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Abstract— This work addresses the problem of robot nav-
igation under timed temporal specifications in workspaces
cluttered with obstacles. We propose a hybrid control strategy
that guarantees the accomplishment of a high-level specification
expressed as a timed temporal logic formula, while preserving
safety (i.e., obstacle avoidance) of the system. In particular,
we utilize a motion controller that achieves safe navigation
inside the workspace in predetermined time, thus allowing
us to abstract the motion of the agent as a finite timed
transition system among certain regions of interest. Next, we
employ standard formal verification and convex optimization
techniques to derive high-level timed plans that satisfy the
agent’s specifications. A simulation study illustrates and clarifies
the proposed scheme.

I. INTRODUCTION

Temporal-logic-based motion planning has gained signifi-
cant attention in recent years, as it provides a fully automated
correct-by-design control synthesis approach for autonomous
robots. Temporal logics such as linear or metric temporal
logic (LTL, MTL) provide formal high-level languages that
can describe planning objectives more complex than the well-
studied point-to-point navigation (“never enter a dangerous
regions", “keep visiting regions A and B infinitely often")
[1]–[7]. Firstly, the task specification is expressed as a
temporal logic formula over a discrete representation of the
system (e.g., a transition system), which is obtained through
the procedure of abstraction (e.g., [2], [8]–[12]). Then a high-
level discrete plan is found by off-the-shelf model-checking
algorithms [13], which is executed by low-level controllers.

Ultimately, however, we are interested in complex tasks
over predefined time horizons (“collect data in region C
every 50 seconds and upload it in region D after at most 10
seconds"), which can be encompassed by timed temporal lan-
guages (e.g., Metric Temporal Logic) [14]. Timed temporal
tasks have been considered in a variety of works in the related
literature [12], [15]–[23]. The authors in [21], [22] focus
on multi-agent planning of global and local tasks expressed
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as Metric Interval Temporal Logic (MITL) formulas, based
on reachibility analysis performed on the discretized state
space. The authors of [20], [24] resort to facet reachability
analysis under timed bounds by discretizing the space of
available controls. The vehicle-routing problem under Metric
Temporal Logic (MTL) specifications is tackled in [17] and
[15] via Mixed-Integer Linear Programms (MILP), and tree-
search/stochastic dynamic-programming (SDP) algorithms,
respectively, without employing standard automata-based
techniques. In [19] the authors use predetermined open-loop
controllers to transition in a partitioned workspace according
to a high-level plan satisfying an MITL formula determined
through formal verification techniques. MITL specifications
are also considered in [12], [23], where robust closed-
form controllers that guarantee the timed navigation of a
cooperatively manipulated object in a partitioned workspace
are derived. [18] proposes a roadmap abstraction-based algo-
rithm to address the problem of multi-goal motion planning
under time windows.

Most of the related works on temporal logic-based motion
planning and control resort to full workspace partition-
ing in order to encode safety specifications (e.g., obstacle
avoidance) and to facilitate the synthesis of controllers that
implement the transitions of the abstracted discrete system.
Regarding timed temporal tasks, many related works (e.g.,
[20], [24]) use optimization techniques that yield maximum
velocity controllers, to obtain upper bounds on the transition
times between the states of the abstracted system. This
approach is, in general, conservative and might lead to
unnecessarily high control effort. Works that focus solely
on task assignment neglect the continuous dynamics entirely
[15], [17], [21].

In this work, we consider the robot motion planning under
timed temporal tasks. Firstly, given predefined regions of
interest1 in an obstacle-cluttered workspace, we employ our
previous results on feedback closed-loop2 navigation [25]
to design robot transitions among the regions under strict
time constraints. This allows us to abstract the motion of the
robot as a timed transition system over the regions of interest,
without requiring any further workspace partition refinement.
Subsequently, we employ formal verification techniques to

1Regions of interest are also employed in [7] where solely untimed
specifications are considered.

2The closed loop nature of the feedback control renders the scheme robust
against modeling uncertainties/external disturbances, compared to open loop
controllers (e.g., [19])



derive a plan that satisfies the untimed specification and
recast the assignment of the transition times as a convex
optimization problem thereby achieving satisfaction of the
timed specification. The transition times are recalculated af-
ter each transition, incorporating newly acquired information,
and resulting in decreased control effort.

II. PRELIMINARIES

In this section, we summarize some preliminary notions
that are used in the sequel.

A. Timed Logics

Definition 1 [26] A time sequence t0t1t2 . . . is an infinite
sequence of time values tj ∈ R≥0, j ∈ N0, satisfying tj+1 =
tj + tj,j+1, for some constants tj,j+1 ∈ R≥0.

An atomic proposition is a statement over the problem
variables and parameters that is either True (>) of False (⊥)
at a given time instance.

Definition 2 Let AP be a finite set of atomic propositions.
A timed word w over AP is an infinite sequence w =
(w0, t0)(w1, t1), . . . , where w0w1w2 . . . is an infinite word
over 2AP and t0t1t2 . . . is a time sequence according to
Def. 1.

Definition 3 A Weighted Transition System (WTS) is a tuple
T := (Π,Π0,−→,AP,L, γ) ,, where Π is a finite set of
states, Π0 ⊆ Π is a set of initial states, −→⊆ Π × Π is a
transition relation, AP is a finite set of atomic propositions,
L : Π→ 2AP is a labeling function, and γ :−→ → R≥0 is
a map that assigns a weight to each transition.

For convenience, we use π → π′ to denote the fact that
(π, π′) ∈−→.

Definition 4 A timed run of a WTS is an infinite se-
quence R := (π0, t0)(π1, t1)(π2, t2) . . . such that π0 ∈
Π0, πj ∈ Π, and πj → πj+1, for all j ∈ N0.
The sequence of the time stamps t0t1 . . . is a time se-
quence according to Def. 1. The timed run r gener-
ates a timed word w(R) := w0(π0)w1(π1)w2(π2) . . . :=
(L(π0), t0)(L(π1), t1)(L(π2), t2) . . . over the set 2AP ,
where for each j ∈ N0, L(πj) is the subset of atomic
propositions that are true at state πj at time tj .

The syntax of timed logics over a set of atomic proposi-
tions AP is defined by a grammar that has the form

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2| ©I ϕ | ♦Iϕ |�Iϕ | ϕ1UIϕ2, (1)

where p ∈ AP , and ©,♦,� and U are the next, future,
always and until operators, respectively; I is a nonempty time
interval in one of the following forms: [i1, i2], [i1, i2), (i1, i2],
(i1, i2), [i1,∞), (i1,∞) with i1, i2 ∈ Q≥0, i2 > i1. Several
languages have the form (1), such as Metric Temporal Logic
(MTL) and Metric Interval Temporal Logic (MITL). Other
variants also exist, like Bounded-MTL (where I needs to

be bounded), or coFlat-MTL. More details can be found in
[27]. In the following, we define the generalized semantics
of (1), interpreted in point-wise semantics, i.e., over discrete
observations.

Definition 5 [28], [29] Given a sequence R =
(π0, t0)(π1, t1)(π2, t2) . . . and a timed formula ϕ, we define
(R, j) |= ϕ, j ∈ N0 (R satisfies ϕ at j) as follows:

(R, j) |=p⇔ p ∈ L(πj),

(R, j) |=¬ϕ⇔ (R, j) 6|= ϕ,

(R, j) |=ϕ1 ∧ ϕ2 ⇔ (R, j) |= ϕ1 and (R, j) |= ϕ2,

(R, j) |=©I ϕ⇔ (R, j + 1) |= ϕ and tj+1 − tj ∈ I,
(R, j) |=ϕ1UIϕ2 ⇔ ∃k ≥ j such that (R, k) |= ϕ2,

tk − tj ∈ I and (R,m) |= ϕ1,∀m ∈ {j, . . . , k}.
Also, ♦Iϕ = >UIϕ and �Iϕ = ¬♦I¬ϕ. The sequence R
satisfies ϕ, denoted as R |= ϕ, if and only if (R, 0) |= ϕ.

B. Timed Büchi Automata

We provide here a description of Timed Büchi Au-
tomata (TBA), originally proposed in [26]. Let CL :=
{cl1, . . . , cl|CL|} be a finite set of clocks. The set of clock
constraints Φ(CL) is defined by the grammar:

φ ::= > | ¬φ | φ1 ∧ φ2 | cl ./ ψ,
where cl ∈ CL is a clock, ψ ∈ Q is a clock constraint, and
./∈ {<,>,≥,≤,=}. A clock valuation is a mapping v :
CL→ R that assigns a value to each clock. A clock cli has
valuation vi for i ∈ {1, . . . , |CL|}. Given v := (v1, . . . , v|CL|)
and t ∈ R≥0, we denote by v |= φ and t |= φ the fact that
the valuation v and the time instant t, respectively, satisfy
the clock constraint φ.

Definition 6 A Timed Büchi Automaton is a tuple At :=
(Q,Q0,CL,AP, E, F ), where Q is a finite set of locations,
Q0 ⊆ Q is the set of initial locations, CL is a finite set of
clocks, AP is a finite set of atomic propositions that defines
the input alphabet 2AP , E ⊂ Q×Φ(CL)× 2CL × 2AP ×Q
gives the set of edges of the form e = (q, g, R, α, q′), where
q, q′ are the source and target locations, g is the guard of
edge, R is a set of clocks to be reset upon executing the
edge, and α is an input string; finally, F ⊆ Q is a set of
accepting locations.

A state of At is a pair (q, v) ∈ R × R|CL|. The initial
state of At is (q0, 0|CL|), with q0 ∈ Q0. Given two states
(q, v), (q′, v′), and an edge e = (q, g, R, α, q′), there exists
a discrete transition (q, v)

e−→ (q′, v′) if v |= g. Moreover,
v′i = 0, ∀cli ∈ R, and v′i = vi, ∀cli /∈ R. Given δ ∈ R, there
exists a time transition (q, v)

δ−→ (q′, v′) if q = q′ and v′ =

v+δ (component-wise summation). We write (q, v)
δ−→ e−→

(q′, v′) if there exists q′′, v′′ such that (q, v)
δ−→ (q′′, v′′)

and (q′′, v′′)
e−→ (q′, v′), with q′′ = q.

An infinite run of At starting at a state (q0, v0) is an
infinite sequence of time and discrete transitions (q0, v0)

δ0−→



(q′0, v
′
0)

e0−→ (q1, v1)
δ1−→ (q′1, v

′
1) . . . , where ei =

(qi, gi, Ri, σi, q
′
i), ∀i ∈ N0. This run corresponds to the timed

word wt = (σ0, τ0)(σ1, τ1), with τi+1 = τi + δi, ∀i ∈ N0.
The run is called accepting if qj ∈ F for infinitely many
j ∈ N0. A timed word is called accepting if there exists an
accepting run associated with it. The problem of deciding
the language emptiness of a given TBA is PSPACE-complete
[26]. In other words, an accepting run of a given TBA can
be synthesized, if one exists. Any timed formula ϕ over
AP originating from the decidable fragment of timed logics
(e.g., MITL, discrete-time MTL, finite MTL3, coFlat-MTL,
Bounded-MTL [27], [29]) can be algorithmically translated
into a TBA with input alphabet 2AP , such that the language
of timed words that satisfy ϕ is the language of timed words
produced by the TBA. Finally, given a TBA At with clock
constraints of the form cl ./ ψ, ψ ∈ Q≥0, we denote by
At+τ , with τ ∈ Q≥0, the automaton whose clock constraints
are shifted to the left by τ , i.e., they are of the form
cl ./ (ψ − τ), ./∈ {<,>,≥,≤,=}.

III. PROBLEM FORMULATION

Consider a robotic agent operating in an open bounded
subset W of the 2-dimensional Euclidean space. In addition,
the workspace is populated with m ∈ N connected, closed
sets {Oi}i∈J , indexed by the set J := {1, . . . ,m}, corre-
sponding to obstacles. Accordingly, we define the free space
as

F :=W\
⋃
i∈J

Oi,

Remark 1. To facilitate exposition, we assume that all the
data describing the workspace are known a priori. The
analysis remains the same for the case of initially unknown
workspaces where obstacles are discovered along the way.

The agent is assumed to be a point4 described by the
position variable x ∈ R2 which is governed by the single
integrator dynamics,

ẋ = u, u ∈ R2. (2)

Moreover, we consider that there exist K points of interest
in the free space, denoted by ck ∈ F , for every k ∈ K :=
{1, . . . ,K}, with Π := {c1, . . . , cK}, that correspond to
satisfy certain properties of interest (e.g., gas station, obstacle
region, repairing area, etc.) These properties of interest are
expressed as boolean variables via the finite set of atomic
propositions AP . The properties satisfied at each point are
provided by the labeling function L : Π→ 2AP . Informally,
L assigns to each point ck, k ∈ K, the subset of the atomic
propositions that hold true in that point.

Since, in practice, the aforementioned properties shared by
a point of interest are naturally inherited to some neighbor-
hood of that point we define for each k ∈ K, the region of

3In this case, the generated Timed Automaton will have finite accepting
runs.

4Treating a robot with volume can be achieved by initially “transferring”
its volume to the other workspace entities (e.g., obstacles) and subsequently
considering it as a point.

interest πk corresponding to the point of interest ck as the
set

πk := B̄(ck, rπk) ∩ F , rk ∈ R>0,

where B̄(c, r) denotes the closed ball of radius r > 0
centered at c ∈ R2. We also let πW := F\(∪k∈Kπk) be
the subset of the free space outside the regions of interest.
We define thus the set Π̃ := {πk}k∈K ∪ {πW} as well as
the corresponding labeling function as L̃ : Π̃ → 2AP , with
L(ck) = {p} ⇔ L̃(πk) = {p}, ∀k ∈ K, and L̃(πW) = ∅.
The agent is assumed to be in a region πk, k ∈ K, in πW ,
simply when x ∈ πk and x ∈ πW , respectively. We assume
that, for all k ∈ K, the location of the points ck as well as
the radii rπk are known.

We make the following standard assumptions [30] regard-
ing the geometry of the workspace and the regions of interest.

Assumption 1 The collection of sets comprised of all ob-
stacles and regions of interest is pairwise disjoint.

The aforementioned assumption simply states that the
obstacles/regions of interest are sufficiently away from each
other as well as the workspace boundary.

As already mentioned, we are interested in defining timed
temporal formulas over the atomic propositions AP , and
hence, over the regions of interest Π of F . To that end, we
need to discretize the system using a finite set of states. We
will achieve that by guaranteeing timed transitions between
the regions of interest in Π and by building a well-defined
timed transition system among them. We first need the
following definition regarding the transitions of the agent.

Definition 7 Assume that x(tk) ∈ F , for a tk ∈ R≥0, i.e.,
the agent is either in a region πk, for some k ∈ K, or in πW .
Then, given δ ∈ R>0, there exists a timed transition to π`,
` ∈ K, denoted as πk → π` (or πW → π`), if there exists
a time-varying feedback control law u : F × [tk, t`] → R2,
with t` ≥ tk + δ, such that the solution x of the closed loop
system (2) satisfies the following:

(i) x(t) ∈ πl, for all t ∈ [tk + δ, tl),

(ii) x(t) ∈ F , for all t ∈ [tk, t`],

(iii) x(t) 6∈ πm, for all m ∈M, t ∈ [tk, t`],

where M := K\{k, `} if x(tk) ∈ πk and M := K\{`} if
x(tk) ∈ πW .

Intuitively, according to Def. 7, the agent has to transit be-
tween two regions πk, π` (or πW and π`), while avoiding all
other regions of interest, obstacles, as well as the workspace
boundary. In what follows, we sometimes use πk

δ−→ π`
instead of πk → π` to emphasize the transition time δ. We
have included the space outside the regions πW to account
for initial conditions that might satisfy x(tk) /∈ ∪k∈Kπk.
Next, we define the behavior of the agent, in order to
formulate the problem of timed specifications.

Definition 8 Consider an agent trajectory x : [t0,∞) → F



of (2), where t0 ∈ R≥0. Then, a timed behavior of x is the in-
finite sequence b := (x(t0), σ0, t0)(x(t1), σ1, t1) . . . , where
t0t1 . . . is a time sequence according to Def. 1, x(t0) ∈ Π̃,
x(tl) ∈ πjl , jl ∈ K, for l ∈ N0, and σl = L(πjl) ⊆ 2AP ,
i.e., the subset of atomic propositions that are true when
x(tj) ∈ πjl , for l ∈ N0. The timed behavior b satisfies a
timed formula ϕ if and only if bσ := (σ0, t0)(σ1, t1) . . . |= ϕ.

We are now ready to state the problem addressed in the
present work.

Problem 1 Consider a robot with dynamics governed by (2),
operating in the workspace W , with initial position x(0) ∈
F . Given a timed formula ϕ over AP and a labeling function
L̃, develop a control strategy that results in a solution x :
[0,∞)→ F , which achieves a timed behavior b that yields
the satisfaction of ϕ.

IV. METHODOLOGY

In this section we present the proposed solution, which
consists of two layers: (i) a tuning-free continuous control
law that guarantees the navigation of the agent to a desired
point from all obstacle-collision-free configurations, and
(ii) a discrete time plan over the regions of interest for
the robot to follow, which employs formal verification and
optimization techniques and is updated on-line.

A. Motion Controller

The first part of the proposed solution is the design of a
control protocol such that a transition to a region of interest
is established, according to Def. 7. Assume, therefore, that
x(tk) ∈ F , and more specifically, x(tk) ∈ πk (x(tk) ∈ πW)
for some tk ∈ R≥0 and k ∈ K. Given δ ∈ R>0, we wish to
find a time-varying state-feedback control law u : F×[tk, t`],
with t` ≥ tk + δ, such that πk

δ−→ π` (πW
δ−→ π`). To that

end, we first redefine the free space as

F :=W\
( ⋃
i∈J

Oi ∪
⋃
l∈M

πm

)
,

so that regions of interest that shall not be crossed during
the transition are regarded as obstacles.

Following our previous work [25], the tuple
(x(tk), cl, ρπl , δ) constitute a well-defined instance of
the Prescribed Time Scale Navigation Problem [25,
Problem 1] in F . Theorem 2 of the aforementioned work
suggests that the construction of the required feedback law
u : F × [tk, t`] → R2 reduces to the problem of smoothly
transforming the free space F to a topologically equivalent,
yet geometrically simpler, space.

More specifically, we require a diffeomorphism T : F →
P where P is a point world [31]; an open disk modulo a
finite set with cardinality equal to the number of obstacles
and regions of interest |J | + |M|. Under the prevailing
Assumption 1, [32, Theorem 1] provides a computationally

efficient method to determine the space P and the mapping
T.

This allows us to apply the conclusions of [25, Theorems
1, 2] which yield a feedback law u : F × [tk, t`] → R2

such that the closed-loop system satisfies the properties of
Def. 7 therefore establishing the existence of the required
timed transition. Presenting the analytical expression for the
resulting feedback law is deemed prohibitive due to space
limitations. However, we encourage the reader to consult [25]
for a detailed exposition.

B. High-Level Plan Generation

The second part of our solution is the derivation of a high-
level timed plan over the regions of interest, which satisfies
the given timed formula ϕ. This plan will be generated using
standard techniques from automata-based formal verification
and optimization methodologies. Thanks to the proposed
control law of the previous section that allows the transitions
in the set Π̃ in predefined time intervals, we can abstract
the motion of the robotic agent as a finite transition system
T := {Π̃, Π̃0,−→,AP, L̃, γ}, where Π̃ is the set of states
defined in Section III, Π̃0 ∈ Π̃ is the initial state, −→:=
Π̃ × Π̃ is a transition relation according to Def. 7, AP
and L̃ are the atomic propositions and the labeling function,
respectively, as defined in Section III, and γ : (−→)→ R>0

is a cost associated with each transition. More specifically,
we consider as cost the distance the agent has to cover from a
region πk (or πW ) to a region π`. However, this cost is highly
dependent on the initial robot configuration and the number
and position of the obstacles between the initial and the goal
regions, and cannot be computed explicitly. Therefore, we
initially set γ(πk → π`) = ‖ck − c`‖, γ(πk → πk) = 0,
and γ(πW → πk) = γ(πk → πW) = ‖ck − x(0)‖,
for all k, ` ∈ K with k 6= `, and proceed with the derivation
of the timed plan as a timed sequence of regions in Π.

Firstly, the timed formula ϕ over the atomic propositions
AP is translated to the TBA At = (Q,Q0,CL,AP, E, F )
using off-the-shelf tools [33]. Secondly, we calculate the
product Büchi Automaton AP as AP := T ⊗ At =
(S, S0,−→P , FP , γP), where

• S = Π̃×Q,
• S0 = Π̃×Q0,
• −→P⊂ S×Φ(CL)×2C×S gives the set of edges; e :=

(s, g, R, s′) ∈−→P , with s := (π, q), s′ := (π′, q′) ∈ S
if and only if (i) (q, g, R,L(π), q′) ∈ E and (ii) q = q′,
(π, π′) ∈−→, with π 6= π′, or π = π′.

• FP ⊆ Π̃ × F with s := (π, q) ∈ FP if and only if
q ∈ F and (s,Φ(CL), R, S) ∈ E for some state in S,
i.e., there is always a transition from s, for all the the
possible valuations of the clocks CL.

• γP : (−→∗P) → R>0, with γP((s, g, R, s′)) = γ(π →
π′), where (−→∗P) := {((π, q), g, R, (π′, q′)) ∈−→P :
π 6= π′)}.

We use the abbreviation s
I−→ s′ for (s, g, R, s′) ∈−→P ,



where I := {g,R}. Note that the product AP consists of a
finite number of states, and therefore we can employ graph-
search techniques to find the optimal timed path, with respect
to the cost γP , from the initial states S0 to the accepting
states FP , which will satisfy the given timed formula ϕ [7].
This path will contain a finite prefix — a finite sequence
of states to be visited — and a infinite suffix — a specific
sequence of states to be visited infinitely many times [7],
[13]. Moreover, note that the motion controller developed in
Section Sec. IV-A can guarantee the safe navigation among
two regions of interest in any predefined time interval.

By viewing AP as a graph, we can find a path that starts
at the initial states S0 and traverses an accepting state in FP
infinitely many times. Such a path has the form

s̄p0
I0,1−−→ s̄p1

I1,2−−→ . . .
IL−1,L−−−−→ s̄pL

IL,L+1−−−−→(
s̄pL+1

IL+1,L+2−−−−−−→ . . .
IL+Z−1,L+Z−−−−−−−−→ s̄pL+Z

)ω
Here, s̄pj , for j ∈ {0, . . . , L+ Z}, denotes the sequence of
states

s̄pj := (πpj , qj0)
Ij0,1−−−→ . . .

Ij(`j−1),`j−−−−−−−→ (πpj , qj`j ),

with πpj ∈ Π̃, qjι ∈ Q, for j ∈ {0, . . . , L + Z}, ι ∈
{1, . . . , `j}, and `j ∈ {0, . . . , |S|}. Moreover, q(j+1)0 =
qj`j , q(L+Z)`(L+Z)

= q(L+1)0 and

Ij,j+1 :=
{
gj,j+1, Rj,j+1

}
, Ijι,ι+1

:=
{
gjι,ι+1 , Rjι,ι+1

}
,

indicating the corresponding guards and reset maps, for
j ∈ {0, 1, . . . , L+Z−1}, ι ∈ {0, . . . , `j−1}. The transition
set IL+Z,L+1 is defined similarly. Loosely speaking, the
path consists of consecutive (at most |S|) transitions of the

form (πj , qjι)
(·)−→ (πj , qj(ι+1)

) among states in At, where

πj is fixed, and transitions of the form (πpj , qj`j )
(·)−→

(πp(j+1)
, q(j+1)0) among the states of T , where q(j+1)0 =

qj`j is fixed.

Note that we have not yet associated any time intervals
with the transitions (πpj , qj`j )

(·)−→ (πp(j+1)
, q(j+1)0), which

correspond to physical transitions among the regions of
interest. We do that now by using the transition guards
gj,j+1, gjι,ι+1

. More specifically, consider the transitions

(πpj , qj0)
Ij0,1−−−→ . . .

Ij(`j−1),`j−−−−−−−→ (πpj , qj`j )
Ij,j+1−−−−→ (πpj+1 , q(j+1)0),

that encode the physical transition from πpj to πpj+1
in

AP . The intersection of the respective guards gj,j+1, gjι,ι+1
,

ι ∈ {0, . . . , `j−1}, provides a time interval of the form
Ij,j+1 ∈ {[a, b], [a, b), (a, b], (a, b), [a,∞), (a,∞)}, with
a, b ∈ Q>0, b > a, such that, tj,j+1 ∈ Ij,j+1 ⇒ tj,j+1 |=
gj,j+1, tj,j+1 |= gjι,ι+1

, for ι ∈ {0, . . . , `j−1}, where tj,j+1

is the time duration of the navigation πj
tj,j+1−−−−→ πj+1. Note

that Iij,j+1 might be a function of the previous transition
duration tj−1,j .

Since Iij,j+1 is, in general, an infinite set, and we
have, thus, infinitely many choices for tj,j+1, we pro-
pose a procedure for assigning the time durations tj,j+1,
for each j ∈ {0, L + Z,−1}, and tL+Z,L+1. In par-
ticular, we formulate the transition times assignment as
a convex optimization problem. To that end, let tp :=
[t0,1, . . . , tL+Z−1,L+Z , tL+Z,L+1]> ∈ RL+Z+1

>0 be the con-
catenation of the transition times constituting the variable of
the following optimization problem:

minimize
tp

L+Z−1∑
j=0

(
γ(πpj → πpj+1

)

tj,j+1

)
+
γ(πpL+Z

→ πpL+1
)

tj,j+1
,

subject to tj,j+1 ∈ Ij,j+1, for all j ∈ {0, L+ Z,−1},
tL+Z,L+1 ∈ IL+Z,L+1. (3)

Note that the objective function is a convex function of tp and
the constraints can be expressed as linear inequalities on the
problem variables. Thus, the above optimization problem is
convex and can be efficiently solved using off-the-shelf soft-
ware. The choice of this particular cost function is motivated
by the following two observations: (i) the time assigned to
a transition is an increasing function of the transition cost,
and (ii) brief transition times are penalized. Furthermore, the
imposed constraints guarantee the satisfaction of the formula
provided that transitions are executed within the specified
transition times. We also report empirical evidence from
numerical simulations suggesting that reduction in control
effort is achieved.

After solving the aforementioned optimization problem
and obtaining the time durations tp the robot performs
the first transition using the motion controller presented in
Sec. IV-A where δ taken equal to the corresponding transition
time. Once transition πpj

tj,j+1−−−−→ πpj+1
is completed, the

corresponding transition cost γ(πj → πj+1) is updated by
being set equal to the length of the integral curve of the
closed-loop system for the duration of the transition. The
updated value of the transition cost is in some sense more
accurate than the initial estimate based on the Euclidean
distance since the existence of obstacles can potentially
obstruct the straight line path between two regions of interest.

Having acquired this new information the associated op-
timization problem can be solved to acquire new values
for the transition times. We note that after each transition
the constraints of the optimization problem are altered. In
particular, the TBA of the formula has to be shifted forward
by an amount of time equal to the last performed transition
which induces a change in the guards and, therefore, to
the optimization problem constraints. We assume that the
time needed for solving the optimization problem is short
enough so that satisfaction of the formula is not jeopardized.
This assumption is reasonable enough primarily owing to the
problem’s low computational complexity and, secondarily,
the fact that the previously computed values of the transition
times are a good prior for initiating the numerical solver.
Nevertheless, computational overhead can be accounted for
in the constraints by allocating the required time, or opti-



mization could be performed en route to the next region
of interest with the transition times adjusted in an any-time
fashion.

V. SIMULATION RESULTS

To demonstrate the proposed scheme, we consider a task
and motion planning problem for a robot operating in a
planar office environment. In particular, we consider three
points of interest and therefore have Π = {ck}k∈K, where
K = {1, 2, 3}. The corresponding regions of interest πk =
B̄(ck, r), where rπk = 0.2 for k ∈ K, define the set
Π = {πk}k∈K. The set of atomic preposition is AP = Π̃ and
the labeling function L : Π→ 2AP is defined as πk 7→ {πk},
k ∈ K. The scenario setting is illustrated in Fig. 1.

We require that the robot “always visits each region of in-
terest at least once every 120 time units” which is equivalent
to the MITL formula φ =

∧
k∈K

(
�♦Iπk

)
, I = [0, 120].

The robot is initially located at c1 ∈ π1 and, therefore, the

infinitely repeating cycle of transitions π1
t1,2(1)−−−−→ π2

t2,3(1)−−−−→
π3

t3,1(1)−−−−→ π1
t1,2(2)−−−−→ . . . with appropriately assigned

transition times is an accepting run. Let t : N0 → Q3
>0,

κ 7→ [t1,2(κ), t2,3(κ), t3,1(κ)]T which is defined recursively
as follows: t(0) := [0, 0, 0]T , then assuming t(κ) is defined
for some κ ∈ N0,

t(κ+1) := (UT3 )κ
[
1 0 0
0 0 0
0 0 0

]
Uκ3 t̂(κ)+(UT3 )κ

[
0 0 0
0 1 0
0 0 1

]
Uκ3 t(κ),

where U3 :=

0 1 0
0 0 1
1 0 0

 is the upper shift matrix and t̂(κ) is

the solution of optimization problem (3) under the following
constraints:1 0 0

1 1 0
1 1 1

Uκ3 t̂(κ) ≤

120
120
120

−
0 1 1

0 0 1
0 0 0

Uκ3 t(κ).

The motion controller results in collision-free trajectories
(Fig. 1), and by performing each transition time in the time
derived from the optimization procedure results in a run that
satisfies the formula φ (see bottom of Fig. 2). Finally, it is
worth noting that the transition times converge in just a few
steps as illustrated on the top part of Fig. 2 and the overall
control effort per suffix execution is reduced (Tbl. I).

TABLE I: CONTROL EFFORT PER SUFFIX EXECUTION

Cycle 1 2 3 4 5∫
‖u(x(τ), τ)‖2 dτ 8.06 7.67 7.67 7.65 7.66

VI. CONCLUSION

In this work, we propose an integrated approach for
addressing the motion planning problem for a mobile robot
subject to timed temporal specifications operating in an envi-
ronment with obstacles. We employ a motion controller that
achieves safe, timed navigation between regions of interest in

π1

π2

π3

Fig. 1: Workspace overview. The red discs correspond to the
three regions of interest. The plotted paths are the resulting
trajectories from the first out of the five executions of the
suffix.
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Fig. 2: (top) The transition times calculated before each
transition; filled marks correspond to actually used transition
times. (bottom) The resulting timed run of the transition
system.

the workspace, allowing us to create a finite abstraction of the
system. Furthermore, using standard techniques we derive a
sequence of states that satisfies the untimed specification and
use an iterating optimization-based approach to handle the
assignment of transition times, guaranteeing satisfaction of
the timed specification and reduction of the control effort.
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