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Abstract—In this paper we provide a decentralized robust
control approach, which guarantees that connectivity of a multi-
agent network is maintained when certain bounded input terms
are added to the control strategy. Our main motivation for this
framework is to determine abstractions for multi-agent systems
under coupled constraints which are further exploited for the
synthesis of high level plans.

I. INTRODUCTION

Cooperative control of multi-agent systems constitutes a
highly active area of research during the last two decades.
Typical objectives are the consensus problem, which is
concerned with finding a protocol that achieves convergence
to a common value [10], reference tracking [1] and formation
control [7]. Consensus algorithms have also been extended
to robust frameworks, in order to provide convergence in the
presence of input disturbances [11]. A common feature in the
approach to the latter problems is the design of decentralized
control laws in order to achieve a global goal.

In the case of mobile robot networks with limited sensing
and communication ranges, connectivity maintenance plays
a fundamental role [16]. In particular, it is required to
constrain the control input in such a way that the network
topology remains connected during the evolution of the
system. For instance, in [7] the rendezvous and formation
control problems are studied while preserving connectivity,
whereas in [4] swarm aggregation is achieved by means
of a control scheme that guarantees both connectivity and
collision avoidance.

In this framework we provide a control law for each agent
comprising of a decentralized feedback component and a
free input term, which ensures connectivity maintenance,
for all possible free input signals up to a certain bound of
magnitude. The motivation for this approach comes from
distributed control and coordination of multi-agent systems
with locally assigned Linear Temporal Logic (LTL) specifi-
cations. In particular, by virtue of the invariance and robust
connectivity maintenance properties, it is possible to define
well posed decentralized abstractions for the multi-agent
system which can be exploited for motion planning. The
latter problem has been studied in our recent work [2] for
the single integrator dynamics case.

In this work, we design a bounded control law which
results in network connectivity of the system for all future
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times provided that the initial relative distances of intercon-
nected agents and the free input terms satisfy appropriate
bounds. Furthermore, in the case of a spherical domain, it
is shown that adding an extra repulsive vector field near the
boundary of the domain can also guarantee invariance of the
solutions and simultaneously maintain the robust connectiv-
ity property. The latter framework enables the construction
of finite abstractions for the single integrator case. Due to
the motivation for the study of the problem and to the best
of our knowledge, this is the first attempt to consider robust
connectivity maintenance in conjunction with invariance, by
means of bounded control laws.

The rest of the paper is organized as follows. Section
II introduces basic notation and preliminaries. In Section
III, results on robust connectivity maintenance are provided
and explicit controllers which establish this property are
designed. In Section IV, the corresponding controllers are
appropriately modified, in order to additionally guarantee
invariance of the solution for the case of a spherical domain.
We summarize the results and discuss possible extensions in
Section V.

II. PRELIMINARIES AND NOTATION

Notation. We use the notation |x| for the Euclidean norm
of a vector x € R™. For a matrix A € R™*" we use the
notation |A| := max{|Az| : * € R",|z| = 1} for the
induced Euclidean matrix norm and A7 for its transpose.
For two vectors x,y € R"(= R"*!) we denote their inner
product by (z,y) := xTy. Given a subset S of R™, we denote
by cl(S), int(S) and OS its closure, interior and boundary,
respectively, where 95 := cl(S) \ int(S). For R > 0, we
denote by B(R) the closed ball with center 0 € R™ and
radius R. Given a vector x = (z!,...,2") € R" we define

the component operators ¢;(z) := z!, 1 = 1,...,n. Likewise,
for a vector * = (x1,...,2zy) € RN we define the
component operators ¢;(z) := (¢;(z1),...,c(zy)) € RY,
l=1,...,n.

Consider a multi-agent system with N agents. For each
agent ¢ € {1,...,N} := N we use the notation N; for
the set of its neighbors and |N;| for its cardinality. We
also consider an ordering of the agent’s neighbors which we
denote by j1, ..., jjn;|- € stands for the undirected network’s
edge set and {i,j} € & iff j € N;. The network graph
G := (N, &) is connected if for each 4,j € N there exist
i1,...,0 € N with 41 = i, 4 = j and {ix,ix41} € &, for
all k=1,...,1— 1. Consider an arbitrary orientation of the
network graph G, which assigns to each edge {i,j} € £ pre-
cisely one of the ordered pairs (i, j) or (j,%). When selecting
the pair (i,7) we say that ¢ is the tail and j is the head of



edge {i,j}. By considering a numbering | = 1,..., M of
the graph’s edge set we define the N x M incidence matrix
D(G) corresponding to the particular orientation as follows:

1, if vertex k is the head of edge [

D(G)k = —1, if vertex k is the tail of edge !
0, otherwise
The graph Laplacian L(G) is the N x N posmve semidefinite

L(
symmetric matrix L(G) := D(G) x D(G)T. If we denote by
1 the vector (1,...,1) € RY, then L(G)1 = D(G)T1 =
0. Let 0 = M\ (G) < X(G9) < < An(G) be the
ordered eigenvalues of L(G). Then each corresponding set of
eigenvectors is orthogonal and A2 (G) > 0 iff G is connected.

Problem Statement. We focus on single integrator multi-
agent systems with dynamics

i =uj, 2 €ERYi=1,...,N (1)

We aim at designing decentralized control laws of the form

Ui 1= ki(xi,le,...,xjwi‘)—i—vi 2)
which ensure that appropriate apriori bounds on the initial
relative distances of interconnected agents guarantee network
connectivity for all future times, for all free inputs wv;
bounded by certain constant. In particular, we assume that
the agents’ interaction graph is static and connected, and
that the network remains connected, as long as the maximum
distance between two neighboring agents does not exceed a
given positive constant R. In addition, we make the following
connectivity hypothesis for the initial states of the agents.
(ICH) We assume that the agents’ network is initially
connected. In particular, there exists a constant R € (0,R)
with

max{|z;(0) —z;(0)|: {i,j} € E} <R 3)

Potential Functions. We proceed by defining certain
mappings which are exploited in order to design the control
law (2) and prove that network connectivity is maintained.
Let r : R>9 — R>( be a continuous function satisfying the
following property.

(P) r(-) is increasing and r(0) > 0.
Also, consider the integral

p
P(p) = / r(s)sds, p € R>o “4)
0

For each pair (i,7) € N x N with {i,j} € £ we define the
potential function V;; : R¥™ — Rsq as Vj;(z) = P(|z; —
xj|),Va: = (1‘1, ... ,J,‘N) € RNV, Notice that V;]() = Vvﬂ()
Furthermore, it can be shown that V;;(-) is continuously
differentiable and that

0
g0 Via (@) = (e = ;) (@i = ;)" )

where 8— stands for the derivative with respect to the x;-
coordinates.

III. CONNECTIVITY ANALYSIS

In the following proposition we provide a control law (2)
and an upper bound on the magnitude of the input terms v;(+)
which guarantee connectivity of the multi-agent network.

Proposition 3.1: For the multi agent system (1), assume
that (ICH) is fulfilled and define the control law

wi=— Y r(lzi — ;) (@i — z5) + v (6)

JEN;

for certain continuous r(-) satisfying Property (P). Also,
consider a constant § > 0 and define

2/N(N —1)|D(G
K = 7
A2(g> ™

where D(G) is the incidence matrix of the systems’ graph
and A2(G) the second eigenvalue of the graph Laplacian.
We assume that the positive constant §, the maximum initial
distance R and the function r(-) satisfy the restrictions

1 9 S8 ~
0 < ?7"(0) @,VS >R (3)
with K as given in (7) and
MP(R) < P(R) )

where P(-) is given in (4), and M = || is the cardinality
of the system’s graph edge set. Then, the system remains
connected for all positive times, provided that the input terms
vi(+), i =1,..., N satisfy

lv;(t)] < 6,VE>0 (10)
Proof: For the proof we follow parts of the analysis in
[7] (see also [9, Section 7.2]). Consider the energy function

ZZVw

i=1 jeEN;

(1)

where the mappings V;;, {4,j} € £ are given in Section II.
Then it follows from (5) that

V(@)= Y (o e

JEN;

—z;)" (12)

Also, in accordance with [9, Section 7.2] we have for [ =
1,...,n that

a | > rwi— ) (@ —2;) | = Lu(@)alz)  (13)
JEN;
The weighted Laplacian matrix L,,(z) is given as
Lu(x) = D(G)W (2)D(9)" (14)

where D(G) is the incidence matrix of the communication
graph (see Notation) and

W (z) :=diag{wi(x),...,wp(z)}

=diag{r(|z; — x;]),{i,j} € £} (15)



(recall that M = |£|). Then, by evaluating the time derivative
of V along the trajectories of (1)-(6) and taking into account
(11), (12) and (13) we get

V= ch< >cl()

(16)

We want to provide appropriate bounds for the right
hand side of (16) which can guarantee that the sign of 14
is negative whenever the maximum distance between two
agents exceeds the bound R on the maximum initial distance
as given in (3). First, we provide certain useful inequalities
between the eigenvalues of the weighted Laplacian L., (x)
and the Laplacian matrix of the graph L(G). Notice, that due
to (15), foreach i = 1,..., M we have w;(z) = r(|zr —x/|)
for certain {k, ¢} € £ and hence, by virtue of Property (P),
it holds

0<7(0) <wi(zr) < max r(|zk — x¢) 17

{k,0}e€
From (17), it follows that L,,(x) has precisely the same
properties with those provided for L(G) in the Notation
subsection. Furthermore, it holds

Az () = A2 (G)r(0) (18)

where 0 = A(z) < Xo(z) < < An(x) and
0 = M(G) < XA(G) < --- < An(G) are the eigen-
values of L, (x) and the Laplacian matrix of the graph
L(G), respectively Indeed in order to show (18), notice

that L, (z) = D(G)diag{wi(z),...,wn(z)}D(G)T =
D(G)diag{r(0), ... 1(0)}D(G)T + D(G)diag{uwr(z) —
r(0),... ,wM(sc)— ( )}D(G)T = r(0)L(G)+ B, where (17)
implies that B := D(G)diag{w;(x) — r(0),...,wp(z) —
r(0)}D(G)T is positive semidefinite. Hence, it holds

L, (x) = r(0)L(G), with > being the partial order on the
set of symmetric N x N matrices and thus, we deduce from
Corollary 7.7.4(c) in [5, page 495] that (18) is fulfilled.

In the sequel we introduce some additional notation. Let H
be the subspace H := {x € RN" : =N}
For a vector z € RN™ we denote by Z its projection to the
subspace H, and z its orthogonal complement with respect
to that subspace, namely z+ := 2 — . By taking into account
that for all y € H we have D(G)T¢;(y) = 0 and hence, due
to (14), that ¢;(y) € ker(L,(x)), it follows that for every
vector z € RNV™ with 2 = Z 4+ x* it holds

Ly(z)ci(z) = Ly(z)c(z) (19)

We also denote by Az € RM™ the stack column vector of
the vectors x; — x;, {i, j} € £ with the edges ordered as in
the case of the incidence matrix. It is thus straightforward to
check that for all z € RV™

D(G)T¢(x) = ¢q(Az),VI=1,...,n

Tl =Ty = ---

(20)

and furthermore, due to (17), that
W (z)| <7r(|Az|s) 1)

where |Az|y := max{|Az;|,i = 1,..., M}. Before pro-
ceeding we state the following elementary facts, whose
proofs can be found in the Appendix of [3]. In particular,

for the vectors x = (z1,...,25),y = (Y1,...,yn) € RV"
the following properties hold.
Fact I: | L, (2)ci(z )] > Xo(z)|er(zH),VI=1,...,n

Fact IL: 3/, |ey(z)lla(y)] < Jally]
Fact IIL: |z—| > W‘AJE‘
Fact IV: 2|zt > |AZ|oo.
We are now in position to bound the derivative of the energy
function V' and exploit the result in order to prove the desired
connectivity maintenance property. We break the subsequent
proof in two main steps.
Step 1: Bound estimation for the rhs of (16).
Bound for the first term in (16). By taking into account
(19), it follows that
3 a(@) Lo(@)?a(e) = 3 | Lu(@)e )|
=1 1=1
and by exploiting Fact I and (18), we get

Z |Lw(x)cl(acL > Zx\2 *lei(z )
> Z Ma(G)r(0)?|ea(a™)

Thus, it follows from (22) and (23) that

(22)

= 2(G)rO)P|zH* (23)

S @) Lu(@)?alz) > Po(G)r(0)]2la*
=1
Bound for the second term in (16). For this term, we have
from (14) and (20) that

> a(@)" Lu(@)a(v)

(24)

<Y Ja(x)TD(G
=1

<> la(Az)[[W(2)|IDG)" |lei(v)]

W (z)D(G)" ei(v)]

(25)
1=1
By taking into account (21), we obtain
> le(Aa)[[W(@)|IDG)T llew(v)
=1
Z a(Az)|r(|Az]o0) | D(G) T || (v)] (26)
Also, by explomng Fact II, we get that
Y lald)|r(|Az]w) | DG) [ (v)]
=1
<r(|Azleo)|D(G)" || Ax]Jv]
<r(|Az]) [ D(G)T || Az|V Nl @7)



where |v]o := max{|v;|,i = 1,..., N}. Hence, it follows

from (25)-(27) that

n

Z ¢ (x)

=1

"Ly(x)a(v)| < VNIDG)T||Azlr(|Az] o) 0]

(28)
Thus, we get from (16), (24) and (28) that

~[2(G)r(0)*|a [P +VNID(G) || Az|r(|Az|) 0] o
and by exploiting Facts III and IV, that

V<

+VNID(G )T\IMIT(\AJCIOO)IUIOO

= |Aa] (—N%wg)r(ommm
+VNIDG)T (| AT]o0) 0]

By using the notation |Az|., := s, in order to guarantee

that the above rhs is negative for s > R, it should hold

2@‘? 9 I‘U‘oo < 7“(0)2T(SS),V5 > R, or equivalently

1
[V]oo < (0) ,Vs > R 29)
K ( )’
with K as given in (7). Hence, we have shown that for v
satisfying (29) the following implication holds

Azl > R=V <0 (30)

Step 2: Proof of connectivity. By assuming that conditions
(10), (8) and (9) in the statement of the proposition are
fulfilled and recalling that according to (ICH) (3) holds,
we can show that the system will remain connected for all
future times. Indeed, let x(-) be the solution of the closed
loop system (1)-(6) with initial condition satisfying (3),
defined on the maximal right interval [0, Tinax). We claim
that the system remains connected on [0, Tiayx ), namely, that
max{|z;(t) —z;(t)] : {i,7} € E} < R for all t € [0, Trax),
which by boundedness of the dynamics on the set F := {z €
RN™ ¢ |2, — 2] < R,V{i,j} € &} implies that Tyax = 0.
We proceed with the proof of connectivity. First, notice that
due to (3) and (9), it holds

1
Z > P(R) = 5 P(R) < 5P(R) (D)
2
i=1 jeN;
In order to prove our claim, it suffices to show that
1
V(z(t)) < §P(R),Vt € [0, Trnax) (32)

because if |z;(t) — z;(¢)| > R for certain ¢ € [0, Tyyax) and
{i.3} € & then V(a(t)) > LP(Joi(t) — 2,(1))) > LP(R).
We prove (32) by contradiction. Indeed, suppose on the
contrary that there exists 7' € (0, Tax) (due to (31)) such

that )
V(z(T)) > =P(R)

5 (33)

and define
7:=min{t € [0,7] : V(z(t)) > s P(R),Vt € (t,T]} (34)

which due to (33) and continuity of V(z(-)) is well defined.
Then it follows from (31) and (34) that

V(z(1)) = %P(R),V(x(t)) > %P(R),Vt e (r, 7] (35
hence, there exists 7 € (7,7') such that
V(x(r)) = V<x(T)T) - Z(”:(T)) >0 (36)
On the other hand, due to (35), it holds
V(a(7) > 3 P(R) (37)
which implies that there exists {i,j} € £ with
joi(7) — 2;(7)| > R (38)

Indeed, if (38) does not hold, then we can show as in (31)
that V(z(7)) < 2 P(R) which contradicts (37). Notice that
by virtue of (10) and (8), (29) is fulfilled. Hence, we get
from (38) that |Az(7)|e > R and thus from (30) it follows
that V(z(7)) < 0, which contradicts (36). We conclude that
(32) holds and the proof is complete. [ ]

In the following corollary, we apply the result of Propo-
sition 3.1 in order to provide two explicit feedback laws of
the form (6), a linear and a nonlinear one and compare their
performance in the subsequent remark.

Corollary 3.2: For the multi agent system (1), assume that
(ICH) is fulfilled and consider the control law (2) as given by
(6). By imposing the additional requirement 7(0) = 7(R) =
1 and defining § := 7> with Rand K as given in (3) and (7),
respectively, the system remains connected for all positive
times, provided that the function r(-) and the constant R
are selected as in the following two cases (L) and (NL)
(providing a linear and a nonlinear feedback, respectively).
Case (L). We select r(s) := 1, s > 0 and R< ﬁR (recall
that M = |&]).

1, sec[0,R]
Case (NL). We select r(s) := £, se€ (R, R] and
1 %, s € (R,00)
R< (s 2 R
Proof: The proof is rather straightforward and therefore
omitted. However it can be found in [3]. |

Remark 3.3: At this point we derive the advantage of
using the nonlinear controller over the linear one by com-
paring the ratio of the maximal initial relative distance that
maintains connectivity for these two cases. In both cases
we have the same bound on the free input terms and the
same feedback law up to some distance between neighbor-
ing agents, which allows us to compare their performance
under the criterion of maximizing the largest initial distance
between two interconnected agents. In particular, this ratio,
which depends on the number of edges in }he systems’ graph,

3. It is then rather

is given by Rat(M) := F/ Gy

straightforward to show that Rat(: ) is a strictly decreasing
function of M with values less than 1 for M > 1.



IV. INVARIANCE ANALYSIS

In what follows, we assume that the agents’ initial states
belong to a given domain D C R”. In order to simplify
the subsequent analysis, we assume that D = int(B(R)),
namely the interior of the ball with center 0 € R™ and radius
R > 0. We aim at designing an appropriate modification of
the feedback law (6) which guarantees that the trajectories
of the agents remain in D for all future times.

For each ¢ € (0,9R), let N, be the region with distance &
from the boundary of D towards the interior of D, namely

N.:={x eR": R—e < |z| <R} (39)

and

D.:=D\ N. (40)

We proceed by defining a repulsive from the boundary of
D vector field, which when added to the dynamics of each
agent in (6), will ensure the desired invariance of the closed
loop system and simultaneously guarantee the same robust

connectivity result established above. Let A : [0,1] — [0, 1]
be a Lipschitz continuous function that satisfies
h(0) = 0; k(1) = 1; h(-) strictly increasing 41)
We define the vector field g : D — R™ as
o 5+\z\—9%) .
g(x) = céh (75 BE if z € N, 42)
0, ifxeD

with h(-) as given above and appropriate positive constants
¢, § which serve as design parameters. Then, it follows from
(41), (42) and the Lipschitz property for h(-) that the vector
field g(-) is Lipschitz continuous on D.
Having defined the mappings for the extra term in the
dynamics of the modified controller which will guarantee the
desired invariance property, we now state our main result.
Proposition 4.1: For the multi-agent system (1), assume
that D = int(B(R)), for certain R > 0 and that (ICH) is
fulfilled. Furthermore, let € € (0,9R), N, and D, as defined
by (39) and (40), respectively and assume that the initial
states of all agents lie in D.. Then, there exists a control law
(2) (with free inputs v;) which guarantees both connectivity
and invariance of D for the solution of the system for all
future times and is defined as

> rllzi =) (@i —

JEN;

u; = g(w;) — zj) +v; (43)

with g(-) given in (42) and certain r(-) satisfying Property
(P). We choose the same positive constant ¢ in both (10) and
(42) and select the constant ¢ in (42) greater that 1. Then
the connectivity-invariance result is valid provided that the
parameters &, R and the function r(-) satisfy the restrictions
(8), (9) and the input terms v;(-), i = 1,..., N satisfy (10).

Proof: We break the proof in two steps. In the first
step, we show that as long as the invariance assumption is
satisfied, namely, the solution of the closed loop system (1)-
(43) is defined and remains in D, network connectivity is
maintained. In the second step, we show that for all times

where the solution is defined, it remains inside a compact
subset of D, which implies that the solution is defined and
remains in D for all future times, thus providing the desired
invariance property.

Step 1: Proof of network connectivity. The proof of
this step is based on an appropriate modification of the
corresponding proof of Proposition 3.1. In particular, we
exploit the energy function V as given by (11) and show
that when |Ax|s > R, namely, when the maximum distance
between two agents exceeds R then its derivative along the
solutions of the closed loop system is negative. Thus by using
the same arguments with those in proof of Proposition 3.1
we can deduce that the system remains connected. Indeed, by
evaluating the derivative of V' along the solutions of (1)-(43)
we obtain

N n
V< Z xV(a:)g(scz) - ch(x)TLw(x)ZCl(x)
i=1 " =1
+{> @ Lu(@)ea(w) “4

=1

By taking into account (16) and using precisely the same
arguments with those in proof of Steps 1 and 2 of Proposition
3.1 it suffices to show that the first term of inequality (44),
which by virtue of (12) is equal to Zf;l > jen; Tl@i —
x;]){(x; — x;), g(x;)), is nonpositive for all z € D. Given
the partition D., N, of D, we consider for each agent i € N/
the partition A=, NN of its neighbors’ set, corresponding
to its neighbors that belong to D, and N, respectively. Also,
we denote by V¢ the set of edges {i,j} with both z;,z; €
N.. Then, by taking into account that due to (42), g(z;) =0
for x; € D., it follows that

Z Z |ZL’1—.’EJ xi _xj);g(l'i»
i=1 jEN;

= Z Z |$1—Z‘J| ( _xj)hg(xi»
{ieN:z; GNE}JENIDE

+Y rlw = ) ((— 2), ()

{i,5}eeNe

+ (25 = 2i), 9(x5))]

In order to prove that both terms in (45) are less than or
equal to zero and hence derive our desired result on the sign
of V, we exploit the following facts.

Fact V. Consider the vectors «, 3,7 € R™ with the following
properties:

(45)

‘a|:17 |ﬁ‘:1

(,7) 20, (B,7) <0

Then for every quadruple Ay, Ag, fta, g € R>o satisfying

(46)
(47
Aa = )\ﬂa Mo = ua (48)

it holds

((Bac — pB),8) = 0 (49)



where

6= Ao+ — g (50)

The proof of Fact V can be found in the Appendix of [3].
Fact VI. For any z,2 € N, with x = AZ, A > 0 and
y € cl(D,) it holds ((Z — y),z) > 0.

The proof of Fact VI is based on the elementary properties
yecD:) = |y <R—-—cand & € N; = R —¢e < |7
Hence we have that ((Z — y),z) > |z||Z| — |=|ly| > 0.

We are now in position to show that both terms in the
right hand side of (45) are nonpositive, which according to
our previous discussion establishes the desired connectivity
maintenance result.

Proof of the fact that the first term in (45) is nonpositive.
For each 4,j in the first term in (45) we get by applying
Fact VI with ¢, & = 2; € N, and y = z; € D, that r(|z; —

_osh( stleil=%
e — 23), g} = il — ayl) < E

:(:j)7 x;) < 0 and hence, that the first term is nonpositive.
Proof of the fact that the second term in (45) is non-
positive. We exploit Fact V in order to prove that for each
{i,j} € EN= the quantity

(xi —5), 9(2:)) + {(;

in the second term of (45) is nonpositive as well. Notice
that both z;, z; € N, and without loss of generality we may
assume that

—w).g(z)) D)

|| = |5l (52)

namely, that x; is farther from the boundary of D, than z;.
Then by setting

o= ﬂ;ﬂ:: ﬁ;’y::fi—ij (53)
|| |1
with
& =, — (|oi +s—9%)|i?| (54)
By =y — (o] + & — )L (55)
EA
Ao =lzi| +e—R; Ag=|z;| +e—R (56)

fo :=cOh (|z;| + € —R); pg :=coh (|z;| +e —R) (57)

it follows from (53) that |a| = |8] = 1 and from (41), (52),
(56) and (57) that Ao, > Ag > 0, j1q > pg > 0. Furthermore,
we get from (54) and (55) that |Z;| = |Z;] = R—¢ =
2, T € 0D,. Thus it follows from (53) and application of
Fact VI with = z;, £ = &; and y = &; that (o,7) > 0
and similarly that (3,~) < 0.

It follows that all requirements of Fact V are fulfilled.
Furthermore, by taking into account (53)-(56), we get that
6 = Aaa + v — Mg = x; — x;. Thus we establish by
virtue of (42), (49), (50), (53), (57) and the latter that
((Haor—ppB),0) = —((g(zi) —g(x;)), (x: —x;)) 2 0
(i —x5), 9(x:)) + ((x; — x:), g(x;)) <0, as desired.
Step 2: Proof of forward invariance of D with respect to
the solution of (1)-(43). Due to space limitations, the proof
of this step is omitted. However, it can be found in [3]. W

V. CONCLUSIONS

We have provided a distributed control scheme which
guarantees connectivity of a multi-agent network governed
by single integrator dynamics. The corresponding control law
is robust with respect to additional free input terms which
can further be exploited for motion planning. For the case of
a spherical domain, adding a repulsive vector field near the
boundary ensures that the agents remain inside the domain
for all future times. The latter framework is motivated by the
fact that it allows us to abstract the behaviour of the system
through a finite transition system and exploit formal method
tools for high level planning.

Further research directions include the generalization of
the invariance result of Section IV for the case where the
domain is convex and has smooth boundary and the improve-
ment of the bound on the free input terms, by allowing the
bound to be state dependent.
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