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Abstract: Over the last years, the development and control of Autonomous Underwater Vehicles (AUV) with attached robotic
manipulators, also called Underwater Vehicle Manipulator System (UVMS), has gained significant research attention. In such
applications, feedback controllers which guarantee that the end-effector of the UVMS is fulfilling desired complex tasks should
be designed in a way that state and input constraints are taken into consideration. Furthermore, due to their complicated struc-
ture, unmodeled dynamics as well as external disturbances may arise. Complex tasks can be conveniently given in the so-called
Linear Temporal Logic (LTL). Motivated by this, we develop a combined abstraction and control synthesis framework in which,
given the uncertain kinematics/dynamics of the UVMS, a workspace divided into Regions of Interest (RoI) and a desired LTL task,
a sequence of feedback control laws that provably guarantee the LTL formula is provided. The feedback control law consists of
two parts: an on-line controller which is the outcome of a Finite Horizon Optimal Control Problem (FHOCP); and a backstepping
feedback law which is tuned off-line and guarantees that the real trajectory always remains in a bounded hyper-tube centered
along the nominal trajectory of the end-effector. The proposed controller falls within the tube-based Nonlinear Model Predictive
Control (NMPC) methodology and can handle the rich expressivity of LTL in both safety and reachability specifications. Numerical
simulations conducted in MATLAB verify the validity of the proposed framework.

1 Introduction

Most of the autonomous underwater manipulation tasks, such as
maintenance of ships, underwater weld inspection, surveying oil/gas
searching, require the UVMS to fulfill a sequence of high-level tasks
imposed by the user (see [1–9]). An example of a high-level task
could be “Periodically inspect the ship while avoiding collision with
it and with environment". The high-level tasks can be conveniently
expressed in temporal-logic languages. Temporal-logic based task
planning has gained a significant amount of recent attention, as
it provides a fully automated correct-by-design controller synthe-
sis approach for autonomous robots. Moreover, it provides formal
high-level languages that can describe planning objectives which are
more complex than the well-studied navigation or stabilization tasks
[10–12].

The qualitative specification language that has been used to
express the high-level tasks is Linear Temporal Logic (LTL) [10].
Given the dynamics of an autonomous robot and a desired LTL for-
mula, the controller synthesis procedure is given as follows [13]:
first, the robot dynamics are abstracted into a discrete representation,
the so-called Transition System (TS); second, a product between the
TS and an automaton that accepts the runs that satisfy the given LTL
formula is computed; and third, once an accepting run in the product
is found, it maps into a sequence of feedback controllers of the robot
dynamics.

In this paper we aim to employ the aforementioned procedure
in order to design feedback control laws which guarantee that a
UVMS satisfies a desired LTL specification. Regarding underwater
applications, the most challenging part of the LTL control synthesis
procedure is the abstraction part due to the fact that the continuous-
time controller needs to take into account the following issues:

• the highly nonlinear and complicated dynamics of the UVMS;
• state and input constraints;
• external disturbances, uncertainties as well as unmodeled dynam-
ics;

• the unstructured underwater environment which contains different
types of obstacles.

At the same time, regarding practical applications, the UVMS needs
to visit specific parts of the workspace, which are called Regions of
Interest (RoI)), and execute desired tasks through its end-effector.
An example of this procedure is the inspection of ship for damages
by a UVMS, in which different parts of the ship are different RoI
that the UVMS is required to visit and execute desired actions.

Motivated by the above, in this paper we provide a feedback con-
trol design framework that takes into account the aforementioned
issues. In particular, we provide:

• a nonlinear robust NMPC framework that deals with the model
uncertainties, external disturbances as well as control input con-
straints;
• a three-stage procedure that provides a planning framework that
guarantees the satisfaction of the desired high-level task.

One of the main challenges in Nonlinear Model Predictive Con-
trol framework [14–17] is the efficient handling of external distur-
bances/uncertainties. A promising robust NMPC strategy, originally
proposed for discrete-time linear systems in [18] and studied for
nonlinear systems in [19–21], is the so called tube-based approach.
Then, starting by the kinematic and dynamic modeling of a general
uncertain UVMS equipped with an n Degrees of Freedom (DoF)
manipulator, given a partitioned workspace into RoI and a desired
task written in LTL, a systematic control design methodology for
tube-based NMPC which guarantees robust transition between RoI
under safety constraints is developed; in particular, the controller
consists of two terms: a nominal control input, which is computed
on-line and is the outcome of a Finite Horizon Optimal Control
Problem (FHOCP) that is repeatedly solved at every sampling time
instant, for its nominal system dynamics; and an additive state feed-
back law which is designed by a backstepping nonlinear control
procedure and guarantees that the real trajectory of the closed-loop
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system will belong to a hyper-tube centered along the nominal tra-
jectory. The volume of the hyper-tube depends on the upper bound
of the disturbances, the bounds of the Jacobian matrix as well as the
Lipschitz constants of the UVMS dynamics. Secondly, we exploit
the aforementioned control design in order to abstract the dynamics
of the robot into a TS. Then, by performing the LTL control synthesis
procedure, a sequence of control laws that guarantees the satisfaction
of the formula is provided.

A preliminary conference version of this paper can be found in
[22], in which a robust force/torque NMPC scheme for a UVMS
in contact with a compliant surface of the environment is designed.
That framework has not considered any high-level tasks and safety
with potential obstacles of the environment.

The rest of the paper is structured as follows: Section 2 pro-
vides the notation that will be used as well as necessary background
knowledge; in Section 3, the problem treated in this paper is formally
defined; Section 4 contains the main results of the paper; Section 5 is
devoted to a simulation example; and in Section 6, conclusions and
future research directions are discussed.

2 Notation and Preliminaries

Some mathematical notations and preliminaries to be used through-
out this paper are given below. Define by N and R the sets of positive
integers and real numbers, respectively. Given a set S, denote by |S|
its cardinality, by Sn := S × · · · × S its n-fold Cartesian product
and by 2S the set of all its subsets. Given a vector z ∈ Rn define by:

‖z‖2 :=
√
z>z, ‖z‖P :=

√
z>Pz,

its Euclidean and weighted norm, with P ≥ 0. Given vectors z1,
z2 ∈ R3, S : R3 → so(3) stands for the skew-symmetric matrix
defined according to S(z1)z2 = z1 × z2 where:

so(3) :=
{
S ∈ R3×3 : z>S(·)z = 0, ∀z ∈ R3

}
.

The notation λmin(P ) stands for the minimum absolute value of
the real part of the eigenvalues of P ∈ Rn×n; 0m×n ∈ Rm×n and
In ∈ Rn×n stand for them× nmatrix with all entries zeros and the
identity matrix, respectively. The notation diag{P1, . . . , Pn} stands
for the block diagonal matrix with the matrices P1, . . . , Pn in the
main diagonal;

B(χ, r) :=
{
y ∈ R3 : ‖y − χ‖2 ≤ r

}
,

stands for a ball in R3 with center and radius χ ∈ R3, r > 0,
respectively. Given coordination frames Σi, Σj , denote by Rji the
transformation from Σi to Σj . Given sets S1, S2 ⊆ Rn, S3 ⊆
Rm and the matrix P ∈ Rn×m, the Minkowski addition, the Pon-
tryagin difference and the matrix-set multiplication are respectively
defined by:

S1 ⊕ S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2},
S1 	 S2 := {s1 ∈ S1 : s1 + s2 ∈ S1,∀s2 ∈ S2},
P ◦ S3 := {p : p = Bs, s ∈ S3}.

Lemma 1. [21] For any constant ρ > 0, vectors z1, z2 ∈ Rn and
matrix P ∈ Rn×n, P > 0 it holds that:

z1Pz2 ≤
1

4ρ
z>1 Pz1 + ρz>2 Pz2.

Definition 1. [23] A continuous function α : [0, a)→ R≥0 belongs
to class K if it is strictly increasing and α(0) = 0. A continuous
function β : [0, a)× R≥0 → R≥0 belongs to class KL if: 1) for a
fixed s, the mapping β(r, s) belongs to class K with respect to r; 2)

for a fixed r, the mapping β(r, s) is strictly decreasing with respect
to s; and it holds that lim

s→∞
β(r, s) = 0.

Definition 2. [19] Consider a dynamical system:

χ̇ = f(χ, u, d), χ ∈ X , u ∈ U , d ∈ D,

with initial condition χ(0) ∈ X . A set X ′ ⊆ X is a Robust Control
Invariant (RCI) set for the system, if there exists a feedback control
law u := κ(χ) ∈ U , such that for all χ(0) ∈ X ′ and for all dis-
turbances d ∈ D it holds that χ(t) ∈ X ′ for all t ≥ 0, along every
solution χ(t).

Definition 3. A nonlinear system ẋ = f(x, u, d), x ∈ X , u ∈
U , d ∈ D, with initial condition x(0) ∈ X is said to be Input-to-
State Stable (ISS) with respect to d ∈ D, if there exist functions
β ∈ KL, γ ∈ K such that for any initial condition x(0) ∈ X and
for any input u(t) ∈ U , the solution x(t) exists for all t ∈ R≥0 and
satisfies:

‖x(t)‖2 ≤ β
(
‖x(0)‖2, t

)
+ γ

(
sup

0≤s≤t
‖d(s)‖2

)
.

An atomic proposition is a statement that is either true or false.

Definition 4. A Transition System (TS) is a tuple (S,S0, Act,−→
,Π, L) where:

• S is a finite set of states;
• S0 ⊆ S is a set of initial states;
• Act is a set of actions (control inputs);
• −→⊆ S ×Act× S is a transition relation;
• Π is a finite set of atomic propositions;
• L : S → 2Π is a labeling function function that assigns to each
state the atomic propositions that are true in that state.

For a given state s ∈ S, define by Post(s, α) := {s′ ∈ S :
(s, α, s′) ∈−→} the set of successors of the state s with action α.
An infinite sequence of states of the form r = s0s1s2 . . . is called
a run of the TS if s0 ∈ S0 and si+1 ∈ Post(si, ·) for all i ≥ 0. The
trace of the run r = s0s1s2 . . . is defined by:

Trace(r) := L(s0)L(s1)L(s2) . . . ,

In this paper we focus on task specifications ϕ given in Linear
Temporal Logic (LTL). The syntax of LTL (see [10]) over a set of
atomic propositions Π is defined by the grammar:

ϕ := > |$ | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2,

where $ ∈ Π and ©, U stand for the next and until operators,
respectively; ¬ and ∧ are the negation and conjunction operator
respectively. The always (�) and eventually (♦) operators can be
defined by � := ¬♦¬ϕ and ♦ := >Uϕ, respectively. LTL formulas
are interpreted on infinite words r = w0w1w2 . . . where wi ∈ 2Π,
∀i ≥ 0. The satisfaction relation is denoted by |=, i.e., for a word
w and an LTL formula ϕ, we write w |= ϕ iff w satisfies ϕ. The
satisfaction relation is defined inductively as follows:

w |= >,
w |= $ ⇔ $ ∈ w0,

w |= ¬ϕ⇔ w 6|= ϕ,

w |= ϕ1 ∧ ϕ2 ⇔ w |= ϕ1 and w |= ϕ2,

w |=©ϕ⇔ w1w2 . . . |= ϕ,

w |= ϕ1Uϕ2 ⇔ ∃j ≥ 0 s.t. wjwj+1 . . . |= ϕ2 and

∀i s.t. 0 ≤ i < j, wiwi+1 . . . |= ϕ1.
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Fig. 1: An AUV Equipped with a n DoF manipulator

Given a TS, its infinite run r = r0r1r2 . . . and an LTL formula
ϕ over Π, we say that r satisfies ϕ, denoted by r |= ϕ, if

Trace(r) |= ϕ.

Definition 5. A non-deterministic Büchi Automaton (NBA) is a tuple
(Q,Q0, 2

Π, δ, F ) where

• Q is a finite set of states;
• Q0 ⊆ Q is a set of initial states;
• 2Π is the alphabet;
• δ : Q× 2Π → 2Q is a transition relation;
• F ⊆ Q is a set of accepting states.

A infinite run q0q1q2 . . . in the NBA is called accepting if there
exist infinitely many j ≥ 0 such that qj ∈ F .

3 Problem Formulation

3.1 Kinematic Model

Consider a UVMS which is composed of an AUV and a n DoF
manipulator mounted on the base of the vehicle. The AUV can be
considered as a six DoF rigid body with position and orientation
vector

η := [x, y, z φ, θ, ψ]> ∈ R6,

where the components of the vectors have been named according to
SNAME [24] as surge, sway, heave, roll, pitch and yaw respectively.
The joint angular position state vector of the manipulator is defined
by q := [q1, . . . , qn]> ∈ Rn. Define by q̇ := [q̇1, . . . , q̇n]> ∈ Rn
the corresponding joint velocities.

In order to describe the motion of the combined system, the
earth-fixed inertial frame ΣI , the body-fixed frame ΣB and the end-
effector fixed frame ΣE are introduced (see Figure 1). Moreover,
without loss of generality, the reference frame Σ0 is chosen to be
located at the manipulator’s base, and the frames Σ1, . . . ,Σn are
located to the 1-st, . . . , n-th link of the manipulator, respectively,
under the Denavit-Hartenberg convention [25]. The translational and
rotational kinematic equations for the AUV system (see [1]) are

given by:

η̇ =

[
η̇1
η̇2

]
= J(η2)

[
ν1
ν2

]
,

J(η2) :=

[
J1(η2) 03×3
03×3 J2(η2)

]
,

J1(η2) :=

cθcψ sφsθcψ − sψcφ sθcφcψ + sφsψ
sψcθ sφsθsψ + cφcψ sθsψcφ − sφcψ
−sθ sφcθ cφcθ

 ,
J2(η2) :=

1
sφsθ
cθ

cφsθ
cθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

 ,
where:

η1 := [x, y, z]> ∈ R3, η2 := [φ, θ, ψ]> ∈ R3,

denote the position vector and the orientation vector of the frame ΣB
relative to the frame ΣI , respectively; ν1, ν2 ∈ R3 denote the linear
and the angular velocity of the frame ΣB with respect to ΣI , respec-
tively; J(η2) ∈ R6×6 stands for the Jacobian matrix transforming
the velocities from ΣB to ΣI ; J1(η2), J2(η2) ∈ R3×3 are the cor-
responding parts of the Jacobian related to position and orientation,
respectively; The notation sς and cς stand for the trigonometric
functions sin(ς) and cos(ς) of an angle ς ∈ R, respectively.

Denote by q :=
[
η>1 , η

>
2 , q
>
]>
∈ R6+n the pose configuration

vector of the UVMS. Let p, o ∈ R3 be the position and orientation
vectors of the end-effector with reference to the frame ΣI , respec-
tively. The vectors p, o depend on the pose q and they can be obtained
by the the following homogeneous transformation:

T(q) :=

[
RIE(q) p(q)
01×3 1

]
= T IBT

B
0 T 0

1 · · ·Tn−1
n TnE , (1)

where T ji is the homogeneous transformation matrix describing the
position and orientation of frame Σi with reference to the frame
Σj with i, j ∈ {1, . . . , n, I, 0, B,E}. The end-effector linear veloc-
ity ṗ ∈ R3 and the time derivative or the Euler angles ȯ ∈ R3 are
related to the body-fixed velocities ν1, ν2 and q̇ with the following
kinematics model:

χ̇ = J(q)ζ, (2)

where

χ :=
[
p>, o>

]>
∈ R6, ζ :=

[
ν>1 , ν

>
2 , q̇
>
]>
∈ R6+n.

In the latter, the stack vector ζ denotes the body-fixed system
velocity vector. The Jacobian transformation matrices:

J ∈ R6×(6+n), Jpos ∈ R3×(6+n), Jor ∈ R3×(6+n),

are respectively defined by:

J(q) :=

[
Jpos(q)
Jor(q)

]
,

Jpos(q) :=
[
J1(η2) − J1(η2)S(pee) RI0Je,1

]
,

Jor(q) :=
[
03×3 J2(o)REB J2(o)RE0 Je,2

]
.

In the latter, the vector pee ∈ R3 is the local position of the end-
effector with reference to the frame ΣB ; the matrices Je,1, Je,2 ∈
R3×n represent the manipulator Jacobian matrices with respect to
the frame Σ0; and S(·) the skew-symmetric matrix as given in
Section 2.

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 3



3.2 Dynamic Model

The uncertain nonlinear dynamics of the UVMS are given by [1]:

ζ̇ = f(χ, ζ) + u + d(q, ζ, t), (3)

where:

f(χ, ζ) := −M(q)−1
{
C(ζ, q)ζ +D(ζ, q)ζ + g(q)

}
, (4)

where:

• M(q) ∈ R(6+n)×(6+n) is the inertia matrix for which it holds
that:

z>M(q)z > 0, ∀z ∈ R6+n.

• C(ζ, q) ∈ R(6+n)×(6+n) is the matrix of Coriolis and centripetal
terms;
• D(ζ, q) ∈ R(6+n)×(6+n) is the matrix of dissipative effects;
• d(q, ζ, t) ∈ R6+n is a vector that models the external distur-
bances, uncertainties and unmodeled dynamics of the system;
• g(q) ∈ R(6+n) is the vector of gravity and buoyancy effects;
• u ∈ R6+n denotes the vector of the propulsion forces and
moments acting on the vehicle in the frame ΣB as well as the joint
torques.

In order for the kinematic model (2) to be well-posed, state
constraints are imposed such that:

Q :=
{
q ∈ R6+n : λmin

[
J+(q)+J+(q)>

2

]
≥ J,

‖J(q)‖2 ≤ J, ‖J̇(q)‖2 ≤ J̃
}
, (5)

where:

J+(q) := J(q)J(q)>, J > 0, J > 0, J̃ > 0,

We further consider that the UVMS is in the presence of velocity
and control input constraints captured by the sets:

ζ ∈ Z ⊆ R6+n, u ∈ U ⊆ R6+n,

respectively. According to (1), the constraints q ∈ Q impose also
constraints on the vector χ ∈ X ⊆ R6, where the set X can be com-
puted by the transformation T(q), as given in (1). Note also that the
function f given in (4) is assumed to be continuously differentiable
in the set X × Z . Furthermore, we consider bounded disturbances
d ∈ D where:

D :=
{
d ∈ R6+n : ‖d(q, ζ, t)‖2 ≤ d̃,

∀(q, ζ) ∈ Q×Z, ∀t ∈ R≥0

}
, (6)

with d̃ > 0.
For the kinematics/dynamics (2),(3), define the corresponding

nominal kinematics / dynamics by:

χ̇ = J(q)ζ, (7a)

ζ̇ = f(χ, ζ) + u, (7b)

where d(·) ≡ 0, q ∈ Q, χ ∈ X , ζ ∈ Z and u ∈ U . Define the
stack vector ξ := [χ, ζ]> ∈ R12+n and consider the linear nominal
system:

η̇ = Aη +Bu, (8)

with:

A ∈ R(12+n)×(12+n), B ∈ R(12+n)×(6+n),

which is the outcome of the Jacobian linearization of the nominal
dynamics (7a),(7b) around the equilibrium point η = 0. Due to the

dimension of the control input (6 + n > 6), the linear system (8) is
stabilizable.

Assume that the UVMS is operating in a bounded workspace
W ⊆ R3 in which there exist m ∈ N RoI labeled by M :=
{1, . . . ,m}. Without loss of generality, the RoI are modeled by
balls, i.e., Rm := B(ym, γm), m ∈M where ym ∈ W and γm >
0 stand for the center and the radius of the m-th RoI, respectively.
Define also the union of all RoI by:

R :=
⋃

m∈M
Rm. (9)

Due to the fact that we are interested in imposing safety specifi-
cations, at each time t ≥ 0, the UVMS occupies a ball B(η1(t), β)
that covers its volume with radius β > 0. Assume that:

min
m∈M

{γm} > β,

which means that the RoI have sufficiently larger volume than the
volume of the UVMS.

3.3 Objectives

The control objective is to control the UVMS with kinemat-
ics/dynamics as in (2), (3) such that it navigates between RoI of
the workspace so that it obeys a high-level specification over atomic
tasks. Atomic tasks are captured through a given set of atomic propo-
sitions Π. Each RoI is labeled with atomic propositions that hold true
there. Define the labeling function:

L : R→ 2Π, (10)

with R as given in (9), which maps each RoI with atomic proposi-
tions that hold true there. Note that some of the RoI can be assigned
with labels that indicate unsafe regions, i.e., the UVMS is required
to avoid visiting them (safety specifications).

Definition 6. Given a trajectory p(t) of the UVMS’s end-effector, its
corresponding behavior that is given by an infinite sequence of the
form:

b := (p(t0), $0)(p(t1), $1)(p(t2), $2) . . . ,

is well-defined, if the following conditions hold:

1. t0 < t1 < t2 < . . . ;
2. $j ∈ 2Π, for every j ≥ 0;
3. B(η1(tj), β) ( Rj and $j ∈ L(Rj), with Rj ∈ R, for every
j ≥ 0;
4. B(η1(tj), β) ( Rj and B(η1(tj+1), β) ( Rj+1 with Rj 6=
Rj+1 for every j ≥ 0.

Definition 7. A trajectory of the end-effector of the UVMS p(t) sat-
isfies an LTL formula ϕ over a set of atomic propositions Π formally,
written as:

p(t) |= ϕ, ∀t ≥ 0, (11)

if and only if there exists a well-defined behavior b = (p(t0),
$0)(p(t1), $1)(p(t2), $2) . . . , according to Definition 6, for
which it holds that:

$0$1$2 . . . |= ϕ,

according to LTL semantics given in Section 2.
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3.4 Problem Statement

The problem treated in this paper can be now formalized as follows:

Problem 1. Consider a UVMS composed of an AUV and an attached
manipulator with nDoF, which is operating in a bounded workspace
W ⊆ R3, governed by kinematics and dynamics given in (2) and (3),
respectively. The workspace W contains the RoI Rm, modeled by
the ballsB(ym, γm),m ∈M. Assume a high-level taskϕ expressed
in LTL over the set of atomic propositions Π and labeling function L
as in (10). The system is in the presence of state and input constraints
as well as bounded disturbances which are respectively given by:

q ∈ Q, χ ∈ X , ζ ∈ Z, u ∈ U , d ∈ D. (12)

Then, design a feedback control law u := κ(χ, ζ) such that the end-
effector trajectory in the workspace p(t) fulfills the LTL specification
ϕ, i.e.,

p(t) |= ϕ, ∀t ≥ 0,

according to (11) of Definition 7. Moreover, the UVMS is required to
remain in the workspace for all times.

4 Main Results

In this section, we propose a novel feedback control law that solves
Problem 1 in a systematic way as follows:

1. Due to the fact that it is required to design a feedback control
law that guarantees the transition of the UVMS between RoI under
state and input constraints given by (12), as well as safety speci-
fications, we utilize a Nonlinear Model Predictive Control (NMPC)
framework [14–16]. Furthermore, since the UVMS is under the pres-
ence of disturbances/uncertainties d ∈ D, we provide a novel robust
analysis, the so-called tube-based NMPC approach. In particular,
first, the error states and the corresponding transformed constraints
sets are defined in Section 4.1. Then, the proposed feedback con-
trol law consists of two parts: an on-line control law which is the
outcome of a solution to a Finite Horizon Optimal Control Problem
(FHOCP) for the nominal system dynamics (see Section 4.3); and
a state feedback law which is designed off-line and guarantees that
the real system trajectories always lie within a hyper-tube centered
along the nominal trajectories (see Section 4.2).
2. The dynamics (2),(3) are abstracted into a TS, exploiting the fact
that the runs of the TS project into well-defined behaviors according
to Definition 6 (Section 4.4).
3. By invoking ideas from correct by construction formal methods
based control synthesis [10, 13], a procedure that gives a sequence of
control laws that serve as solution to Problem 1 is provided (Section
4.5).

4.1 Errors and Constraints

Consider that the UVMS with kinematics/dynamics as in (2),(3) is
occupying a RoI Rs ∈ R. The feedback control law needs to guar-
antee that the UVMS navigates towards a desired RoI Rd ∈ R,
Rs 6= Rd without intersecting with any other RoI of the workspace,
due to the fact that safety specifications are required. Define the vec-
tor χd := [p>d , 0, 0, 0] ∈ R6, where pd ∈ R3 stands for the center of
the desired RoIRd. Define the error state e := χ− χd ∈ R6. Then,
the uncertain error kinematics/dynamics are given by:

ė = J(q)ζ, (13a)

ζ̇ = f(e+ χd, ζ) + u + d(q, ζ, t), (13b)

and the corresponding nominal error kinematics/dynamics by:

ė = J(q)ζ, (14a)

ζ̇ = f(e+ χd, ζ) + u, (14b)

By recalling that B(p(t), β) stands for the ball covering the UVMS
at time t, define the set that captures the state-transition constraints
by:

X̃ := {χ ∈ X : B(p, β) (W, B(p, β) ∩ {R\{Rs,Rd}} = ∅} .

The two constraints refer to the fact that the UVMS needs to remain
in the workspace for all times and the fact that it should not intersect
with any other RoI except Rs and Rd. In order to translate the con-
straints for the state χ ∈ X̃ to constraints that are dictated regarding
the error e, the constraints set

E := X̃ ⊕ (−χd),

is introduced, with ⊕ as given in Section 2.

4.2 Feedback Control Design

Consider the feedback law:

u := u(e, ζ) + κ(e, ζ, e, ζ), (15)

which consists of a nominal control law u(e, ζ) ∈ U and a state feed-
back law κ(·). The control action u(e, ζ) will be the outcome of
a FHOCP for the nominal kinematics/dynamics (14a),(14b) which
is solved on-line at each sampling time. The state feedback law
κ(·) is used to guarantee that the real trajectories e(t), ζ(t), which
are the solution to (13a),(13b), always remain within a bounded
hyper-tube centered along the nominal trajectories e(t), ζ(t) which
are the solution to (14a),(14b). Define by:

e := e− e ∈ R6,

z := ζ − ζ ∈ R6+n,

the deviation between the real states of the uncertain system
(13a),(13b) and the states of the nominal system (14a),(14b), respec-
tively, with e(0) = z(0) = 0. It will be proved hereafter that the
trajectories e(t), z(t) remain invariant in certain compact sets. The
dynamics of the states e, z are written as:

ė = b(χ, χ, ζ) + J(q)z, (16a)

ż = l(e, e, ζ, ζ) + (u− u) + d(q, ζ, t), (16b)

where the functions b, l are defined by:

b(χ, χ, ζ) := c(χ, ζ)− c(χ, ζ),

l(e, e, ζ, ζ) := f(e+ χd, ζ)− f(e+ χd, ζ),

with
c(χ, ζ) := J(q)ζ.

Since the aforementioned functions are continuously differentiable,
the following hold:

‖b(χ, χ, ζ)‖2 = ‖c(χ, ζ)− c(χ, ζ)‖2
≤ Lc‖χ− χ‖2
= Lc‖e‖2,

‖l(e, e, ζ, ζ)‖2 ≤ ‖f(e+ χd, ζ)− f(e+ χd, ζ)‖2
+ ‖f(e+ χd, ζ)− f(e+ χd, ζ)‖2

≤ L1‖e− e‖2 + L2‖ζ − ζ‖2
≤ L (‖e‖2 + ‖z‖2) .

The constant Lc stands for the Lipschitz constant of function c with
respect to the variable χ; L1, L2 stand for the Lipschitz constants of
function h with respect to the variables χ and ζ, respectively, and

L := max{L1, L2}.

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 5



Lemma 2. The state feedback law designed by:

κ(e, e, ζ, ζ) := −k(e− e)− kσJ(q)>(ζ − ζ), (17)

where k, σ > 0 are chosen such that the following hold:

σ > 0, σ :=
Lc + σ

J
, ρ > Λ1

4σ , k > ρΛ1 + Λ2, (18a)

Λ1 :=
[
L+ J + σ

(
Lc + J̃

)]
,Λ2 :=

(
L+ σJ

2
)
, (18b)

renders the sets:

Ω1 :=
{
e ∈ R6 : ‖e‖2 ≤ d̃

min{α1,α2}

}
, (19a)

Ω2 :=
{
z ∈ R6+n : ‖z‖2 ≤ 2d̃

J min{α1,α2}

}
, (19b)

RCI sets for the error dynamics (16a), (16b), according to Definition
2, where the constants α1, α2 > 0 are defined by:

α1 := σ − Λ1
4ρ , α2 := k − ρΛ1 − Λ2. (20)

Proof: A backstepping control methodology will be used [26]. The
state z in (16a) can be seen as virtual input to be designed such that
the Lyapunov function

L1(e) :=
1

2
‖e‖22,

for the system (16a) is always decreasing. The time derivative of L1
along the trajectories of system (16a) is given by:

L̇(e) = e>J(q)z + e>b(·) ≤ e>J(q)z + Lc‖e‖22. (21)

Design the virtual control input as

z ≡ −σJ(q)>e,

with J , σ as given in (5), (18a), respectively. Then, by employing
(5), (21) becomes:

L̇(e) ≤ −σe>J+(q)e + Lc‖e‖22

≤ −σλmin

[
J+(q)+J+(q)>

2

]
‖e‖22 + Lc‖e‖22

≤ −σJ‖e‖22 + Lc‖e‖22
= −σ‖e‖22. (22)

Define the backstepping auxiliary error state

x := z + σJ(q)>e ∈ R6+n,

and the the stack vector

y := [e>, x>]> ∈ R12+n.

Consider the Lyapunov function

L(y) = 1
2‖y‖

2.

Its time derivative along the trajectories of the system (16a),(16b) is
given by:

L̇(y) = e>ė + x>
[
ż + σJ(q)>ė + σJ̇(q)>e

]
= [e + σJ(q)x]> ė + x>ż + σx>J̇(q)>e

= −σe>J+(q)e + e>b(·) + σx>J(q)>b(·) + e>J(q)x

+ σx>J+(q)x + σx>J̇(q)>e + x>l(·) + x>(u− u) + x>d(·).
(23)

By invoking (22) as well as the following:

σx>J(q)>b(·) ≤ σ‖x‖2‖J(q)‖2‖b(·)‖2 ≤ σLcJ‖e‖2‖x‖2,

e>J(q)x ≤ ‖e‖2‖J(q)‖2‖x‖2 ≤ J‖e‖2‖x‖2,

σx>J+(q)x ≤ σ‖x‖22‖J+(q)‖2 ≤ σ‖x‖22‖J(q)‖2
∥∥J>(q)

∥∥
2

≤ σJ2‖x‖22,

σx>J̇(q)>e ≤ σ‖e‖2‖J̇(q)‖2‖x‖2 ≤ σJ̃‖e‖2‖x‖2

x>l(·) ≤ L‖e‖2‖x‖2 + L‖x‖22,

x>d(·) ≤ ‖x‖2‖d(·)‖2 ≤ ‖y‖2d̃,

(23) becomes:

L̇(y) ≤ −σ‖e‖22 + Λ1‖e‖2‖x‖2

+ Λ2‖x‖22 + x>(u− u) + ‖y‖2d̃. (24)

with Λ1, Λ2 given in (18b). By using Lemma 1 for n = P = 1, we
get:

‖e‖2‖x‖2 ≤ 1
4ρ‖e‖

2
2 + ρ‖x‖22,

with ρ designed so that (18a) holds. Combining the latter with (24)
it yields:

L̇(y) ≤ −
(
σ − Λ1

4ρ

)
‖e‖22 +

(
ρΛ1 + Λ2

)
‖x‖22

+ x>(u− u) + ‖y‖2d̃.

By designing u− u = −kx = −ke− kσJ(q)>z, which is compat-
ible with (15) and the same as in (17), we have:

L̇(y) ≤ −
(
σ − Λ1

4ρ

)
‖e‖22 −

(
k − ρΛ1 − Λ2

)
‖x‖22 + ‖y‖2d̃

≤ −min{α1, α2}‖y‖22 + ‖y‖2d̃

= −‖y‖2
[

min{α1, α2}‖y‖2 − d̃
]
,

as α1 and α2 given in (20). Thus, it holds that:

L̇(y) < 0, when ‖y‖2 > d̃
min{α1,α2} .

Taking the latter into consideration and the fact that y(0), we have
that:

‖y(t)‖ ≤ d̃
min{α1,α2} , ∀t ≥ 0.

Moreover, the following inequalities hold:

‖e‖2 ≤ ‖y‖2 ⇒ ‖e(t)‖2 ≤ d̃
min{α1,α2} ,∀t ≥ 0,∣∣∣‖e‖2 − ∥∥J>z∥∥2

∣∣∣ ≤ ∥∥e + J>z
∥∥

2
= ‖z‖2 ≤ ‖y‖2

⇒ ‖z(t)‖2 ≤ 2d̃
J min{α1,α2}

, ∀t ≥ 0,

which concludes the proof. �

Remark 1. According to Lemma 2, the volume of the tube which
is centered along the nominal trajectories e(t), ζ(t), that are solu-
tion of system (14a),(14b), depends on the parameters d̃, J , J , J̃ , L
and Lc. By tuning the parameters ρ and k from (18a) appropriately,
the volume of the tube can be adjusted. Figure 2 shows a graphical
representation of the tube-based approach.
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d̃
min{α1,α2}

• ••

e(t)
e(t)

Fig. 2: The hyper-tube centered along the trajectory e(t) (depicted
by blue line) with radius d̃

min{α1,α2} . Under the proposed control
law, the real trajectory e(t) (depicted with red line) lies inside the
hyper-tube for all times, i.e., ‖e(t)‖ ≤ d̃

min{α1,α2} , ∀t ∈ R≥0.

By using (15), the closed-loop system is written as:

ė = J(q)ζ, (25a)

ζ̇ = f(e+ χd, ζ) + u(e, ζ)

− k(e− e)− kσJ(q)>(ζ − ζ) + d(q, ζ, t), (25b)

Assumption 1. It holds that:

inf
ym,ym′∈R
m,m′∈M,
m6=m′

‖ym − ym′‖2 > 2β + d̃√
min{α1,α2}

,

i.e., there is sufficient space between any pairs of RoIs such that the
UVMS can be navigated without intersecting them.

The aforementioned assumption is required in order for the
navigation problem to have a solution.

4.3 On-line Optimal Control

Consider a sequence of sampling times {tk}, k ∈ N, with a constant
sampling period 0 < h < T , where T is a prediction horizon. For
the sampling times it holds that tk+1 := tk + h, ∀k ∈ N. At each
sampling time tk, a FHOCP is solved for the nominal system (14a)-
(14b) as follows:

min
u(·)

{
‖ξ(tk + T )‖2P +

∫ tk+T

tk

[
‖ξ(s)‖2Q + ‖u(s)‖2R

]
ds

}
(26a)

subject to:

ξ̇(s) = g(ξ(s), u(s)), ξ(tk) = ξ(tk), (26b)

ξ(s) ∈ E× Z, u(s) ∈ U , ∀s ∈ [tk, tk + T ], (26c)

ξ(tk + T ) ∈ F , (26d)

where:

ξ :=
[
e>, ζ>

]>
∈ R12+n,

g(ξ, u) :=

[
J(q)ζ

f(e+ χd, ζ) + u

]
,

and Q, P ∈ R(12+n)×(12+n) and R ∈ R(6+n)×(6+n) are positive
definite gain matrices. We will explain hereafter the sets E, V, U and
F .

In order to guarantee that while the FHOCP (26a)-(26d) is solved
for the nominal dynamics (14a)-(14b), the real states e, ζ and control

input u satisfy the corresponding state E , Z and input constraints U ,
respectively, the following modification is performed:

E := E 	 Ω1,

Z := Z 	 Ω2,

U := U 	
[
Λ ◦ Ω

]
,

with:

Λ := diag{−kI6,−kσJI6+n} ∈ R(12+n)×(12+n),

Ω := Ω1 ⊕ Ω2,

the operators 	, ◦ as defined in Section 2, and Ω1, Ω2 as given
in (19a), (19b), respectively. Intuitively, the sets E , Z and U are
tightened accordingly, in order to guarantee that while the nominal
states e, ζ and the nominal control input u are calculated, the corre-
sponding real states e, ζ and real control input u satisfy the state and
input constraints E , Z and U , respectively. This constitutes a stan-
dard constraints set modification technique adopted in tube-based
NMPC frameworks (for more details see [19]). Define the terminal
set by:

F :=
{
ξ ∈ E× Z : ‖ξ‖P ≤ ε

}
, ε > 0,

which is used to enforce the stability of the system [27]. In partic-
ular, due to the fact that the linearized nominal dynamics (8) are
stabilizable, it can be proven that (see [27]) there exists a local
controller

uloc := K ξ ∈ U, K ∈ R(6+n)×(6+n), K > 0,

which guarantees that the terminal set F is invariant.

Theorem 1. Suppose that Assumption 1 holds. Let the UVMS with
dynamics as in (2), (3) occupy RoI Rs and pd be the center of a
desired RoI Rd. Suppose also that the FHOCP (26a)-(26d) is fea-
sible at time t = 0. Then, the feedback control law (15) renders
the closed-loop system (25a)-(25b) Input to State Stable (ISS) with
respect to the disturbance d(q, ζ, t).

Proof: The proof of the theorem consists of two parts:

Feasibility Analysis

It will be shown that recursive feasibility is established, and it
implies subsequent feasibility. Before proceeding to the proof, con-
sider the following definition.

Definition 8. A control input u : [tk, tk + T ]→ Rn for a state
ξ(tk) of agent i ∈ V is called admissible for the FHOCP (26a)-(26d)
if the following hold:

1. u(·) is piecewise continuous;
2. u(s) ∈ U , ∀s ∈ [tk, tk + T ];
3. ξ

(
tk + s; u(·), ξ(tk)

)
∈ E× Z, ∀s ∈ [0, T ]; and

4. ξ
(
tk + T ; u(·), ξ(tk)

)
∈ F .

Consider a sampling instant tk for which a solution u?
(
·; ξ(tk)

)
to the DFHOCP (26a)-(26d) of agent i ∈ V exists. Suppose now a
time instant tk+1 such that tk+1 = tk + h, and consider that the
optimal control signal calculated at tk is comprised of the following
two portions:

u?
(
·; ξ(tk)

)
=

{
u?
(
s; ξ(tk)

)
, s ∈ [tk, tk+1]

u?
(
s; ξ(tk)

)
, s ∈ [tk+1, tk + Tp]

, (27)

Both portions are admissible since the calculated optimal con-
trol input is admissible, and hence they both conform to the input
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Algorithm 1 Implementation of feedback control law u(t)

Step 0: At time t0 := 0, set ξ(0) = ξ(0) where ξ(0) is the current
state.
Step 1: At time tk and current state (ξ(tk), ξ(tk)), solve the
FHOCP (26a)-(26d) to obtain the nominal control action u(tk)
and the actual control action u(tk) = u(tk) + κ(ξ(tk), ξ(tk)).
Step 2: Apply the control u(tk) to the system (13a), (13b), during
the sampling interval [tk, tk+1), where tk+1 = tk + h.
Step 3: Measure the state ξ(tk+1) at the next time instant tk+1 of
the system (13a), (13b) and compute the successor state ξ(tk+1)
of the nominal system (14a), (14b) under the nominal control
action u(tk).
Step 4: Set (ξ(tk), ξ(tk))← (ξ(tk+1), ξ(tk+1)), tk ← tk+1;
Go to Step 1.

constraints. Furthermore, the predicted states ξ(s; u?(·), ξ(tk)) will
satisfy the state constraints for every s ∈ [tk, tk + T ] and it also
holds that:

ξ
(
tk + T ; u?(·), ξ(tk)

)
∈ F .

Then, we can construct an admissible input u(·) starting at time
tk+1 by sewing together the second portion of (27) and the input
ui,loc(ξ) as:

ũ(s) =

{
u?
(
s; ξ(tk)

)
, s ∈ [tk+1, tk + T ]

uloc
(
ξ(s)

)
, s ∈ (tk + T, tk+1 + T ]

,

Applied at time tk+1, ũ(s) is an admissible control input with
respect to the input constraints as a composition of admissible con-
trol inputs, for all s ∈ [tk+1, tk+1 + T ]. What remains to prove is
the following statement.

Statement : ξ
(
tk+1 + s; u?(·), ξ(tk+1)

)
∈ E × Z , ∀s ∈ [0, T ].

Initially, at time tk+1, ũ is an admissible control input according to
Definition 8. Then, according to 3) of Definition 8 we have that:

ξ
(
tk+1 + s; u?(·), ξ(tk+1)

)
∈ E× V

= (E 	 Ω1)	 (Z 	 Ω2), ∀s ∈ [0, T ], (28)

By invoking the fact that Ω1 and Ω2 are RCI sets it is guaranteed
that:

ξ
(
tk+1 + s; u?(·), ξ(tk+1)

)
− ξ
(
tk+1 + s; u?(·), ξ(tk+1)

)
∈ Ω, ∀s ∈ [0, T ]. (29)

By combining (28) and (29), it yields that:

ξ
(
tk+1 + s; u?(·), e(tk+1)

)
∈
[
(E × Z)	 Ω

]
⊕ Ω, ∀s ∈ [0, T ].

By using Definition the properties of Section 2, we have that:[
(E × Z)	 Ω

]
⊕ Ω ⊆ E × Z,

from which it holds that:

ξ
(
tk+1 + s; u?(·), e(tk+1)

)
∈ E × Z, ∀s ∈ [0, T ],

which concludes the proof of the statement.

By taking the aforementioned into consideration, the feasibility
of a solution to the optimization problem at time tk implies feasibil-
ity at all times tn+1, with n > k. Thus, since at time t = 0 a solution
is assumed to be feasible, a solution to the optimal control problem
is feasible for all t ∈ R≥0, and for all agents i ∈ V .

Convergence Analysis

Recall that:

e = χ− χd, e = e− e, z = ζ − ζ.

Then, we get:

‖χ(t)− χd‖2 ≤ ‖e(t)‖2 + ‖e(t)‖2,

‖ζ(t)‖2 ≤ ‖ζ(t)‖2 + ‖z(t)‖2,

which, by using the fact that:

‖e‖2 ≤ ‖ξ‖2, ‖ζ‖2 ≤ ‖ξ‖2,

as well as the bounds from (19a), (19b) the latter inequalities
become:

‖χ(t)− χd‖2 ≤ ‖ξ(t)‖2 + d̃
min{α1,α2} , (30a)

‖ζ(t)‖2 ≤ ‖ξ(t)‖2 + 2d̃
J min{α1,α2}

, ∀t ≥ 0. (30b)

Since only the nominal system dynamics (14a)-(14b) are used
for the online computation of the control action u(s) ∈ U , s ∈
[tk, tk + T ] through the FHOCP (26a)-(26d), by invoking nominal
NMPC stability results found on [15, 28], it can be proven that the
NMPC control law u renders the closed loop trajectories of the nomi-
nal system (14a)-(14b) asymptotically ultimated bounded in the sets
F . Then, from [23, Lemma 4.5, p. 150], there exists a class KL
function β, such that:

‖ξ(t)‖ ≤ β(‖ξ(0)‖2, t), ∀t ∈ R≥0. (31)

By combining (30a)-(30b) with (31) we get:

‖χ(t)− χd‖2 ≤ β(‖ξ(0)‖2, t) + d̃
min{α1,α2} ,

‖ζ(t)‖2 ≤ β(‖ξ(0)‖2, t) + 2d̃
J min{α1,α2}

,

for every t ∈ R≥0. The latter inequalities leads to the conclusion of
the proof. �

Remark 2. A major advantage of tube-based approach compared
to other robust NMPC approaches, is that the FHOCP is solved only
for the nominal system dynamics, thus the complexity is the same
with the complexity of solving a nominal sampled-data NMPC (see
[19] for more details)

Algorithm 1 depicts the procedure of how the proposed control
law is calculated and applied to the system. Theorem 1 implies that
the UVMS with kinematics/dynamics as in (2), (3), starting at a
RoI Rs, is driven by the controller (15) towards a desired RoI Rd,
while all constraints imposed to the system are satisfied, i.e., the
UVMS does not intersect with other RoI and always remains in the
workspaceW .

4.4 Discrete System Abstraction

The abstraction that captures the dynamics of the robot into a TS is
given through he following definition:

Definition 9. The motion of the UVMS in the workspace W is
modeled by the TS T = (S, S0, Π, −→, Σ, L) where:

• S = R =
⋃
m∈MRm is the set of states of the UVMS that

contains all the RoI of the workspaceW;
• S0 ∈ S is a set of initial states defined by the UVMS’ s initial
position in the workspace;
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LTL2BA

ϕ

Aϕ

⊗ ApT synthesis r̃abstractionχ̇ = J(q)ζ

ζ̇ = f(x, ζ) + u + d

u(x, ζ)

Fig. 3: A graphical illustration of the combined abstraction and controller synthesis framework.

• Act is the set of actions containing the union of all feedback
controllers (15) which can navigate the robot between RoI;
• −→⊆ S ×Act× S is the transition relation. We say that
(Rs, u,Rd) ∈−→, with Rs, Rd ∈ R with Rs 6= Rd if there exists
a feedback control law u ∈ Act as in (15) which can drive the UVMS
from the region Rs to the region Rd without intersecting with any
other RoI of the workspace;
• L is the labeling function as given in (10); Π is the set of atomic
propositions imposed by Problem 1.

The states are essentially the RoI or the workspace and the transitions
represent the connected RoI. By construction, each behavior

b := (p(t0), $0)(p(t1), $1)(p(t2), $2) . . . ,

produced by the TS T , it is associated with the trajectory p(t) of
the system (2)-(3) and it is well-defined, as given in Definition 6.
Hence, according to Definition 7, if we find a run of T satisfying the
given LTL formula ϕ, we also find a desired behavior of the original
system, and hence a trajectory p(t) that is a solution to Problem 1.

Remark 3. Note that, according to Assumption 1, the FHOCP
(26a)-(26d) can always find a solution for the navigation between
any two pairs of RoI, rendering thus the TS of Definition 9 a com-
plete digraph. Therefore, there is no need to determine which pairs of
RoI are connected by running a priori the FHOCP (26a)-(26d). The
latter is used online for the actual navigation of the UVMS among
the RoI output by the high-level planner, which is feasible due to
Assumption 1.

4.5 Control Synthesis

There are several well-established methods to find an infinite run of
T such that Trace(r) |= ϕ. In this paper, we adopt the method from
[10], which is based on checking the emptiness of the product BA
which will be defined hereafter.

Definition 10. Let T be the TS from Definition 9 and Aϕ a BA that
accepts the runs that satisfy the given formula ϕ. Then, the product
automaton Ap := T ⊗ Aϕ is a tuple (Q′, Q′0, Act, δ

′, F ′) where:

• Q′ := S ×Q;
• Q′0 := {(s0, q0) : q0 ∈ Q0};
• δ′ ⊆ Q′ ×Act×Q′. We say that ((s, q̂), ·, (s′, q̂′)) ∈ δ′ if
(s, ·, s′) ∈−→ and q̂′ ∈ δ(q̂, L(s));
• F ′ := {(s, qf ) : s ∈ S and qf ∈ F};

Figure 3 depicts a framework under which a sequence of feed-
back control laws u(χ, ζ) that guarantee the satisfaction of the LTL
formula ϕ can be computed. First, a BA Aϕ that accepts a run
satisfying the specification formula ϕ is constructed. The related
software tool can be found in [29]. Second, the product automaton
Ap := T ⊗ Aϕ according to Definition 10 is constructed.

The product automaton Ap is a graph. By performing graph
search to the product automatonAp, a run that satisfies the LTL for-
mula ϕ and maps into a sequence of feedback control laws u(χ, ζ)
of the form (15) can be found.

In the real UVMS system, when the robot is operating in a real
environment, only the feedback control laws which are the outcome
of the solution of the corresponding FHOCP (26a)-(26d) that guar-
antees the transitions from the previous step are calculated online.
More specifically, the FHOCP (26a)-(26b) is the only computation
that is performed online, at each sampling time of the system.

Proposition 1. The solution that it is obtained from the afore-
mentioned controller synthesis procedure provides a sequence of
feedback control laws u(χ, v) as in (15) that guarantees the satisfac-
tion of the formula ϕ of a UVMS governed by kinematics/dynamics
as in (2)-(3), thus, providing a solution to Problem 1.

5 Numerical Simulations

In order to illustrate the proposed approach, consider the Girona 500
AUV depicted in Figure 4 equipped with an ARM 5E Micro manipu-
lator from [7, 30]. The manipulator consists of n = 4 revolute joints
with limits:

−0.52 ≤ q1 ≤ 1.46, 0.1471 ≤ q2 ≤ 1.3114,

−1.297 ≤ q3 ≤ 0.73, −3.14 ≤ q4 ≤ 3.14.

The UVMS is operating in a workspaceW = {x, y, z ∈ R : −5 ≤
x, y, z ≤ 5} ⊆ R3. The initial states are set to:

χ(0) =
[
p(0)>, o(0)>

]>
= [−1.0, 1.3,−1.0, 0.0,−π8 ,

π
12 ]>.

According to (1), the transformation matrices which lead to the
forward kinematics are given by:

T IB =

[
J1(η2) η1
01×3 1

]
,

TB0 =

[
I3×3 [0.53, 0, 0.36]>

01×3 1

]
,

and T i−1
i , i = 1, . . . , 4 are given by the Denavit-Hantenberg param-

eters which can be calculated from Table 1. By imposing the
constraints

−π + ε ≤ φ− ε, ψ ≤ π, −π2 + ε ≤ θ ≤ π
2 − ε,

ε = 0.1, according to (5) we get J = 0.5095 and Lc = 2
√

2. The
input constraints are set to

‖u1‖2 ≤ 150, ‖u2‖2 ≤ 30, ‖umanip‖2 ≤ 2.
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di(m) qi ai(m) αi(rad)

1 0 q1 0.1 −π2
2 0 q2 0.26 0
3 0 q3 0.09 π

2
4 0.29 q4 0 0

E Rot(y,−π2 )

Table 1 Denavit-Hantenberg Parameters of the ARM 5E Micro

The optimization horizon and the sampling time are set to T =
0.7 sec and h = 0.1 sec, respectively. The NMPC gains are set to

Q = P = 0.5I6, R = 0.5I10.

In the workspace we have m = 14 RoI with radius γm = 0.6,
∀m ∈M from which 6 of them stand for unsafe regions that the
robot is prohibited to visit (depicted with red color in Figure 5). The
RoI are located in the following positions on the workspaceW:

R1 : [−3.8, 3.8, 4.0], R2 : [−3.0, 2.0, 2.5],

R3 : [−1.2, 2.0, 0.5], R4 : [0.0, 2.8, 2.0],

R5 : [2.0, 2.6, 3.0], R6 : [0.0, 0.0, 0.0],

R7 : [3.4, 1.6, 1.5], R8 : [−1.2,−2.0, 1.2],

R9 : [3.0, 0.0,−0.5], R10 : [2.5,−2.0, 1.0],

R11 : [−2.7,−3.0,−0.5], R12 : [0.7,−3.0, 2.5].

The unsafe regions are placed in specific positions such that the
UVMS needs to maneuver to avoid them. The desired LTL formula
is set to:

ϕ = �{¬obs} ∧ ♦ {goal1 ∧©goal2} , (32)

over the set of atomic propositions

Π = {obs, goal1, goal2},

and labeling function:

L(R5) = {goal1},
L(R9) = {goal2},
L(Ri) = {obs}, i ∈ {2, 4, 6, 7, 8, 10},
L(Rj) = ∅, j ∈ {1, 3, 11, 12, 13, 14}.

The formula intuitively means “Eventually reach goal 1 and then
directly move to goal 2, while always avoid any obstacles of the
environment". Figures 5, 6 depicts the workspace with RoI, unsafe
regions, the nominal trajectory of the UVMS (orange color) and the
real trajectory of the UVMS (black dashed color). According to Fig-
ures 5, 6 the robot never visits the unsafe RoI, eventually visits RoI
R5 and next visitsR9. Thus,

p(t) |= ϕ, ∀t ≥ 0,

according to (11) of Definition 7. The error signals for the transition
between RoI R1-R3 are depicted in Figure 7. The control effort
for the transition from R1 to R3 is presented in Figure 8. It can be
observed that the desired task is performed while all the state/input
constraints are satisfied.

6 Conclusion

This paper addresses the problem of control of a UVMS under
high-level tasks given in LTL. First, a tube-based NMPC frame-
work that guarantees the robust transition of the UVMS between RoI

Fig. 4: The GIRONA-UVMS composed of Girona500 AUV and
ARM 5E Micro manipulator [7].
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Fig. 5: The evolution of the trajectory of the UVMS in the
workspace W . The RoI and unsafe regions are depicted with blue
and red color, respectively. The real and the nominal trajectories χ(t)
and χ(t), respectively, are depicted with orange and dashed black
color. The UVMS successfully satisfies the task ϕ given in (32).
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Fig. 6: A planar view of the workspace indicating that the UVMS is
not intersecting with any unsafe RoI.

of workspace under state, input and safety constraints, is provided.
Then, by utilizing ideas from previous works, an abstraction and
controller synthesis framework that gives a sequence of controllers
that provably satisfy the given task is presented. Simulation results
verify the efficiency of the proposed approach. Future research will
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Fig. 7: The evolution of the real position errors of the end-effector
p1(t)− p1,d, p2(t)− p2,d, p3(t)− p3,d depicted with solid lines
as well as the corresponding nominal position errors p1(t)− p1,d,
p2(t)− p2,d, p3(t)− p3,d depicted with dashed lines, for the transi-
tion of the UVMS between RoIR1 −R3.
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Fig. 8: The evolution of the control input signals ‖u1(t)‖2,
‖u2(t)‖2 and ‖umanip(t)‖2.

be devoted towards extending the current framework into underwa-
ter object transportation of multiple UVMSs under event-triggered
control communication.
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