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Abstract— This paper considers the optimal cooperative
robotic manipulation problem in terms of energy resources. In
particular, we consider rigid cooperative manipulation systems,
i.e., with rigid grasping contacts, and study energy-optimal
conditions in the sense of minimization of the arising internal
forces, which are inter-agent forces that do not contribute to
object motion. Firstly, we use recent results to derive a closed
form expression for the internal forces. Secondly, by using a
standard inverse dynamics control protocol, we provide novel
conditions on the force distribution to the robotic agents for
provable internal force minimization. Moreover, we derive novel
results on the provable achievement of a desired non-zero inter-
agent internal force vector. Extensive simulation results in a
realistic environment verify the theoretical analysis.

I. INTRODUCTION
Multi-agent robotic systems have received a considerable

amount of attention during the last decades, due to the
advantages they offer with respect to single-agent setups.
Especially in the case of robotic manipulation of payloads,
multi-agent frameworks can yield significant advantages due
to the potentially heavy payloads or challenging maneuvers.

Cooperative robotic manipulation has been extensively
studied in the related literature. Most works consider decen-
tralized schemes, where there is no communication between
the agents, and use impedance and/or force control [1]–
[4], possibly with force/torque measurements at the grasping
points (e.g., [5], [6]). In addition, numerous works consider
unknown dynamics/kinematics of the agents and the object
and/or external disturbances, which they compensate for via
adaptive and robust control techniques [7]–[10].

An important property in rigid cooperative manipulation
systems (i.e., when the grasps are rigid) that has been
studied thoroughly in the related literature is the regulation
of internal forces. Internal forces are forces exerted by the
agents at the grasping points that do not contribute to the
motion of the object. While a certain amount of such forces
is required in many cases (e.g., to avoid contact loss in
multi-fingered manipulation), they need to be minimized in
order to prevent object damage and unnecessary effort of
the agents. In fact, minimization of internal forces yields
optimal cooperative manipulation schemes in terms of en-
ergy resources, promoting thus environmental sustainability,
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which is becoming more and more indispensable over the
years (robotic manipulation studies have focused on energy-
based criteria, e.g., [11]).

More specifically, the most efficient way of manipulating
an object, in terms of energy resources, is for the robotic
agents to not exert internal forces, i.e., forces that cancel
each other out, and exert only forces that move the object.
Consider the extreme example of a leader agent working
towards bringing an object to a desired location, whereas the
other agents have zero inputs. Since the grasps are rigid, a
sufficiently powerful force by the leader will achieve the task
by “dragging” the other agents along, compensating for their
dynamics, and creating significant internal forces. Hence,
from a control perspective, the goal of rigid cooperative
manipulation schemes should be the design of a control
protocol that achieves a desired cooperative manipulation
task, while guaranteeing that the internal forces are zero.

Most works in rigid cooperative manipulation assume
a certain decomposition of the exerted forces in motion-
inducing and internal ones, without explicitly showing that
the actual internal forces will be indeed regulated to the
desired ones (e.g., [2], [5], [6]); [12]–[15] analyze specific
load decompositions based on whether they provide internal
force-free expressions, whereas [16] is concerned with the
cooperative manipulation interaction dynamics. The decom-
positions in the aforementioned works, however, are based
on the inter-agent distances and do not take into account the
actual dynamics of the agents. The latter, as we show, are
tightly connected to the arising internal forces, which gives
new insight on internal force-free cooperative manipulation.

More specifically, this paper considers the energy-optimal
cooperative manipulation problem, in the sense of minimiz-
ing the arising inter-agent internal forces. We use recent re-
sults on the application of Gauss’ principle on constraint sys-
tems to cooperative manipulation schemes in order to obtain
a closed-form expression for the inter-agent internal forces.
We combine then this expression with a standard inverse-
dynamics control protocol to provide novel conditions on
the agent force distribution for provable internal force-free
cooperative manipulation, which achieves optimality in terms
of energy resources. Moreover, we provide formal guarantees
for the achievement of a potential desired value for the
arising internal forces. Finally, extensive simulations results
illustrate the theoretical findings.

II. PROBLEM FORMULATION

Consider N robotic agents, indexed by the set N :=
{1, . . . , N}, rigidly grasping a rigid object, as shown in Fig.



Fig. 1. Two robotic agents rigidly grasping an object.

1. We denote by qi, q̇i ∈ Rni , with ni ∈ N,∀i ∈ N , the
ith agent’s generalized joint-space variables. We denote the
inertial position and orientation of the ith end-effector by
pi := pi(qi) and ηi := ηi(qi), respectively, obtained by
the forward kinematics, with xi := xi(qi) := [p>i , η

>
i ]> ∈

M := R3 × T, where T is an appropriate orientation space.
Similarly, the velocity of the ith end-effector is denoted by
vi := [ṗ>i , ω

>
i ]>, where ωi ∈ R3 is the respective angular

velocity, and it holds that vi = Ji(qi)q̇i, where Ji : Si →
R6×ni is the manipulator Jacobian, and Si := {xi(qi) ∈M :
dim(null(Ji(qi))) = 0} is the set away from singularities in
task-space, ∀i ∈ N . Moreover Ri(ηi) ∈ SO(3) is the ith
end-effector’s rotation matrix, ∀i ∈ N , where SO(3) is the
3D special orthogonal group. The task-space dynamics of
each agent is [17]:

Mi(xi)v̇i + Ci(xi, ẋi)vi + gi(xi) = ui − hi,

where Mi : Si → R6×6 is the positive definite inertia matrix,
Ci : Si × R6 → R6×6 is the Coriolis matrix, gi : Si → R6

is the gravity vector, and ui ∈ R6 is the task space wrench,
related to the torque actuation τi ∈ Rni of agent i as τi =
J>i ui, i ∈ N . Moreover, hi ∈ R6 are the forces exerted by
the agents to the object at the grasping points, ∀i ∈ N . The
aforementioned dynamics can be stacked as:

M(x)v̇ + C(x, ẋ)v + g(x) = u− h, (1)

with M := diag{[Mi]i∈N }, C := diag{[Ci]i∈N } ∈
R6N×6N , v := [v>1 , . . . , v

>
N ], x := [x>1 , . . . , x

>
N ]>, h :=

[h>1 ,. . . ,h>N ]>, u := [u>1 , . . . , u
>
N ]>, g := [g>1 , . . . , g

>
N ]> ∈

R6N .
Regarding the object, we denote by xO := [p>O , η

>
O ]> ∈M,

vO := [ṗ>O , ω
>
O ]> ∈ R6 the pose and generalized velocity of

the object’s center of mass; RO(ηO) ∈ SO(3) is the object’s
rotation matrix. The object dynamics is described by

ṘO = S(ωO)RO (2a)
MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) = hO, (2b)

where MO : M → R6×6 is the positive definite inertia
matrix, CO : M × R6 → R6×6 is the Coriolis matrix,
gO : M → R6 is the gravity vector, hO ∈ R6 is the vector
of generalized forces acting on the object’s center of mass,
and S(·) is the skew-symmetric operator defined according
to the cross product S(a)b = a× b for a, b ∈ R3.

In the rigid cooperative manipulation setting (see Fig. 1),
the pose of the agents and the object’s center of mass satisfy

pi = pO + piO = pO +Rip
i

iO, (3)

∀i ∈ N , where piO := pi − pO, and piiO, is the constant
vector from the ith grasping point to the object’s center of
mass. Differentiating (3), along with the fact that, due to the
grasping rigidity, it holds that ωi = ωO,∀i ∈ N , one obtains

vi = JOi
(xi)vO, (4)

where JOi
: M → R6×6 is the object-to-agent Jacobian

matrix, with

JOi
(xi) =

[
I3 −S(piO)

03×3 I3

]
,∀xi ∈M, (5)

where In is the n× n identity matrix, and 0n×m the n×m
matrix of zeros. Note that JOi

is always full-rank, due to the
rigidity of the grasping contacts. By stacking J>Oi

we form
the grasp matrix as

G(x) := [JO1
(x1)>, . . . , JON

(xN )>] ∈ R6×6N . (6)

We can now write (4) in stack vector form as

v = G(x)>vO. (7)

The kineto-statics duality along with the grasp rigidity sug-
gest that the object and agents forces hO, h, are related as:

hO = G(x)h. (8)

By substituting (1) into (8) and then (2), we obtain the
coupled dynamics:

M̃(x̄)v̇O + C̃(x̄)vO + g̃(x̄) = G(q)u, (9)

where M̃ := MO +GMG>, C̃ := CO +GCG> +GMĠ>,
g̃ := gO+Gg, x̄ is the overall state x̄ := [x>, ẋ>, x>O , ẋ

>
O ]> ∈

M2×R6N+6, and we have omitted the arguments for brevity.
The force vector h that the agents exert at the grasping

points can be decoupled into motion-induced hm and internal
forces hint as h = hm+hint. The internal forces hint are forces
that the agents exert to the object and belong to the nullspace
of G(x) (i.e., G(x)hint = 0). Hence, they do not contribute to
the acceleration of the coupled system and result in internal
stresses that might damage the object. A closed form analytic
expression for hint will be given in Section III.

As discussed in Section I, the optimal - in terms of agent
effort - way of cooperatively manipulating a rigidly grasped
object is by regulating the internal forces to zero. In that
way, each agent does not have to compensate for potential
deviations of the other agents from the appropriate trajectory,
which would require more unnecessary effort. On the other
hand, in a more realistic setting, it might be desired for the
agents to exert a small internal force, e.g., to maintain contact
with the object. Therefore, the problem in hand is the design
of control protocols, and more specifically force distributions
to the agents, that provably regulate the internal forces to
a desired value. By provably we mean that the results, in
contrast to the works in the related literature, are based



on derived closed-form expressions for the internal forces.
In particular, by considering a standard inverse-dynamics
control scheme, our main results, given in the next section,
consist of the following: firstly, we provide novel necessary
and sufficient conditions for the distribution of a desired
object force to the agents, characterized by a pseudo-inverse
G∗ of G, in order to achieve object motion free of internal
forces. Secondly, we provide an appropriate modification of
the control scheme that guarantees achievement of a desired
nonzero internal force hint,d.

III. MAIN RESULTS

We first use previous works on Gauss’s principle [18] to
derive a closed-form expression for the internal forces hint.
Let the unconstrained dynamical system be M(x)α(x, ẋ) :=
u−C(x, ẋ)v− g(x), where α(x, ẋ) is the coupled system’s
unconstrained acceleration, i.e., the acceleration the agents
would have if they were not grasping the object.

Next, from (4) and the fact that JOi
(xi) is invertible, ∀i ∈

N , we obtain v1 = JO1
(x1)JOi

(xi)
−1vj = Jij(xi, xj)vj ,

∀i ∈ {2, . . . , N}, where Jij : M2 → R6×6 is defined as

Jij(xi, xj) :=

[
I3 −S(pij)

03×3 I3

]
,∀i, j ∈ N , i 6= j,

with pij := pi − pj . The aforementioned expression can be
written in compact form as A(x, ẋ)v = 0, with

A(x, ẋ) :=
I3 S(p12) −I3 03×3 . . . 03×3 03×3

03×3 I3 03×3 −I3 . . . 03×3 03×3
...

... . . .
. . . . . .

...
...

I3 S(p1N ) 03×3 03×3 . . . −I3 03×3
03×3 I3 03×3 03×3 . . . 03×3 −I3

 .
By differentiation, we obtain

A(x, ẋ)v̇ = −Ȧ(x, ẋ)v, (10)

which encodes the rigidity coupling constraints among the
agents, induced by the rigidity contacts.

According to Gauss’s principle [15], [18], the actual
accelerations of the coupled system are the solutions of the
constrained optimization problem

min
v̇

(v̇ − α(x, ẋ))>M(x)(v̇ − α(x, ẋ))

s.t. A(x, ẋ)v̇ = −Ȧ(x, ẋ)v.

The resulting accelerations can be proven to be [15], [18]

M(x)v̇ = u− C(x, ẋ)v − g(x) + hint,

where hint are the resulting internal forces:

hint = −M 1
2

(
AM−

1
2

)†(
Ȧv +Aα

)
, (11)

with ()† denoting the Moore-Penrose pseudoinverse, and we
have omitted the arguments for notational brevity. The afore-
mentioned result has an intuitive interpretation. It states that
the difference of the unconstrained and actual acceleration
of the agents lies in the deviation Ȧv+Aα, associated with

the constraints (10), scaled by the term M
1
2

(
AM−

1
2

)†
. In

other words, internal forces will arise if the unconstrained
acceleration of the agents tends to violate the rigidity con-
straints. In fact, one concludes that no internal forces will
occur if the term Ȧv+Aα lies in the nullspace of the matrix
M

1
2

(
AM−

1
2

)†
, which, since M is positive definite, is the

nullspace of A>:
Corollary 1: The cooperative manipulation system is free

of internal forces, i.e., hint = 0, if and only if

Ȧv+AM−1(u−Cv−g) ∈ null(M
1
2 (AM−

1
2 )†) = null(A>)

(12)
Next, we derive a novel result relating A and G that is

important for the subsequent analysis:
Theorem 1: Let a rigid cooperative manipulation system

with grasp and constraint matrix G(x), and A(x, ẋ) as
defined in (5) and (10), respectively. Then it holds that

null(G) = range(A>) (13)
Proof: The range of G> is range(G>) = {χ =

[χ>1 , . . . , χ
>
N ]> : χi = JOi

(xi)χO,∀xi ∈ M, χO ∈ R6, i ∈
N}. Hence, for all χ ∈ range(G>) it holds that χ1 =
JO1

(x1)χO = JO1
(x1)JOi

(xi)
−1χi, ∀i ∈ {2, . . . , N}, which

is the set of vectors that form the nullspace of A. By invoking
the rank-nullity theorem (Th. 2.10 of [19]), we complete the
proof.
Therefore, one concludes that the internal forces are all the
vectors z for which there exists a vector y such that z =
A>y. This can be also verified by (11); one can prove that
range(M

1
2 (AM−

1
2 )†) = range(A>).

Let now a desired bounded position and orientation trajec-
tory for the object be dictated by the signals pd : R≥0 → R3

and Rd : R≥0 → SO(3), with bounded derivatives, such
that Ṙd = S(ωd)Rd, where ωd ∈ R3 is the desired angular
velocity. A straightforward position error metric is ep :=
pO − pd, whereas for the orientation we choose [20] eO =
1
2 trace(I3 − R>d RO) ∈ [0, 2], which, after differentiation,
using (2a) and properties of skew-symmetric matrices [20],
becomes

ėO =
1

2
e>RR

>
O (ωO − ωd), (14)

where eR := S−1(R>d RO−R>ORd). Then one can show that
eR = 0 when trace(R>d RO) = 3 or when trace(R>d RO) =
−1. The second case represents an undesired equilibrium,
where the desired and the actual orientation differ by 180
degrees. This issue is caused by topological obstructions on
SO(3) and it has been proven that no continuous controller
can achieve global stabilization. Therefore, we guarantee in
the following convergence of eR to 0, given that eR(0) < 2.
Define also the stack error signals ev := vO − vd, where
vd := [ṗ>d , ω

>
d ]>, and ex := [e>p ,

1
2(2−eO)2 e

>
RR
>
O ].

Let now G∗ ∈ R6N×6 be a right pseudo-inverse of G,
i.e. GG? = I6, which is used to distribute a desired object
force to the agents (see (8)). Standard choices in the related
literature are G∗ = G>(GG>)−1 or the weighted version
G∗ = WG>(GWG>)−1 for a gain matrix W ∈ R6N×6N .



A standard inverse dynamics control law [17] is

u =uA + g + (CG> +MĠ>)vO +G∗(gO + COvO)+

(MG> +G∗MO)fO,d, (15)

where fO,d := v̇d −Kvev −Kxex, Kx := diag{Kp, kRI3},
Kv ∈ R6×6, Kp ∈ R3×3 are positive definite and constant
gain matrices, kR > 0 is a positive gain constant, and
uA is a vector that belongs to the set {y ∈ R6N : y ∈
null(G)} ∩ {y ∈ R6N : AM−1y ∈ null(A>)}1 and is
responsible for secondary tasks (e.g., singularity avoidance).
The fact that GuA = 0 implies that uA does not contribute
to object motion and the fact that AM−1uA ∈ null(A>)
implies that it does not create internal forces. Note that
G∗ distributes to the agents an implicit desired force to be
applied to the object, i.e., gO +COvO +MOfO,d. It turns out,
however, that in order for the system to be free of internal
forces, G∗ cannot be chosen arbitrarily. In fact, G∗ must be
directly linked with the constraint and inertia matrices, A
and M , respectively, as the next main theorem shows.

Theorem 2: Let N robotic agents rigidly grasping an
object, with coupled dynamics (9). Consider the control law
(15) and assume that eO(0) < 2. Then the solution of the
closed-loop system satisfies the following:

1) eO(t) < 2, ∀t ≥ 0,
2) pO(t)− pd(t)→ 0, Rd(t)>RO(t)→ I3,
3) It holds that hint = 0, if and only if

range(AM−1G∗) ⊆ null(A>). (16)
Proof: By substituting the inverse-dynamics law (15)

in (9) and using the facts that GG∗ = I6, GuA = 06, we
obtain M̃(x̄)(ėv + Kvev + Kxex) = 0, which, since M̃ is
positive definite, implies

ėv = −Kvev −Kxex. (17)

1) Consider now the Lyapunov-like function

V :=
1

2
e>p Kpep +

kR
2− eO

+
1

2
e>v ev,

for which it holds that V (0) <∞, since eO(0) < 2. By
differentiating V , and using (14) and (17), we obtain
V̇ = −e>v Kvev ≤ 0. Hence, it holds that V (t) ≤
V (0) <∞, implying that kR

2−eO(t) is bounded and thus
eO(t) < 2, ∀t ≥ 0.

2) Since V (t) ≤ V (0) < ∞, the errors ep, ev are
bounded, which, given the boundedness of the pd,
Rd, ṗd, ωd, implies the boundedness of u. Hence,
it can be proven that V̈ is bounded, implying the
uniform continuity of V̇ . Therefore, according to Bar-
balat’s lemma ([21], Lemma 8.2), we deduce that
limt→∞ V̇ (t) = 0 ⇒ limt→∞ ev(t) = 0. Since ex(t)
is also bounded, it can be proven by using the same
arguments that limt→∞ ėv(t) = 0 and hence (17)
implies that limt→∞ ex(t) = 0.

1An example for uA is given later, showing that this set is non-empty

3) The acceleration of the unconstrained system of the
agents is, after substituting (15):

Mα =uA + g + (CG> +MĠ)vO +MG>αd+

G∗(gO + COvO +MOαd)− Cv − g,

where αd := v̇d − Kvev − Kxex, and hence, after
substituting v = G>vO, we obtain the internal forces,
according to (11):

hint =M
1
2 (AM−

1
2 )†[ ȦG>vO +AĠ>vO +AG>αd+

AM−1uA +AM−1G∗(gO + COvO +MOαd) ].

According to Theorem 1, it holds that AG> = 0, which
implies that ȦG>+AĠ> = 0. Therefore, by also using
the fact that AM−1uA ∈ null(A>), hint becomes

hint = M
1
2 (AM−

1
2 )†(AM−1G∗(gO + COvO +MOαd)),

which is zero for all the vectors gO +COvO +MOαd if
and only if range(AM−1G∗) ⊆ null(M

1
2 (AM−

1
2 )†),

which is the same as null(A>) (see Corollary 1).

Remark 1: Theorem 2 provably shows that (16) is a neces-
sary and sufficient condition for a standard inverse dynamics
control scheme to achieve zero internal forces and therefore
energy-optimal cooperative object manipulation. According
to the authors’ best knowledge, this is the first time that
such conditions are derived from the actual internal force
expression (11). In fact, (16) gives guidelines for designing a
force distribution G∗ without internal forces, and apparently
this is achieved by incorporating the inertia matrix M . As
discussed before, this is crucial for achieving energy-optimal
cooperative manipulation, where the agents do not have to
“waste” control input and hence energy resources that do not
contribute to object motion. Related works that focus on
deriving internal force-free distributions G∗, e.g., [12]–[15],
are solely based on the inter-agent distances, neglecting the
actual dynamics of the agents and the object. The expression
(11), however, gives new insight on the topic and suggests
that the dynamic terms of the system play a significant role
in the arising internal forces, as also indicated by Corollary
1. This is further exploited by Theorem 2 to produce a new
class of distributions G∗ for the control type of (15), which
depends on the dynamics and more specifically on the inertia
matrix of the system. In fact, it is proven in [22] that the
unique choice that provably regulates internal forces to zero
is G∗ = MG>(GMG>)−1.

Remark 2: Note that the employed inverse dynamics con-
troller requires knowledge of the agent and object dynamics.
In case of dynamic parameter uncertainty, standard adaptive
control schemes that attempt to estimate potential uncertain-
ties in the model (see, e.g., [8], [10]) would intrinsically
create internal forces, since the dynamics of the system
would not be accurately compensated. The same holds
for schemes that employ force/torque sensors that provide
the respective measurements at the grasp points (e.g., [5],
[6]) in periodic time instants. Since the interaction forces
depend explicitly on the control input, such measurements



will unavoidably correspond to the interaction forces of the
previous time instants due to causality reasons, creating
thus small disturbances in the dynamic model. Nevertheless,
it must be noted that in a realistic setting the dynamic
model cannot be accurately known and hence it cannot
be completely canceled. The proposed analysis, however,
intuitively suggests that the arised internal forces will be
lower in the case of a G∗ that satisfies condition 3) of
Theorem 2.

There exist cases, however, where it is required to achieve
a desired non-zero internal force vector hint,d ∈ R6N (e.g., to
enforce contact maintenance). Clearly, hint,d must belong to
the nullspace of G. In order to achieve hint = hint,d, one can
add to (15) an appropriately defined extra term, as dictated
in the following corollary.

Corollary 2: Let hint,d ∈ null(G) be a desired internal
force vector and G∗ = MG>(GMG>)−1, which satisfies
(16). Then the control law u′ = u+ uint,d, with

uint,d =(I6N −G∗G)hint,d, (18)

achieves points 1), 2) of Theorem 2 as well as hint = hint,d.
Proof: Since hint,d ∈ null(G), the proof for points 1),

2) is identical with that of Theorem 2. Moreover, it holds
that hint,d ∈ null(G) = range(A>) and hence M−

1
2hint,d ∈

range(M−
1
2A>) = range(AM−

1
2 )†. Therefore, it holds that

(AM−
1
2 )†AM−1hint,d =

(AM−
1
2 )†AM−

1
2 (M−

1
2hint,d) =M−

1
2hint,d. (19)

Substitution of (18) in (11) yields the resulting internal forces

hint =M
1
2 (AM−

1
2 )†AM−1(I6N −MG>(GMG>)−1)hint,d

=M
1
2 (AM−

1
2 )†AM−1hint,d = M

1
2M−

1
2hint,d = hint,d,

where we have used (19) and the fact that AG> = 0 from
Theorem 1.

Remark 3: Note that the expression (18) appears also
in several works of the related literature for internal force
regulation (e.g., [5], [6], [12], [14]). However, these works
either do not provide any kind of formal guarantees that
hint = hint,d or do not give an explicit form for the choice of
G∗. In fact, the main difference of our analysis with many of
the previous works is the incorporation of the inertia matrix
M in the right inverse G∗, as dictated by the condition (16).

IV. SIMULATION RESULTS

We consider 4 UR5 robots, rigidly grasping a rectangular
object of dimensions 0.3 × 0.3 × 0.02m3 and mass 0.5kg,
in the realistic dynamic environment V-REP [23], as de-
picted in Fig. 2. We apply the algorithm (15) by using 3
different choices of G∗, namely, G∗1 := MG>(GMG>)−1,
which satisfies the introduced condition (16), as well as the
choices introduced in [12], [14] G∗2 := G>(GG>)−1, and
G∗3 := WG>(GWG>)−1, with W := diag{∆, . . . ,∆} ∈
R6N×6N , and ∆ :=

[
03×3 I3
I3 03×3

]
. The initial object con-

dition is set to xO(0) = [−0.225,−0.6120, 0.161, 0, 0, 0]>.

Fig. 2. Four UR5 robots rigidly grasping an object in V-REP environment.

The desired trajectory is chosen as pd(t) = [−0.225 +
0.1 sin(t),−0.712 + 0.1 cos(t), 0.16 + 0.1 sin(t)]>, ηd(t) =
[0.1 sin(t), 0.1 sin(0.5t), 0.1 sin(t)]>rad, from which we
compute the respective rotation matrix Rd(t). The control
gains are chosen as Kp = 60I3, kR = 0.06, Kv = Kv1

:=
7diag{1, 1, 1, 5, 5, 5}. The results for t ∈ [0, 20]sec are
depicted in Fig. 3-4; Fig. 3 shows the evolution of the error
norms ‖ep(t)‖, ‖eO(t)‖, and ‖ev(t)‖ for the three choices
of G∗. As expected, the errors evolve close to zero for the
three cases, implying thus asymptotic stability. Nevertheless,
we observe significant oscillations of ev(t) in the cases of
G∗2, G∗3, which can be attributed to the increased control
input, as shown in Fig. 4. More specifically, Fig. 4 depicts
the agent input norm ‖τ(t)‖, where τ := [τ>1 , τ

>
2 , τ

>
3 , τ

>
4 ]>,

as well as the internal forces hint(t), computed using (11). It
is evident that only G∗1 achieves regulation of hint(t) close
to zero, and also that ‖τ(t)‖’s norm is minimum in the case
of G∗1, verifying the theoretical analysis.

Next, we increase slightly Kv to Kv2 :=
7.25diag{1, 1, 1, 5, 5, 5} and repeat the experiments,
by depicting the results in Figs. 5-8. In particular, Fig.
5 shows the errors ‖ep(t)‖, ‖eO(t)‖, ‖ev(t)‖, and Fig. 6
shows ‖τ(t)‖ and ‖hint(t)‖ for t ∈ [0, 20]sec and the choice
G∗1, which still achieves asymptotic error stability as well
as regulation of the internal forces close to zero. Fig. 7,8
provide the same information for the choices G∗2 and G∗3
and t ∈ [0, 7] sec, where an unstable behavior is observed.
In particular, note that all the values for these cases exhibit
oscillations of increasing magnitude. This further verifies
the theoretical analysis, since G∗2 and G∗3 do not satisfy (16)
and hence create undesired internal forces and increased
control inputs that cause instability in a realistic setting
(such as the V-Rep environment).

Finally, we derive a random force hint,d(t) ∈
null(G(x(t))), ∀t ≥ 0, and use the extra component
(18) to achieve hint = hint,d, by using and comparing the
choices G∗1 and G∗2, with Kv = Kv1

. Fig. 9 depicts the
metric ‖eint(t)‖, ∀t ∈ [0, 20]sec, for eint := hint − hint,d. As
expected from the theoretical analysis, the choice G∗1 has a
much better performance, since it satisfies condition (16).
The non-perfect tracking can be attributed to the model
uncertainties and hence the imperfect cancellation of the
respective dynamic terms via (15), which is also why hint,
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Fig. 3. The evolution of the error norms ‖ep(t)‖, ‖eO(t)‖, ‖ev(t)‖,
∀t ∈ [0, 20]sec for the three choices of G∗ and Kv = Kv1 .
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Fig. 4. The evolution of the norms ‖τ(t)‖, ‖hint(t)‖, ∀t ∈ [0, 20]sec for
the three choices of G∗ and Kv = Kv1 .

induced by G∗1, are not identically zero in Figs. 4, 6. The
accompanying video illustrates the aforementioned results.

V. CONCLUSIONS

This paper considers the energy-optimal rigid cooperative
manipulation via minimization of the internal forces. By
using a closed-form expression on the internal forces and
a standard inverse-dynamics control law, we give novel
conditions on the force distribution to the agents for internal
forces avoidance. We also provide results on the provable
achievement of nonzero internal forces. Simulation results
verify the theoretical findings.
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Fig. 5. The evolution of the error norms ‖ep(t)‖, ‖eO(t)‖, ‖ev(t)‖,
∀t ∈ [0, 20]sec for G∗ = G∗

1 and Kv = Kv2 .
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Fig. 6. The evolution of the norms ‖τ(t)‖, ‖hint(t)‖, ∀t ∈ [0, 20]sec for
G∗ = G∗

1 and Kv = Kv2 .
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Fig. 7. The evolution of the error norms ‖ep(t)‖, ‖eO(t)‖, ‖ev(t)‖,
∀t ∈ [0, 7]sec for G∗

2 , G∗
3 and Kv = Kv2 .
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Fig. 8. The evolution of the norms ‖τ(t)‖, ‖hint(t)‖, ∀t ∈ [0, 7]sec for
G∗

2 , G∗
3 and Kv = Kv2 .
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Fig. 9. The evolution of the norm ‖eint(t)‖, ∀t ∈ [0, 20]sec for G∗
1 , G∗

2
and Kv = Kv1 .
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