, (2)

where xi(t), ui(t) ∈ Rn are the state and the control inputs
of agent i, respectively. For each agent of the form (2), let
us consider a control law of the form

ui(t) = gi(xi(t),
∪

j∈Ni

xj(t), πi), i = 1, . . . , N, (3)

where each gi(·) is locally Lipschitz and πi represents a set
of additional parameters, which may include information
about the objective regions (1). The team of agents is
commanded by Nlead leaders, which are aware of the
planning description. The design of (3) has to be such
that the sequence of objectives is accomplished. Then,
gi may switch in every ϕp. Furthermore, the agents are
equipped with hardware that allows the observation of
another agents’ state only if their distance is below R:

(i, j) ∈ E ⇐⇒ ∥xi − xj∥ ≤ R. (4)

The control law should additionally guarantee that con-
nectivity is maintained, that we define as follows:

Definition 2. The connectivity is maintained if (i, j) ∈ E ,
that is, (4) holds, at time t = 0, then (i, j) ∈ E ∀t > 0.

3.3 Problem statement

Given a team of N agents commanded by a set of leaders
L, subject to dynamics (2) and interconnected over a
connected undirected G = (V, E), synthesize for each i ∈ V
control laws ui of the form (3) such that the high level plan
ϕ is completed while the connectivity is maintained.

4. PROBLEM SOLUTION

The proposed solution follows five steps: 1) the design
of the control law; 2) the convergence in finite time to
the objective regions with the proposed control law; 3)
the derivation of constraints over the feedback gains that
ensure that the connectivity is maintained for all time; 4)
a self-triggered algorithm for the update of the feedback
gains; and 5) the accomplishment of the high level plan
under certain restrictions on the initial conditions.

4.1 Control law

Two types of agents are distinguished in the network and,
hence, two control laws are defined according to each role.
The task ϕp given in Section 3.1 is achieved once all agents
lie inside the region Bp (1) before some given deadline Tp.



Hence, we propose a continuous controller which includes
one or two terms, depending on the role of the agent:

ui(t) =


∑
j∈Ni

κ(xj(t)− xi(t))− ai(t)(xi(t)− cp) if i ∈ L∑
j∈Ni

κ(xj(t)− xi(t)) otherwise,

(5)
where L is the set of leaders. The gain κ ∈ R>0 is assumed
to be given and constant, while the gain ai(t) ∈ R>0 is to
be designed such that the group remains connected and the
region Bp is reached on time. The mechanism to update
the value of ai will be defined later, but it will follow a self-
triggered policy such that ai remains constant between two
sampling instants tik and tik+1:

ai(t) = ai(t
i
k), tik ≤ t < tik+1. (6)

Denote by x the stack vector of xi’s, i ∈ N . Then, it holds

ẋ = −κ(L(G)⊗ In)x− (A⊗ In)(x− 1N ⊗ cp), (7)

where A is a diagonal matrix whose diagonal elements are
defined as Aii = ai if i ∈ L and Aii = 0 otherwise, where ai
is the feedback gain defined above. Moreover, the incidence
matrix allows rewriting the variables of the vertex V in
terms of the edges E . According to the definition of the
incidence matrix E(G), we can define a vector z for the
state of the edges in E such that z = (E⊤(G)⊗ In)x, and
its dynamics are given by

ż =− κ(Le ⊗ In)z − (E⊤A⊗ In)(x− 1N ⊗ cp), (8)

4.2 Convergence analysis

Before presenting the main results of this section, the
following lemma studies the spectral properties of the
matrix M = κL + A ∈ RN×N , κ ∈ R>0 and A ∈ Rn

≥0.

Lemma 3. The eigenvalues of the matrix M defined above
λN (M) ≥ · · · ≥ λ1(M) are lower bounded by

λ1(M) =
(

N−1

N(N−1)+(
∑N

i=1
ai)/κ

)N−1

(
N∑
i=1

ai) > 0. (9)

Proof. The proof is provided in the appendix.

The next proposition analyzes the convergence to each
control objective represented by regions Bp based on the
results of Lemma 3. At this point, we are not concerned
about the values of ai > 0 that will be designed later to
ensure that the connectivity of the team is maintained.

Proposition 4. Consider the system (7). The distance to
the center of the region Bp denoted by ∥δ(t)∥ converges
asymptotically to zero, where δ(t) = x(t) − 1N ⊗ cp, and
each region Bp is reached in finite time for any feedback
gains ai > 0, ∀i ∈ L.

Proof. Since (L(G) ⊗ In)(1N ⊗ cp) = 0 (1N is an eigen-
vector of L(G)), then ẋ(t) = −(κL(G) +A(t))⊗ In(x(t)−
1N ⊗ cp). If we rewrite this in terms of δ(t), it follows

that δ̇(t) = −(κL(G) + A(t)) ⊗ Inδ(t). Let us denote by
t0p and x(t0p) (δ(t0p) = x(t0p) − 1N ⊗ cp) the starting time
and the initial conditions, respectively, for the task ϕp.
According to (6), A(s) is a piecewise constant function
A(s) : R≥0 → Rn

≥0. Let us denote by {tℓp, ℓ ∈ N>0} the

sequence of updating times for the set of {ai} while the
task p is being executed, i.e.

tℓp =
∪
i∈L

{tik} : t0p < tik < tendp , (10)

where tendp is the instant of time when the task p is

completed and it might occur that tik = ti
′

k′ for some
k, k′ ∈ N and i, i′ ∈ L. However, those coincident instants
are denoted by a unique tℓp and, thus, t0p < t1p < t2p <

· · · < tendp . Let also denote by Aℓ
p the value of A(t) in

the interval tℓp ≤ t < tℓ+1
p . Then, it holds δ(tℓ+1

p ) =

e−((κL(G)+Aℓ
p)⊗In)(t

ℓ+1
p −tℓp)δ(tℓp). Let np(t) ∈ N and denote

by t
np(t)
p the last updating time at time t. We further

introduce M ℓ
p = κL(G) + Aℓ

p and τ ℓp = tℓ+1
p − tℓp. Then,

using the expression above recursively:

δ(t) = e−(M
np(t)
p ⊗In)(t−t

np(t)
p )

( np(t)∏
ℓ=1

e−(Mℓ−1
p ⊗In)τ

ℓ−1
p

)
δ(t0p).

(11)

Remark 5. Note that the matrices M ℓ
p do not commute

in general, and therefore the order of terms in (11) is
important. Thus, we use the notation of time-ordered
product (Pazy, 2012): for a family of operators U1, . . . , Un,
the time-ordered product of these operators is defined by∏n

ℓ=1 Uℓ = Un . . . U1 and
∏1

ℓ=n Uℓ = U1 . . . Un.

We next apply the results of Lemma 3 to the set of matrices

M ℓ
p. Note that the eigenvalues of e−Mℓ

p⊗In are all negative

(since the eigenvalues of M ℓ
p are all positive), and this

guarantees that δ(t) in (11) converges to zero (δ → 0 when
t → ∞). Moreover, because the set of matrices M ℓ

p has an
orthonormal basis of eigenvectors, it holds that ∥δ(t)∥ =

∥e−(M
np(t)
p ⊗In)(t−t

np(t)
p )

∏np(t)
ℓ=1 e−(Mℓ−1

p ⊗In)τ
ℓ−1
p δ(t0p)∥ ≤

e−λ1(M
np(t)
p )(t−t

np(t)
p )

∏np(t)
ℓ=1 e−λ1(M

ℓ−1
p )τℓ−1

p ∥δ(t0p)∥, and then
it follows

∥δ(t)∥ ≤ e−λ1(M
np(t)
p )(t−t

np(t)
p )

np(t)∏
ℓ=1

e−λ1(M
ℓ−1
p )τℓ−1

p ∥δ(t0p)∥,

(12)

where λ1(M
ℓ
p) is given by (9). Then, δ(t) converges asymp-

totically to 0. Furthermore, the region Bp is reached in
finite time, since there exist a value of t < ∞ such that
∥δ(t)∥ < rp, for any initial condition ∥δ(t0p)∥ < ∞ 2

The previous result proves that each region is reached
in finite time. However, δ (i.e., the state of the overall
system) cannot be measured since only the leaders are
able to compute the distance to the corresponding cp, i.e.,
δi. Then, the following proposition provides an estimation
that each leader can compute based on local measurements
that is an upper bound for ∥δ∥ at any time t.

Proposition 6. Let us assume that the set of values of {ai}
ensures connectivity, according to the Definition 2. Then,
the distance to the center of the region Bp can be estimated
by each leader i ∈ L at any time t as

d̂i = (N − |Ni| − 1)R+
∑
j∈Ni

∥xi − xj∥+
√
N∥δi∥, (13)

and it holds that ∥δ∥ ≤ d̂i ∀i ∈ L.



Proof. The proof immediately holds taking into account
that, for each leader i ∈ L it holds ∥δ∥ = ∥x − 1N ⊗
cp∥ = ∥x − 1N ⊗ xi + 1N ⊗ xi − 1N ⊗ cp∥ ≤ ∥x − 1N ⊗
xi∥+∥1N ⊗(xi−cp)∥ ≤≤ (N−|Ni|−1)∥z∥+

∑
j∈Ni

∥xi−
xj∥+

√
N∥δi∥, and then

∥δ∥ ≤ (N − |Ni| − 1)R+
∑
j∈Ni

∥xi − xj∥+
√
N∥δi∥. (14)

The following proposition defines the measured distance
by the leader that ensures that all the agents are inside
Bp, using the overapproximation of Proposition 6.

Proposition 7. Let us assume that the connectivity radius
R satisfies (N − 1)R < rp. If the distance of the leader i
to the center of the objective region Bp satisfies

∥δi∥ ≤ rp−(N−1)R√
N

= r̄p, (15)

then all agents of the team are inside Bp.

Proof. The proof is provided in the appendix.

4.3 Connectivity maintenance

The next proposition provides a constraint on the design
of the feedback gains ai to ensure the connectivity of the
team. We further make the following assumption.

Assumption 8. The initial conditions satisfy ∥z(t0p)∥ ≤ R.

Remark 9. Assumption 8 only imposes real constraints
over the initial conditions at t = 0, since for the rest of the
tasks, ∥z(t0p)∥ ≤ R can be guaranteed with an adequate
choice of the switching rule, as it will be illustrated later.

Proposition 10. Let Assumption 8 holds. Then the graph
G remains connected and no links are lost during the
duration of the task ϕp if the feedback gains ai in (5)
updated according to (6) satisfy the following constraint:

ai(t
i
k) ≤

Rλ2(G)κ√
Nd̂i(tik)

, (16)

where d̂i is defined in (13) and tik denotes the updating
instants of ai.

Proof. Let us assume that no edges are removed or
added in the group and that none of the feedback
gains ai have been updated yet in the interval of
time considered. Moreover, without loss of generality,
let t0p = 0. Then, according to (8), the state of

the edges z at time t is z(t) = e−κ(Le⊗In)tz(0) −∫ t

0
e−κ(Le⊗In)(t−s)(E⊤A(s)⊗In)(x(s)−1N⊗cp)ds. Taking

norms, using the result of Lemma 1, and noting that
∥E⊤A(s)∥ ≤

√
N maxi∈L ai(s), it follows that ∥z(t)∥ ≤

e−κλ2t∥z(0)∥+
∫ t

0

√
N maxi∈L ai(s)e

−κλ2(t−s)∥δ(s)∥ds. From
Proposition 4, ∥δ(s)∥ ≤ ∥δ(0)∥, and since ai(s) remains
constant in the interval of time considered, then ∥z(t)∥ ≤
e−κλ2t∥z(0)∥+

√
N maxi∈L ai(0)∥δ(0)∥

κλ2
(1− e−κλ2t). From As-

sumption 8, it holds that ∥z(0)∥ ≤ R, and the connectivity
is maintained if ∥zj(t)∥ ≤ R for all the edges j in E . Since
∥zj(t)∥ ≤ ∥z(t)∥, and applying the results of Proposition

6 it follows that ∥δ(0)∥ ≤ d̂i(0), ∀i ∈ L, the choice of

feedback gains ai(0) ≤ Rλ2(G)κ√
Nd̂i(0)

, guarantees connectivity

maintenance and that no edges are removed in [0, t).

The previous argument can be used for any time t and
considering that the last instance of time any feedback

gain is updated is tℓp (see (10)). Similar steps yield ∥z(t)∥ ≤

e−κλ2(t−tℓp)∥z(tℓp)∥+
√
N maxi∈L ai(t

ℓ
p)∥δ(t

ℓ
p)∥

κλ2
(1−e−κλ2(t−tℓp)),

and thus, the choice of (16) guarantees that the connec-
tivity is not broken, which completes the proof. 2

Remark 11. In the proof of Proposition 10, it is assumed
that no edges are added to the graph G. This can be relaxed
without altering the results, since adding new edges in
the graph can only increase the value of λ2 (Zelazo et al.,
2007) and, hence, all the upper bounds still hold if the
value of λ2 at the beginning of each interval is considered.

4.4 Time constraint analysis

The planning description given in section 3.1 establishes
that the team reaches the objective before some given
deadlines Tp. The following proposition provides a value
for the maximum distance to the objective that ensures
the time constraint is satisfied (and, of course, connectivity
maintained) if ai is held constant in the control law (5).
An example will illustrate the conservatism of the results
and will motivate the adaptive mechanism for updating ai
and the self-triggered algorithm proposed afterwards.

Proposition 12. Consider the multi-agent system (2) and
control law (5) with feedback gains ai with constant values
set as in (16) computed at t0p. If for each leader i ∈ L
the initial estimated distance to the center cp is such that

d̂i(t
0
p) ≤ dmax, where dmax > 0 is the solution of(

N−1
N(N−1)+α(dmax)

)N−1
Rλ2κ|L|√
Ndmax

= 1
Tp

log dmax

rp
, (17)

and α(dmax) =
|L|Rλ2√
Ndmax

, then the team completes the task

ϕp before the deadline Tp.

Proof. The proof follows from Propositions 4 and 10
(considering that ai remains constant ∀t) and the result
of Lemma 3. If ai remains constant, from (12) it holds

that at time t = t0p+Tp ∥δ(t0p+Tp)∥ ≤ e−λ1(Mp)Tp∥δ(t0p)∥..
Using the constraint (16) that guarantees the connectivity
at time t0p and introducing this into (9), it yields λ1(Mp) =(

N−1
N(N−1)+α(dmax)

)N−1
Rλ2κ|L|√
Ndmax

, since d̂i(t
0
p) ≤ dmax. The

fact that the task ϕp is completed if ∥δ(t0p+Tp)∥ ≤ rp, and

that ∥δ(t0p)∥ ≤ d̂i((t
0
p)) from (14), completes the proof. 2

Remark 13. The existence of a positive dmax is illustrated
graphically in Fig. 1. Let us denote the left and right
hand sides of (17) as f1 and f2, respectively. Note that
f1 behaves approximately like the reciprocal function for
dmax, when dmax > 0 it takes positive values, and it goes
to +∞ when dmax → 0 and to 0 when dmax → +∞. f2 is
also a positive function for dmax > rp that goes to 0 when
dmax → rp and to +∞ when dmax → +∞. Then, both
functions intersect for some value rp < dmax < +∞.

Example 14. Consider a four agents system evolving in
R2. The graph defining the neighbor’s relations is a path
graph with a single leader, v1. The rest of the parameters
here are rp = 0.2 m, Tp = 20 s, R = 0.05 s, κ = 100.
This yields a value of dmax = 0.58 m as the solution of
(17) and a feedback gain a1 = 2.54. Note that dmax is
an upper bound for ∥δ∥, i.e., the norm of the state of the
whole team of agents. We can, however, estimate a value
for the admissible distance to the objective measured by
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Fig. 1. Graphical representation of the solution dmax of
(17). f1 represents the left hand side (blue line), f2
represents the right hand side (red line) of (17). The
solution is represented by a black circle.

the leader ∥δi(t0p)∥ as ∥δi(t0p)∥ ≤ dmax−(N−1)R√
N

= (0.58 −
3 · 0.05)/

√
4 = 0.22 m, i.e., the leader being at 2 cm to

the border of Bp, which is a really conservative result and
motivates the next subsection.

4.5 Self-triggered algorithm

In order to avoid the conservatism of the previous result,
an adaptive mechanism for the update of the feedback
gains ai is defined in Algorithm 1. The instances of time
for the update follow a self-triggered policy. We first
present the algorithm executed by the leaders, and then we
provide the sufficient conditions for the measured distance
at the beginning of the task that guarantees the task is
completed. However, it might occur that the Algorithm 1
ends successfully, that is, there is no deadline violation,
even if the constraint over ∥δi(t0p)∥ is not satisfied.

Algorithm 1 can be summarized as follows. Each leader
measures the distance to the center of the objective region
cp and computes the feedback gain according to (16) (lines
1-2). Then, it checks if the measured distance guarantees
that the task will be completed before Tp, according to the
results of Proposition 12 (line 3). In the affirmative case,
the computation ends. If the constraint cannot be satisfied,
each leader makes an optimistic estimation of the traveling
time to reach dmax (the solution of (17)) with the initial
computation of ai, and the team keeps moving without
any further calculations (lines 6-7). Once this time has
elapsed, the leader takes new measurements and executes
the procedure again with the updated parameters (lines 8-
12). Note that the parameter τi represents the remaining
time to complete the task before Tp. The computation
ends in three situations: 1) when the time constraint can

be satisfied with the current values of ai (dmax ≥ d̂i); 2)
the team is inside the objective region before the deadline

Tp (d̂i ≤ rp); 3) the deadline Tp has elapsed without
completing the task (τi ≤ 0). The first two represent a
success, while the third case is a fail.

Remark 15. The updating times defined in Algorithm 1
(line 6) are lower bounds of the traveling time required by
the leader to reach the distance given as a solution of (17)
if the cooperative term is left out, that is, if the dynamics
of the leader agents are given by ẋi(t) = −ai(t

i
k)(xi(t) −

cp) for t ∈ [tik, t
i
k+1). Then, it holds that δi(t

i
k+1) =

Algorithm 1 Computation of ai
Input: κ, R, λ2(G), N , Tp.
Output: ai.

1: Compute d̂i according to (13) at time t = t0p
2: Compute ai according to (16) as ai(t

0
p) =

Rλ2(G)κ√
Nd̂i

3: Compute dmax according to (17)
4: Set τi = Tp and tik = t0p
5: while dmax < d̂i & d̂i > rp & τi > 0 do

6: Define next update time tik+1 = tik + 1
ai

log
∥δi(tik)∥
dmax

7: Wait until t = tik+1

8: Update τi = Tp − (tik+1 − tik)
9: Measure distance to the objective ∥δi∥

10: Update d̂i according to (13) at tik+1

11: Update ai according to (16) as ai(t
i
k+1) =

Rλ2(G)κ√
Nd̂i

12: Compute dmax according to (17) but replacing Tp

by τi
13: k = k + 1
14: end while
15: return ai

e−ai(t
i
k+1−tik)δi(t

i
k). Since ∥δi(tik+1)∥ ≤ ∥δ(tik+1)∥, then

tik+1 = tik +
1

ai
log

∥δi(tik)∥
dmax(tik)

(18)

is an optimistic estimation of the time required by the
leader to command the team so that the distance dmax is
reached by the group.

Proposition 16. Consider the multi-agent system (2) with
control law (5) and adaptive feedback gains ai (6) updated
according to (16) at instances of time (18). If for each
leader i ∈ L the initial measured distance to the center cp
is such that ∥δi(t0p)∥ ≤ dmax, where dmax > 0 is

dmax = −αd +
√
α2
d + 2βd, (19)

αd = (N − 1)R, βd =
Rλ2κr̄pTp√

N
+ 1

2 r̄
2
p + (N − 1)Rr̄p, and

r̄p =
rp−(N−1)R√

N
, then the team completes the task ϕp

before the deadline Tp.

Proof. According to (18), the sum of the inter-updating
times has to satisfy

∑
k(t

i
k+1 − tik) ≤ Tp, taking only the

subset of updating times tik such that t0p ≤ {tik} ≤ t0p +Tp,

with the constraint that ∥δ(t0p + Tp)∥ ≤ rp, in order to
ensure that the task ϕp is completed. Then∑

k∈N
t0p≤tik≤t0p+Tp

1
ai(tik)

log
∥δi(tik)∥
dmax(tik)

≤ Tp. (20)

Note that dmax(t
i
k) ≥ ∥δi(tik+1)∥.Then, and according to

(16), the left hand side of (20) can be upper bounded by∑
k

d̂i(t
i
k)

Rλ2κ
log

∥δi(tik)∥
∥δi(tik+1

)∥ . Using log x ≤ (x − 1) if x ≥ 1,

replacing d̂i(t
i
k) by its upper bound ∥δi(tik)∥+(N−1)R (see

Proposition 7), and noting that ∥δi(tk+1)∥ ≥ r̄p (otherwise
the algorithm stops), it follows∑
k

(tik+1−tik) ≤
∑
k

∥δi(tik)∥+(N−1)R
Rλ2κr̄p

(
∥δi(tik)∥−∥δi(tik+1)∥

)
.

The above sum can be computed as ∆(tp0 + Tp) − ∆(tp0),

where the function ∆(t) is ∆(t) = −
√
N

Rλ2κr̄p

(
1
2∥δi(t)∥

2+(N−



1)R∥δi(t)∥
)
. Imposing the constraint for the satisfaction of

the task ∥δi(tp0 + Tp)∥ ≤ r̄p, yields

1
2∥δi(t

p
0)∥2+(N−1)R∥δi(tp0)∥ ≤ Rλ2κr̄pTp√

N
+

r̄2p
2 +(N−1)Rr̄p,

whose feasible solution yields the bound dmax in (19). 2

Example 17. Let us take the same setting as in the Exam-
ple 14. The solution of dmax given by (19) is dmax = 1.26
m. Note that is a bound for the initial conditions of ∥δi∥
not for ∥δ∥. Hence, ∥δi(tp0)∥ can be increased more than 5
times with the self-triggered adaptive scheme.

4.6 Accomplishment of the high level plan

The following theorem, based on the previous results,
summarizes the main results of this work.

Theorem 18. Consider the multi-agent system (2) with
control law (5) and adaptive feedback gains ai (6) updated
according to the Algorithm 1. If for each leader i ∈ L the
initial conditions satisfy ∥δi(0)∥ ≤ dmax and the distance
between the centers of the two regions for consecutive
tasks p and p + 1 satisfy ∥cp+1 − cp∥ ≤ dmax − r̄p, for
all p = 1, . . . , Ntask − 1, where dmax > 0 is given by (19),
then the high level plan ϕ is successfully completed.

Proof. The proof immediately follows applying Proposi-
tion 16. If ∥δi(0)∥ ≤ dmax ∀i ∈ L, the task p = 1 is
completed on time since it is guaranteed that the measured
distance satisfies ∥δi(t)∥ ≤ r̄1 for some time t such that
t ≤ T1. For the rest of the tasks p = 2, . . . , N − 1,
∥cp+1 − cp∥ ≤ dmax − r̄p ensures that ∥δi(t0p)∥ ≤ dmax,
which according to Proposition 16 guarantees that the
team reaches each region Bp before the deadline Tp. Hence,
the high level plan is completed. 2

5. SIMULATION EXAMPLE

Let us consider a team of N = 5 agents evolving in R2

whose topology is defined by

L(G) =


2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
−1 0 0 −1 2

 , L = {v2, v4}.

The planning consists ofNtask = 4 tasks, and the objective
regions are defined as follows: B1 = (c1 = (1, 2)⊤, r1 =
0.25), B2 = (c2 = (3, 0)⊤, r2 = 0.25), B3 = (c3 =
(0, 0)⊤, r3 = 0.25), and B4 = (c4 = (−1, 2)⊤, r4 = 0.25).
The respective deadlines are T1 = 15 s, T2 = 13 s, T3 = 12
s, and T4 = 15 s. Furthermore, the connectivity radius is
R = 0.05 m and the feedback gain κ = 100. The leaders
of the team update the feedback gains ai according to
Algorithm 1. The state evolution is depicted in Fig. 2.
The time deadlines Tp are depicted with vertical lines in
red. However, the team reaches the objective before Tp,
for all p, and switches to the next task. These instances of
time are depicted in green vertical lines. On the top right
corner of the figure, a zoom for the interval of time [0,0.1]
s is shown to illustrate how the agents reach consensus.

The agents’ trajectories in R2 are depicted in Fig. 3.
The objective regions, whose radius is rp = 0.25 m are
depicted in dashed line. However, to ensure that all agents

Fig. 2. State evolution of the system.
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Fig. 3. Agents’ trajectories in R2.

5 10 15 20 25 30 35 40
t (s)

0

5

10

15

20

a
i
(t
)

Fig. 4. Evolution of ai(t) for agent 2 (violet line) and agent
4 (red line).

are inside Bp, leader agents do not switch of task until
the the distance measured to cp reaches the value of
r̄p (0.0224 m in this example for all tasks), according
to Proposition 7. This define smaller regions, which are
depicted in black solid lines. Finally, Fig. 4 illustrates the
evolution of ai for the leaders (agent 2 and agent 4) when
they execute Algorithm 1. Note how the feedback gains
take conservative values at the beginning of each task, and
when they are closer to the objective regions, they increase
the value of ai.

6. CONCLUSIONS

We have presented distributed control laws for the coordi-
nation of a multi-agent system that is requested to visit se-
quentially a finite number of regions of the state-space with
some timed constraints while maintaining connectivity.
The existing coupling between satisfying the given dead-
lines and keeping the agents close to each other is solved



by the distributed implementation of a self-triggered algo-
rithm to update the controller gains. Simulation results
have illustrated the validity of the proposed approach.
Future work will address time-varying topologies and the
effect of disturbances.

APPENDIX

Proof of Lemma 3: The Laplacian matrix L has eigenvalues
0 = λ1(L) < λ2(L) ≤ ... ≤ λN (L). Furthermore, A has
eigenvalues equal to ai, i = 1, . . . , N , where ai > 0 if
i ∈ L (i.e., some of the eigenvalues can be 0). Note that
M = κL+A is positive definite by construction (κ, ai > 0),
and thus all its eigenvalues are real and positive. Then,
the results of Lemma 1 in Merikoski and Virtanen (1997)
apply, i.e., for any matrix C ∈ Cn×n with real and positive
eigenvalues it holds that

λ1(C) ≥
(

n−1
tr(C)

)n−1
det(C), (21)

where λ1(C) is the smallest eigenvalue of C.

The trace of the matrix M is upper bounded by

tr(M) ≤ κN(N − 1) +
N∑
i=1

ai > 0, (22)

since the diagonal elements of L are the degree of each
vertex which is upper bounded by N − 1.

We next find a lower bound for the determinant of M . The
determinant of M is the product of its eigenvalues and,
thus, is positive. From Weyl’s theorem Horn and Johnson
(2012), it holds that 0 < λ1(M) ≤ κλ2(L), κλN (L) ≤
λN (M), and κλi(L) ≤ λi(M) ≤ κλi+1(L) ∀i = 2, . . . , N −
1 (the eigenvalues interlace). Connected graphs contain a
spanning tree, and the edges that are not in the given
spanning tree must complete the cycles of the graph.
Furthermore, according to Theorem 4.1 in Zelazo et al.
(2007), the eigenvalues of a connected graph Laplacian L
are lower bounded by those of the spanning tree. Hence,
we next analyze the case of M when the graph is a tree
and, for simplicity, a path graph, and we show that adding
an edge in the graph can only increase the determinant.
The extension to a general tree is then straightforward.
We denote by PN the path graph with N vertices.

By mathematical induction in the total number of agents
N and in the number of leaders |L|, it can be proven
(the steps are omitted due to space constraints) that the
det(M) for the path graph PN is lower bounded by

det(M) > κN−1
N∑
i=1

ai. (23)

Next lets prove that adding new edges in the graph can
only increase the determinant so that the results hold for
a general connected graph. Assume that an edge is added
to PN and denote this graph by P+e

N . Then the incidence

matrix of P+e
N is E(P+e

N ) = [E(PN ) e] and the Laplacian

matrix L(P+e
N ) = L(PN ) + ee⊤, where e⊤ = (e1 . . . eN )

denotes a column corresponding to the added edge and
ei = 1 if i is the initial node of the edge, ei = −1 if i is the
terminal node of the edge, otherwise ei = 0. Thus, in this
case, the matrix M can be written as M = κ(L(PN ) +
ee⊤) + A. Using the fact that det(A + B) ≥ det(A) +
det(B), it follows that adding new edges in the graph

can only increase the determinant and (23) is a lower
bound: (det(κ(L(PN )+ ee⊤)+A) ≥ det(κ(L(PN )+A))+

det(ee⊤) = κN−1
∑N

i=1 ai). Combining this with (22) and

(21), it yields
(

N−1

N(N−1)κ+
∑N

i=1
ai

)N−1

κN−1
∑N

i=1 ai ≤

λ1(M) ≤ · · · ≤ λN (M), which completes the proof. 2

Proof of Proposition 7: The proof intermediately follows
from Proposition 6. If ∥δi∥ ≤ r̄p, then the distance to the
objective region of the team ∥δ∥ satisfies ∥δ∥ ≤ (N−1)R+√
Nr̄p = rp. Then, all agents lie inside Bp. 2
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