
Hybrid Control of Multi-robot Systems Using
Embedded Graph Grammars

Meng Guo, Magnus Egerstedt and Dimos V. Dimarogonas

Abstract— We propose a distributed and cooperative motion
and task control scheme for a team of mobile robots that are
subject to dynamic constraints including inter-robot collision
avoidance and connectivity maintenance of the communication
network. Moreover, each agent has a local high-level task given
as a Linear Temporal Logic (LTL) formula of desired motion
and actions. Embedded graph grammars (EGGs) are used as
the main tool to specify local interaction rules and switching
control modes among the robots, which is then combined with
the model-checking-based task planning module. It is ensured
that all local tasks are satisfied while the dynamic constraints
are obeyed at all time. The overall approach is demonstrated
by simulation and experimental results.

I. INTRODUCTION

The control of multi-robot systems could normally consist
of two goals: the first is to accomplish high-level system-wise
tasks, e.g., formation and flocking [21], task assignment [20]
and collaboration [19]; the second is to cope with constraints
that arise from the inter-robot interactions, e.g., collision
avoidance [5] and communication maintenance [21]. These
two goals are often dependent and heavily coupled since it is
essential to consider one when trying to fulfill another. For
instance, it is unlikely that a multi-robot formation method
would work if the inter-robot collision is not addressed, nor
a collaborative task assignment scheme would work if the
communication network among the robots is not ensured to
be connected. Thus in this work, we tackle some aspects of
both goals at the same time.

Regarding the high-level task, we rely on Linear Tempo-
ral Logic (LTL) as the formal language that can describe
planning objectives more complex than the well-studied
point-to-point navigation problem. The task is specified as
a LTL formula with respect to an abstraction of the robot
motion [1], [3]. Then a high-level discrete plan is found
by off-the-shelf model-checking algorithms [2], which is
then implemented through the low-level continuous con-
troller [6], [7]. [10] extends this framework by allowing
both robot motion and actions in the task specification.
Similar methodology has also been applied to multi-robot
systems [4], [12], [20]. Two different formalisms have ap-
peared that one focuses on decomposing a global temporal
task into bisimilar local ones in a top-down approach, which

The first and third authors are with the KTH Centre for Autonomous
Systems and ACCESS Linnaeus Center, EES, KTH Royal Institute of
Technology, SE-100 44, Stockholm, Sweden. mengg,dimos@kth.se.
The second author is with the Department of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA.
magnus@gatech.edu. This work was supported by the Swedish
Research Council (VR). The work by the second author was supported
by Grant N0014-15-1-2115 from the U.S. Office of Naval Research.

can be then assigned and implemented by individual robots
in a synchronized [4] or partially-synchronized [11] manner;
another is to assume that there is no pre-specified global task
and individual temporal tasks are assigned locally to each
robot [8], [9], [19], which favors a bottom-up formulation.
These local tasks can be independent [9] or dependent [8]
due to collaborative tasks. We favor the second formulation
as it is useful for multi-robot systems where the number of
robots is large, the robots are heterogeneous and each robot
has a specific task assignment.

However, most of the aforementioned work neglects the
second goal to cope with inter-robot dynamic constraints,
e.g, inter-robot collision is not handled formally in [9], [19]
and connectivity of the communication network is taken for
granted in [8], [9], [20]. Here we take advantage of Embed-
ded Graph Grammars (EGGs) to tackle these constraints, as
initially introduced in [14], [15]. It allows us to encode the
robot dynamics, local information exchange and switching
control modes in a unified hybrid scheme. Successful appli-
cations to multi-robot systems can be found in, e.g., coverage
control [15], self-reconfiguration of modular robots [17],
and autonomous deployment [18]. Only local interactions
or communication are needed for the execution of EGGs,
making it suitable for large-scale multi-robot systems.

The proposed solution combines the temporal-logic-based
task planning with the EGGs-based hybrid control, which
overall serves as a distributed and cooperative control scheme
for multi-robot systems under local temporal tasks and mo-
tion constraints. The main contribution lies in the proposed
EGGs that ensure the fulfillment of all local tasks, while
guaranteeing no inter-robot collision and the communication
network being connected at all time, given the robots’ limited
capabilities of communication and actuation.

The rest of the paper is organized as follows: Section II
briefly introduces essential preliminaries. In Section III, we
formally state the problem. Section IV presents the proposed
solution. Numerical and experimental examples are shown in
Section V. We conclude in Section VI.

II. PRELIMINARIES

A. Embedded Graph Grammar

Here we review some basics of Embedded Graph Gram-
mars (EGGs). For a detailed description, see [14], [15]. Let
Σ be a set of pre-defined labels. A labeled graph is defined
as the quadruple G = (V, E, l, e), where V is a set of
vertices, E ⊂ V × V is a set of edges, l : V → Σ is a
vertex labeling function, and e : E → Σ is an edge labeling
function. Given a continuous state space X for the vertices,

an embedded graph is given by γ = (G, x), where G is a
labeled graph and x : V → X is a realization function. We
use Gγ , xγ to denote the labeled graph and continuous states
associated with γ. The set of allowed embedded graphs being
considered is denoted by Γ. Furthermore, an embedded graph
transition is a relation A ⊂ Γ × Γ such that (γ1, γ2) ∈ A
implies xγ1 = xγ2 and Gγ1 6= Gγ2 . The rules and conditions
associated with the transitions are called graph grammars.

B. Linear Temporal Logic

The basic ingredients of a Linear Temporal Logic (LTL)
formula are a set of atomic propositions AP and several
boolean or temporal operators, formed by the syntax [2]:
ϕ ::= > | a |ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ |ϕ1 Uϕ2, where a ∈ AP
and > (True), © (next), U (until). Other operators like �
(always), ♦ (eventually), ⇒ (implication) and the semantics
of LTL formulas can be found in Chapter 5 of [2]. There is
a union of infinite words that satisfy ϕ: Words(ϕ) = {σ ∈
(2AP)ω |σ |= ϕ}, where |= ⊆ (2AP)ω×ϕ is the satisfaction
relation. LTL formulas can be used to specify various control
tasks, such as safety (�¬ϕ1, globally avoiding ϕ1), ordering
(♦(ϕ1 ∧ ♦ (ϕ2 ∧ ♦ϕ3)), ϕ1, ϕ2, ϕ3 hold in sequence),
response (ϕ1 ⇒ ϕ2, if ϕ1 holds, ϕ2 will hold in future),
repetitive surveillance (�♦ϕ, ϕ holds infinitely often).

III. PROBLEM FORMULATION

A. Robot Dynamics

Consider a team of N mobile robots (agents) in an
obstacle-free 2D workspace, indexed by N = {1, 2, · · · , N}.
Each agent i ∈ N satisfies the unicycle dynamics:

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = wi, (1)

where si = (xi, yi, θi) ∈ R3 is the state with position pi =
(xi, yi) and orientation θi; and ui = (vi, wi) ∈ R2 is
the control input as linear and angular velocities, bounded
by vmax and wmax. Agent i has reference linear and angular
velocities Vi < vmax and Wi < wmax, respectively. Each
agent occupies a disk area of {p ∈ R2 | ‖p − pi‖ ≤ r},
where r > 0 is the radius of its physical volume. A safety
distance d > 2r is the minimal inter-agent distance to avoid
collisions. Moreover, agents i, j ∈ N can only communicate
if ‖pi− pj‖ ≤ d, where d > d is the communication radius.

Definition 1: Agents i, j ∈ N are: in collision if ‖pi(t)−
pj(t)‖ ≤ d; neighbors if ‖pi(t)− pj(t)‖ ≤ d. �

Given the agent states, an embedded graph γ(t) is de-
fined as γ(t) = (G(t), p(t)), where G(t) = (N , E(t))
with (i, j) ∈ E(t) if ‖pi(t)− pj(t)‖ < d, ∀i, j ∈ N , i 6= j;
p(t) is the stack vector of all pi(t). Then we define the set
of allowed embedded graphs Γd as follows:

Definition 2: An embedded graph γ(t) = (G(t), p(t)) is
allowed that γ(t) ∈ Γd if (i) ‖pi(t) − pj(t)‖ > d, ∀i, j ∈
N , i 6= j; and (ii) the graph G(t) is connected. �

B. Local Task Specification over Motion and Actions

For each agent i ∈ N , there is a set of points of interest
in the workspace, denoted by Zi = {zi1, zi2, · · · , ziMi

},
where zi` ∈ R2, ∀` = 1, 2, · · · ,Mi, where Mi > 0.

Each point satisfies different properties. Furthermore, it is
capable of performing a set of actions, described by the
action primitives Σi = {a1, a2, · · · , aKi}. Each action
has conditions on the workspace property that should be
satisfied to perform it and also an effect on the workspace
after performing it. Combining these two aspects, we can
derive a complete motion and action model for agent i as a
finite transition system (FTS)Mi = (Πi,→i,Πi,0, APi, Li),
where Πi = Zi×Σi is the set of states;→i: Πi → 2Πi is the
transition relation; Πi,0 ⊂ Πi is the set of initial states; APi
is the set of atomic propositions over workspace property and
action primitives; Li : Πi → 2APi is the labeling function
that returns the set of propositions satisfied at each state.
We omit the details about how to construct Mi here due
to limited space and refer the readers to [8] and [10]. Then
the local task for each agent i ∈ N is specified as an LTL
formula ϕi over APi as described in Section II-B.

Definition 3: The task ϕi is satisfied if there exists a
sequence of time instants ti0 ti1 ti2 · · · and a sequence of
states πi`0πi`1πi`2 · · · such that: πi`k = (zi`k , ai`k) where
zi`k ∈ Zi and ai`k ∈ Σi; at time tik, ‖pi(tik) − zi`k‖ ≤ ci
where ci > 0 is a given threshold for reaching a point
of interest and the action ai`k is performed at zi`k , ∀k =
0, 1, 2, · · · ; and Li(πi`0)Li(πi`1)Li(πi`2) · · · |= ϕi. �

Some examples of considered tasks are: “Infinitely often
pick up object A in point 1 and then drop it to point 2”;
“Surveil points 3 and 4 by taking pictures there”; “Go to
point 5 and operate machine M, then go to point 6 and charge
the battery”, which all involve robot motion and actions.

C. Problem Statement

Design a distributed motion control scheme such that ϕi is
satisfied, ∀i ∈ N , while at the same time γ(t) ∈ Γd, ∀t ≥ 0.

IV. SOLUTION

The proposed solution consists of two major parts: the
embedded graph grammars (EGGs) design and the local task
coordination, of which the details are given in the sequel.
Then we combine them as the complete solution, where we
also prove the correctness formally.

A. EGGs Design

The design of EGGs involves three parts: (i) the workspace
discretization, (ii) the essential building blocks, and (iii) the
graph grammars.

1) Workspace Discretization: The 2-D workspace is dis-
cretized into uniform grids by a quantization function,
through which we transform the collision avoidance and
connectivity constraints into relative-grid positions.

Definition 4: Given a point (x, y) ∈ R2, its grid position
is given by the function GRID : R2 → Z2:

(gx, gy) , GRID(x, y) , ([
x

d
], [
y

d
]), (2)

where [·] is the round function that returns the closest integer
([0.5] = 1) and d is the safety distance introduced earlier. �

Given that pi(t) = (xi(t), yi(t)) at time t > 0, the grid
position of agent i is given by gi(t) , (gxi (t), gyi (t)) =

GRID(xi(t), yi(t)). Now consider two agents i and j whose
grid positions are given by gi(t) and gj(t).

Definition 5: The collision function COLLIDE : Z2 ×
Z2 → B satisfies: COLLIDE(gi(t), gj(t)) , ⊥ if |gxi −gxj | ≥
2 or |gyi − gyj | ≥ 2; otherwise, COLLIDE(gi(t), gj(t)) , >.
The neighboring function NEIGHBOR : Z2 × Z2 → B
satisfies: NEIGHBOR(gi(t), gj(t)) , > if it holds that
‖(|gxi − gxj |+ 1, |gyi − gyj |+ 1)‖ ≤ λd, where λd , d/d > 1;
otherwise, NEIGHBOR(gi(t), gj(t)) , ⊥. �

Lemma 1: By Definition 1 agents i and j are collision-
free at time t > 0 if COLLIDE(gi(t), gj(t)) = ⊥; they are
connected if NEIGHBOR(gi(t), gj(t)) = >.

Proof: For pi(t), pj(t) ∈ R2, by (2) it holds that if
|gxi (t)−gxj (t)| ≥ 2, then |xi−xj | > d and ‖pi(t)−pj(t)‖ ≥
|xi − xj | + |yi − yj | > d, i.e., agents i and j are collision-
free by Definition 1. The same holds when |gyi − gyj | ≥ 2.
For any pi(t), pj(t) ∈ R2, by (2) it holds that |xi − xj | <
d · (|gxi − gxj |+ 1) and |yi − yj | < d · (|gyi − gyj |+ 1). Then
‖pi(t) − pj(t)‖ < d · ‖(|gxi − gxj | + 1, |gyi − gyj | + 1)‖ <
d · λd = d, i.e., agents i and j are neighbors.

2) Building Blocks: We introduce five building blocks in
this part that are essential for the construction of EGGs.

(I) Labels on vertices and edges. The first build-
ing block is the modified embedded graph γ(t) =
(G(t), p(t)) where G(t) = (N , E(t), l, e), where l and e
are the vertex and edge labeling functions. Each vertex
has a label with three named fields {id, mode, data},
where id is the agent ID; mode is the agent status, in-
cluding {check, static, move}; and data stores data
for the execution, which has three sub-fields {nb, pt, gi},
where nb saves the a set of other agents’ IDs; pt saves a
tentative path; and gi saves a positive gain parameter. More-
over, the edge between neighbors has the named field id,
i.e., the edge from agent i to j has the id as (i, j). For
brevity, we omit the definitions of l and e that map N and
E(t) to the set of labels, which is a cartesian product of the
named fields above. We use dot notation to indicate the value
of label fields. For instance, “i.mode = move” means that
agent i has the mode being move. We call an agent static if
its mode is static and active if its mode is move.

To start with, we need the notion of a local sub-graph
for agent i ∈ N , denoted by Gi(t) = (Vi(t), Ei(t)),
where (i) Vi(t) = {i} ∪ Ni(t), where Ni(t) = {j ∈
N | (i, j) ∈ E(t)}; (ii) (j, k) ∈ Ei(t) if (j, k) ∈ E(t),
∀j, k ∈ Vi(t). Clearly, Gi(t) is a sub-graph of G(t) and
it can be constructed locally by agent i. Clearly if G(t) is
connected, then Gi(t) is connected, ∀i ∈ N .

(II) Neighbor marking scheme. The second building
block is the mechanism to maintain graph connectivity while
the agents are moving. The main idea is to choose locally
some agents to be static and the others be active; and more
importantly ensure that the active agents remain connected to
its static neighbors while moving. The most straightforward
way is to allow only one agent move at a time, which is
extremely inefficient as a system. Here we propose a local
marking scheme to choose static and active agents, which

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

a0

a1

a2

a3
a4

a5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

a0

a1

a2

a3
a4

a5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

a0

a1

a2

a3
a4

a5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

a0

a1

a2

a3
a4

a5

Fig. 1. Examples of marking schemes for agent a0 locally: (a) Local
graph G0, consisting of neighbors a1, a2, a3, a4, a5; (b) one allowed
marking scheme where a1, a3, a4 are marked, with the associated marked
sub-graph of Gm

0 ,Gm
2 ,Gm

5 ; (c) another allowed marking scheme where
a2, a5 are marked; (d) an not-allowed marking scheme where a3, a4 are
marked as a1 is neither marked nor connected to a marked agent.

allows more agents being active simultaneously.
Assume that agent i ∈ N satisfies i.mode = active.

Given its local graph Gi(t) at time t > 0, agent i can com-
municate with its neighbor j ∈ Ni(t) regarding its mode. We
denote by N s

i (t) = {j ∈ Ni(t) | j.mode = static} the set
of static neighbors; N a

i (t) = {j ∈ Ni(t) | j.mode = move}
the set of active neighbors; and the others are in the check
mode. A marking scheme of agent i at time t > 0 marks
a subset of its neighbors, denoted by Nm

i (t) ⊆ Ni(t), as
the potential agents to become static. Given the above three
categories, a marking scheme should satisfy the following:

Definition 6: The marked set of neighbors Nm
i (t) is al-

lowed if: (i) for any neighbor j ∈ Ni(t), it holds that
either j ∈ Nm

i (t) or there exists g ∈ Nm
i (t) that (j, g) ∈

Ei(t); (ii) N s
i (t) ⊆ Nm

i (t) and Nm
i (t) ∩N a

i (t) = ∅. �
The first condition requires that any neighbor is either

marked or directly connected to a marked agent, while the
second condition says that all static and no active neighbors
should be marked. Examples of different marked schemes are
shown in Figure 1. Given the set of marked agents Nm

i (t) ⊆
Ni(t), the marked sub-graph of Gi(t) is defined as:

Definition 7: The marked sub-graph Gmi (t) ,
(V mi (t), Emi (t)) has V mi (t) = {i} ∪ Nm

i (t) and
(j, k) ∈ Emi (t) if (j, k) ∈ Ei(t), ∀j, k ∈ V mi . �

(III) Potential path synthesis. The third building block
is the synthesis algorithm to derive a local path for an active
agent i ∈ N to move towards its point of interest zi` =
(zxi`, z

y
i`) ∈ Zi while keeping connected and collision-free

to all its marked neighbors in Nm
i .

Denote by pi the tentative discrete path of agent i with
length Li ≥ 1 that obeys the following structure:

pi = q0
i q

1
i · · · qli · · · qLi

i (3)

where qli = (sli, t
l
i, v

l
i) is a 3-tuple with the desired

state sli = (xli, y
l
i, θ

l
i) ∈ R3, the approximated time tli

when sli will be reached, and the linear velocity vli at qli
when heading towards ql+1

i , ∀l = 0, 1, · · · , Li. Notice that

q0
i , (si(t), 0, Vi) initially, where Vi is the reference linear

velocity. Moreover, the position pli = (xli, y
l
i) of sli should

correspond to the center of a grid gli = GRID(pli) and two
consecutive positions pli, p

l+1
i correspond to two adjacent

grids, ∀l = 0, 1, · · · , Li − 1. Given the current state si(t) of
agent i, the potential cost of pi is defined as:

COST(pi) ,
Li−1∑
l=0

(
‖pli − pl+1

i ‖+ α · |θli − θl+1
i |

)
, (4)

where the first term is the total traveled distance and the
second term is the total turned angles; α > 0 is the chosen
weight on turning cost. To synthesize the tentative path pi,
we consider the following optimization problem:

minpi ‖(pLi
ix − zxi`, pLi

iy − zyi`)‖+ β · COST(pi)

s.t. Gmi (t) remains connected if pi = pli,

COLLIDE(gli, gj(t)) = ⊥,
∀l = 0, 1, · · · , Li and ∀j ∈ Nm

i (t),

(5)

where the first term is the tentative progress as the distance
from pLi

i = (pLi
ix , p

Li
iy) to (zxi`, z

y
i`); β > 0 is a tuning

parameter; and the conditions that along pi agent i should
remain connected and collision-free to all agents in Gmi .

The above problem can be solved in four steps: (i)
determine the general search area. Given the positions of the
marked agents, the general search area Si ⊂ Z2 satisfies
that gs = (gxs , g

y
s) ∈ Si if NEIGHBOR(gb, gj(t)) = >,

for at least one neighbor j ∈ Nm
i (t); (ii) remove any

grid gs ∈ Si that Gmi (t) is not connected if gi = gs or
COLLIDE(gs, gj(t)) = > for any neighbor j ∈ Nm

i (t). Thus
all elements of pi should belong to this general search area;
(iii) the augmented-graph construction. Construct a graph
Ξ = (ni, ei, wi) where ni = Si × {0,±π

2 ,π} is the set
of nodes; ei ⊂ Si × Si is the set of edges (n1, n2) ∈ ei
if n1 = (g1, θ1), n1 = (g2, θ2) where the grids g1 and g2

are adjacent; wi : ei → R+ is the weighting function, where
wi((g1, θ1), (g2, θ2)) = d+α · |θ1−θ2|, where α is defined
in (4); (iv) shortest path search. Firstly, locate the initial
node n0 = (g0, θ0) ∈ ni that is closest to the current agent
state si(t). Then construct the shortest paths from n0 to every
other node in ni by Dijkstra’s algorithm. At last, find the
destination n?d ∈ ni that minimizes the cost in (5). Denote the
shortest path from n0 to n?d by pΞ

i = n0n1n2 · · ·nLi−1n
?
d,

where nl = (gl, θl) ∈ ni and Li is the length of this path.
An example is shown in Figure 2.

Give the shortest path pΞ
i above, each element qli =

(sli, t
l
i, v

l
i) of pi can be derived by setting sli = (gxl · d, gyl ·

d, θl) and vli = Vi, ∀l = 0, · · · , Li, and tli is computed by:

tl+1
i = tli +

d

vli
+
|θl+1
i − θli|
Wi

, ∀l = 1, 2, · · · , Li, (6)

which accumulates the time for agent i to move from sli
to sl+1

i with linear velocity vli and angular velocity Wi.
If a solution to (5) exists, the resulting pi is the tenta-

tive path of agent i with the associated marked set Nm
i .

Moreover, its tentative gain is given by χi = ‖pLi
i − zi`‖ −

−0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

a0

a1

a2

a3

−0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

a0

a1

a2

a3

Fig. 2. Grey grids indicate the allowed search area. The blue star-
marked path is the optimal path p0 by (5), for agent a0 given its marked
neighbors a1, a2, a3 and its goal. Notice the change of graph topology
of Gm

0 (t) and the fact that it remains connected while a0 moves along p0.

‖pi(t)− zi`‖. For the ease of notation, we denote this local
path synthesis procedure by a single function:

(pi, χi) = CHECK(si(t), Ni(t), zi`, Nm
i). (7)

As a result, agent i executes its tentative path pi by following
and staying within the sequence of grids along pi.

Lemma 2: Assume that (5) has a solution at time t0 > 0.
If all marked neighbors in Nm

i remain static and agent i
executes pi until t1 > t0, then Gmi (t) remains connected
and all agents within V mi (t) are collision-free, ∀t ∈ [t0, t1].

Proof: Since all marked neighbors in Nm
i stay static,

agent i is the only moving agent within Vmi . Initially Gmi (t0)
is connected and all agents within V mi are collision-free.
While agent i executes pi, the formulation of (5) ensures
that Gmi (t) remains connected and agent i is collision-free
with any marked neighbor. This holds until agent i finishes
executing pi by reaching qLi

i at time t1 > t0.
(IV) Path adaptation. The fourth building block is the

path adaptation algorithm for any active agent while execut-
ing its tentative path. Assume that at time t > 0 an active
agent i may detect another agent j ∈ N that does not belong
to Nm

i , when its state si(t) corresponds to qw0
i ∈ pi in (3),

where 0 < w0 < Li. We consider two cases below:
If j.mode = static, then agent i only needs to check

if its future path segment is in collision with this static
agent j. Its future path segment is given by pi[w0:Li] =
qw0
i qw0+1

i · · · qLi
i , where qli = (sli, t

l
i, v

l
i) is defined in (3).

Therefore if COLLIDE(gwi , gj(t)) = ⊥, ∀w = w0, w0 +
1, · · · , Li, it means they will not collide and pi remains un-
changed; otherwise, pi is adapted by repeating the synthesis
procedure by (7), but with the new neighboring set Ni(t).

If j.mode = move, then agent j is also moving and
executing its path pj . In this case, it is more complicated
to check whether they will be in collision. We assume
that agent j’s position sj(t) corresponds to qv0j ∈ pj ,
where 0 < v0 < Lj . Its future path segment is given
by pj [v0:Lj] = qv0j q

v0+1
j · · · qLj

j , where qlj = (slj , t
l
j , v

l
j)

from (3). Given pi[w0:Li] and pj [v0:Lj], a potential colli-
sion between agents i and j can be detected by the function:

COLLIDEPATH(pi, pj) = ⊥, (8)

if COLLIDE(pwi , p
v
j) = ⊥ and |twi − tvj | < ∆t, for any pwi ∈

pi[w0:Li] and any pvj ∈ pj [v0:Lj], where ∆t > 0 is a design
parameter as the allowed time difference, which depends
on the estimation accuracy of the time sequences {twi }
and {tvj} by (6). Then agents i and j keep their current
paths unchanged; otherwise, COLLIDEPATH(pi, pj) = >,
meaning that they may collide by executing their respective
paths. Thus at least one of them should modify its current
path, the choice of which agent will be presented later in the
EGGs. For now, we assume that agent i is chosen to change
its path pi. Let wc ∈ {w0, w0 + 1, · · · , Li} be the small-
est index within pi[w0:Li] that a potential collision could
happen by (8) and the associated index within pj [v0:Lj] is
vc ∈ {v0, v0 + 1, · · · , Lj}. Then agent i would avoid this
collision by reducing its speed within the segment pi[w0:wc],
while pi[wc:Li] remains unchanged. To find a suitable linear
velocity ν < vmax for elements in pi[w0:wc], we consider
the following optimization problem:

min0<ν<vmax
|Vi − ν|

s.t. vli = ν, ∀l = w0, · · · , wc.
COLLIDE(pwi , p

v
s) = ⊥, and |twi − tvs | < ∆t,

∀pwi ∈ pi[w0:Li], ∀pvj ∈ pj [v0:Lj].

(9)

where Vi is the reference velocity. The conditions above
ensure that after adjusting the linear velocity, pi and pj
will not collide by (8). The above problem can be solved as
follows: firstly, choose ν = maxl∈[w0:wc]{vli} and a proper
step size δv > 0. Then gradually decrease ν by δv and check
if the conditions within (9) are fulfilled. If not, repeat this
procedure until ν = ν? is small enough and all conditions
within (9) are fulfilled. As a result, ν? is the suitable linear
velocity for pi[w0:wc]. Moreover, the time instants {vwi }
within pi[w0:Li] are updated according to (6). If ν < 0 and
no solution can be found, it means that the initial position
of agent i is in collision with parts of agent j’s path. Then
it changes its mode according to the EGGs defined later.

Then consider that while executing the adjusted path,
agent i may meet with another moving agent, say k ∈ Ni(t1)
at time t1 > 0. Now its corresponding index within pi
is w′0 > w0. Similar as before, agents i and k exchange
their paths pi and pk. Function COLLIDEPATH(pi, pk) can
be used to check if they will collide in the future. If so,
assume that agent i is chosen to adapt its path again and
the potential collision is estimated to happen at index w′c
of pi. Consider the relative position of qw

′
c

i and qwc
i from the

previous adjustment: (i) if w′c ≤ wc, agent i would reduce
its linear velocity within pi[w

′
0:w′c] by the same formulation

as (9); (ii) if w′c > wc, agent i would instead reduce its linear
velocity within pi[wc:w′c] by the same formulation as (9).

For the ease of notation, we denote this process of adjust-
ing linear velocity by a single function:

pi = SLOWDOWN(si(t), pi, pj), (10)

which is only applied to the agent that adapts its path.
Figure 3 shows an example of applying the above function.

0.0 0.5 1.0 1.5

x(m)

−0.5

0.0

0.5

1.0

y(
m

)

a0

a1

p0

p1

0 1 2 3 4 5 6

t(s)

0.1

0.2

0.3

0.4

0.5

0.6

v(
m

/s
)

p−1 (t)

p1(t)

p2(t)

Fig. 3. The left image shows that agents a0, a1 have a potential collision
given their paths p1,p2 with velocities 0.5m/s, 0.4m/s. After applying
SLOWDOWN(·) by (10), the velocity profiles of a0 before (by blue square)
and after (by red diamond) are shown in the right image, by which the
potential collision is avoided.

(V) Continuous control for tracking. The fifth building
block is the continuous controller for an active agent to track
its tentative path. We rely on the nonlinear control scheme
from [13] for unicycle models that handles bounded control
inputs and ensures the tracking of a reference trajectory with
a provable bounded tracking error. In particular, consider that
an active agent i is executing its path pi by (3) from qli
to ql+1

i at time t0 > 0, where l ∈ [0, Li − 1]. We first
construct the reference trajectory (xr(t), yr(t), θr(t)) as
follows: (i) rotate to the desired orientation while staying
at the same position. For t ∈ [t0, t1), we set xr(t) = xli,
yr(t) = yli, θr(t) = θli + Wi · sgn(θl+1

i − θli)(t − t0) and
wr(t) = Wi, vr(t) = 0, where t1 = t0 + |θl+1

i − θli|/Wi;
(ii) forward towards the next grid while keeping the same
orientation. For t ∈ [t1, t2], we set xr(t) = xli+vli ·cos(θr) ·
(t − t1), yr(t) = yli + vli · sin(θr) · (t − t1), θr(t) = θl+1

i

and wr(t) = 0, vr(t) = vli, where t2 = d/vli. Denote
by the saturation function Satδ(x) = x, ∀|x| ≤ δ and
Satδ(x) = sgn(x)δ, ∀|x| > δ. Then the nonlinear control
laws are given by: vi = vr cos(θe) − Sata(k0xe) and wi =

wr + f1(xe, ye, θe, t)
f2(xe, ye, t)

+ Satb(k1θ̄0), where a = vmax − vli;
xe = cos(θ)(x − xr) + sin(θ)(y − yr); ye = − sin(θ)(x −
xr) + cos(θ)(y− yr); θe = θr− θ; b > 0 is chosen such that
|wi| < wmax; k1, k2 > 0; θ̄0 = θ0 + f3(xe, ye, t) ye; the
actual expressions of functions f1(·), f2(·) and f3(·) can be
found in Section III of [13]. The guarantees for convergence
and bounded tracking error are shown in Theorem 1 of [13].
For brevity, we denote this control scheme by the function:

(vi(t), wi(t)) = MOVE(si(t), pi). (11)

3) Graph Grammars: With the above building blocks, we
now present the complete graph grammars for the embedded
graph γ(t), which includes the set of local transition rules
with the associated conditions and control modes. We em-
phasize that they can be applied locally by each agent.

[R.0] At t = 0, each agent i ∈ N initializes its label by
setting i.id = i, i.mode = check or i.mode = static
randomly, and i.data.nb = ∅, i.data.pt = [], i.gi = 0,
where [] denotes an empty sequence. Moreover, for any agent
j ∈ Ni(0), it sets (i, j).id = (i, j).

After the system starts at t > 0, each agent i ∈ N
reconstructs its local graph Gi(t) and applies the rules below:

[R.1] If i.mode = check, agent i first communicates
with every neighbor j ∈ Ni(t) and checks if j.mode =
active and i ∈ j.data.nb. If so, it sets i.mode =
static and adds agent j to i.data.nb.

After that, if i.mode = check still holds, agent i chooses
an allowed marked scheme Nm

i given Gi(t) and calls the
function CHECK(si(t), Ni(t), zi, Nm

i) in (7). If (5) has a
solution as the tentative path pi and the potential gain χi.
If χi > 0, then it sets i.mode = move and i.data.nb =
Nm
i (t), i.data.gi = χi, i.data.pt = pi. Otherwise

if χi ≤ 0, it sets i.mode = static and i.data.nb =
∅. Otherwise if no solutions to (5) exist or χi ≤ 0, it
sets i.mode = static and i.data.nb = ∅.

[R.2] If i.mode = static, agent i stays static by
setting vi = wi = 0. Then it communicates with each neigh-
bor j ∈ Ni(t) and checks that if j.mode = active, i ∈
j.data.nb, and j /∈ i.data.nb hold. If so, it adds agent j
to i.data.nb. Moreover, for each agent j ∈ i.data.nb, it
checks whether i ∈ j.data.nb still holds. If not, it removes
agent j from i.data.nb. At last, it checks if i.data.nb = ∅.
If so, it sets i.mode = check.

[R.3] If i.mode = move, agent i first checks if j.mode =
static, ∀j ∈ i.data.nb. If not, it stops moving by
setting i.mode = check and i.data.nb = ∅. Other-
wise, it executes its tentative path pi via the motion con-
troller (vi, wi) = MOVE(si(t), pi) by (11). As discussed
earlier, agent i may encounter other agents, e.g., j ∈ Ni(t):

(i) if j.mode = move, they exchange their re-
spective gains and tentative paths. Then the agent with
higher gain is given higher priority. Assume for now
that i.data.gi < j.data.gi, implying agent j has higher
priority. Then the agent with lower priority, i.e., agent i,
calls COLLIDEPATH(pi, pj) by (8) to check if pi and pj
will collide. If so, agent i calls SLOWDOWN(si(t), pi,pj)
by (10). If it has a solution, agent i updates its path pi
by slowing down; otherwise, agent i stops moving by set-
ting i.mode = static and i.data.nb = ∅.

(ii) if j.mode = static, agent i checks if it would
collide with agent j given its current path pi. If so, it stops
moving by setting i.mode = check and i.data.nb = ∅.

[R.4] If i.mode = move and ‖pi(t) − zi`‖ < ci,
where ci > 0 is the threshold from Definition 3, agent i
has reached its goal point. Then agent i stops moving and
resets i.mode = static and i.data.nb = ∅.

It is worth mentioning that the gain comparison in [R.3]
introduces a fixed priority among the active agents. It means
that in the worst-case scenario all agents will slow down or
be static except the one with the highest gain.

B. Local Discrete Plan Synthesis

The previous section solves how each agent could move to
its current goal point, while obeying the motion constraints.
Here we tackle how each agent should choose and update its
goal point, in order to fulfill its local task ϕi. The solution
relies on the automaton-based model checking algorithm [2],
[9]: (i) recall that the complete motion and action modelMi

is given in Section III-B, (ii) then we derive the Büchi

automaton Aϕi associated with ϕi [2] by fast translation
tools [16]; (iii) we construct the product automaton Pi =
Ti × Aϕi

by Definition 4.62 of [2]; (iv) lastly a nested
Dijkstra’s shortest path algorithm [9] is applied to Pi, to
find its strongly connected component [2] with the minimal
summation cost. We refer the interested readers to [9] for
algorithms and implementation details. The infinite discrete
plan denoted by τi has the prefix-suffix structure:

τi = πi,0πi,1 · · ·πi,ki−1(πi,kiπi,ki+1 · · ·πi,Ki
)ω, (12)

where πi,k = (zi,k, ai,k) ∈ Πi where zi,k ∈ Zi and ai,k ∈
Σi, ∀i = 0, 1, · · · ,Ki and Ki > 0 is the total length of the
prefix and suffix. Note that the k-th element πi,k of τi for
k > Ki can be easily derived from the fact that the suffix is
repeated infinitely often. Given the locally-synthesized plans
from all agents, we impose the assumption below:

Assumption 1: The plans {τi, i ∈ N} are feasible if γ(t)
is allowed by Definition 2 when p(t) satisfies pi(t) = zi,k,
∀i ∈ N and ∀k = 0, 1, · · · . �

C. The Complete Solution

When the system starts, each agent i ∈ N derives its local
plan τi from (12) and sets its current goal point zi` = zi,0;
then it follows the transition rules and control laws from the
EGGs; by [R.4] after it reaches zi,0, it becomes static. Then
it performs the action ai,k according to the plan τi; after
the action is accomplished, it remains static until all other
agents have reached their respective goal points and finished
the corresponding actions. It can be detected through the
communication network that all agents are static. Then each
agent updates its goal point by zi` = zi,1 and sets i.mode =
check, ∀i ∈ N . Then all agents follow the EGGs to make
progress towards this new goal point. This procedure repeats
indefinitely as the discrete plans have infinite length. Note
that after agent i ∈ N reaches zi,Ki

, it should set zi` = zi,ki
to repeat the plan suffix by (12).

Lemma 3: If G(0) is connected, then G(t) remains con-
nected for t ≥ 0.

Proof: Since G(0) is connected, there exists at least
one path of length N that connects all agents in G(0).
Denote by this path ζ0 = a0a1 · · · aN , where agents ai
and ai+1 are directly connected by an edge and ai ∈
Ni+1(0), ∀i = 0, 1, · · · , N − 1. Denote by t1 > 0 the
smallest time instance that one consecutive pair within ζ0 is
not directly connected anymore. Without loss of generality,
let the pair be agents i and j. In other words, agents i
and j are the first pair within ζ0 that becomes disconnected
directly. Notice that j /∈ Ni(t1) can only happen in one of
the following cases: (i) agent i is moving while agent j is
static during [0, t1]. Given the marked neighbors Nm

i (0), by
Definition 6 it holds that j ∈ Nm

i (0). Given agent i’s path pi
as derived by (5), Lemma 2 ensures that the sub-graph Gmi (t)
remains connected for t ∈ [0, t1] while agent i executes pi.
Thus even though agents i and j are not connected directly
at time t1, they are still connected indirectly within Gmi (t1);
(ii) both agents i and j are moving during [0, t1]. Given their
marked neighbors Nm

i (0) and Nm
j (0), by Definition 6 there

must exist a static agent k ∈ Ni(0) such that k ∈ Nm
i (0)

and k ∈ Nm
j (0). Given the paths pi, pj as derived by (5), by

the same analysis as in case (i), agents i, k remain connected
and agents j, k remain connected during [0, t1], yielding that
agents i, j is connected indirectly at time t1. Since the other
consecutive pairs in ζ0 remain connected directly during
[0, t1], G(t) remains connected for t ∈ [0, t1]. Now denote
by ζ1 the new path of length N that connects all agents
within G(t1) at time t1. By the same arguments above for ζ0,
we can show that G(t) remains connected for t ∈ [t1, t2],
where t2 is the smallest time instance that one consecutive
pair in ζ1 is disconnected directly. Thus recursively we show
that G(t) remains connected, ∀t ≥ 0.

Theorem 4: All local tasks ϕi, i ∈ N are satisfied while
γ(t) ∈ Γd, ∀t > 0.

Proof: Since the workspace is assumed to be un-
bounded and free of obstacles, at least one agent within N
can be active and make a progress towards its current goal
point. The connectivity of G(t) is proved above and the
collision avoidance is ensured by the formulation of (5)
and (9). Moreover, Assumption 1 ensures that the inter-
mediate configuration of all agents’ goal points is feasible
and can be reached. At last, by correctness of the discrete
plan synthesis process, the execution of the discrete plan τi
guarantees the satisfaction of ϕi, and thus ensures that the
local task ϕi is satisfied, ∀i ∈ N .

V. SIMULATION AND EXPERIMENTAL STUDY

This section presents the simulation and experimental
results of applying the proposed scheme to both simulated
and physical multi-robot systems. All algorithms are imple-
mented in Python 2.7. The message passing among the robots
are handled by the Robot Operating System (ROS) and each
robot is launched as a ROS node. All simulations are carried
out on a laptop (3.06GHz Duo CPU and 8GB of RAM).

A. Workspace and Agent Description

The six robots are labeled R0, R1, · · · ,R5 and each oc-
cupies a disk area of radius 0.05m. As shown in Figure 4, the
communication range d is uniformly set to 0.9m, while the
safety distance d is set to 0.15m. Moreover, their reference
linear velocity is set to between 0.1m/s and 0.3m/s, under
the maximal 0.4m/s. The angular velocity is set to be-
tween 0.4rad/s and 0.5rad/s, under the maximal 0.7rad/s.

The robots’ motion and action model along with their local
task specifications are defined as follows: robots R0, R1

have the local task as surveillance. Robot R0 has four
points of interest at (1.5, 1.5), (-0.2, 1.5), (0, 0), (1.6, 0)
with labels {r1}, {r2}, {r3}, {r4} and action {a0} as “take
photos”. Its local task is to surveil r1, r2, r3, r4 in any
order, which can be specified as the LTL formula ϕ0 =
∧i=1,··· ,4�(♦ri ∧ a0). Robot R1 has points of interest close
to R0’s and its local tasks is similar to ϕ0. Robots R2, R3

have the local tasks for providing services. Robot R2 has
three points of interest at (1.2, 0.4), (0.6, 0.6), (0.6, 0.9)
with labels {p1}, {p3}, {p2} and action {a1} as “provide
services”. Its local task is to provide services to p1, p2, p3 in

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x(m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y(
m

)

a0, 10

g0 a1, 5g1

a2, 0

g2

a3, 1g3

a4, 0
g4a5, 0g5

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x(m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y(
m

)

a0, 7
g0

a1, 9
g1

a2, 0
g2

a3, 4g3

a4, 0g4

a5, 7

g5

Fig. 4. Snapshots of the simulation results. Moving robots are denoted by
red circles while static ones are in blue, labeled by its ID and current gain.
Lines marked by stars are tentative paths of the active robots. Black squares
represent the goal points, labeled by gi, ∀i ∈ N .

0 10 20 30 40 50 60

t(s)

0

1

2

3

4

5

6

di
am

et
er

0 10 20 30 40 50 60

t(s)

0.0

0.2

0.4

0.6

0.8

1.0

m
in

im
al

di
st

an
ce

(m
)

Fig. 5. Evolution of the graph diameter (left) and the minimal distance
among the robots. G(t) remains connected as its diameter is always lower
than 6; no collision occur as the minimal distance is always above 0.15m.

sequence, namely ϕ2 = �♦((p1∧a1)∧♦(((p2∧a1)∧♦(p3∧
a1))). Robot R3 has points of interest close to R3’s and its
task is similar to ϕ2. At last, robots R4, R5 are responsible
for transporting goods between goal points. Robot R4 has
three points of interest (1.1, 1.0), (1.5, 1.5), (1.0, 1.0) with
labels {b}, {s1}, {s2} and actions {a2, a3} as “load and
unload goods”. Its local task is to transport goods “A” from
storage s1 to base b and “B” from storage s2 to base b,
i.e., ϕ4 = ∧i=1,2�♦((si∧a2)⇒ (¬si U (b∧a3))). Robot R5

has three points of interest close to R4’s and its local task
is similar to ϕ4. Initially, the agents start from a line graph.

B. Simulation Results

After the system starts, each robot first synthesizes its
discrete plan τi as described in Section IV-B. For instances,
robot R0’s discrete plan is to visit r1, r2, r3, r4 in sequence
and perform action a0 at each point, which is then repeated,
while robot R4’s plan is to load goods “A” at g1 and unload
it at b, then load goods “B” at g2 and unload it at b, in
sequence and repeat. Then they follow the EGGs as described
in Section IV-A.3. Most of the time there are three to four
robots moving. Figures 4 show some snapshots of how G(t)
changes with time. After each robot reaches its current goal
point, it performs the planned action. It waits until all other
robots become static and then updates its goal point. This
procedure continues indefinitely and we simulate the system
until t = 72.5s when they have reached the forth goal point.
Figure 5 verifies that all motion constraints are fulfilled by
showing the evolution of the maximal length of the shortest

Fig. 6. Snapshots of the experiments at 25s and 230s, where the set of
goal points (black squares) are changed. Projected lines are the inter-robot
communication link and the tentative paths.

0 100 200 300 400 500 600

t(s)

0

1

2

3

4

5

gr
ap

h
di

am
et

er

0 100 200 300 400 500 600

t(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
in

im
al

di
st

an
ce

(m
)

Fig. 7. Evolution of the graph diameter (left) and the minimal distance
among the robots (right). Same conclusions can be drawn as in Figure 5.

path between any two vertices within G(t) (i.e., its diameter)
and the evolution of the minimal distance between any two
robots. The complete simulation video can be found in [22].

C. Experimental Results

We implement the proposed scheme on a team of five
Khepera II robots at the GRITS Lab of Georgia Tech, as
shown in Figure 6. They are differential-driven wheeled
robots that communicates wirelessly with the base station
computer. Their position and orientation are tracked in real-
time by the OptiTrack system. The message exchange among
the robots, between the robots and OptiTrack system are
handled by ROS. The robots’ points of interest are scattered
within the 3m× 3m workspace and designed to be feasible
by Assumption 1. The communication radius and safety dis-
tance are set to 0.9m and 0.15m. The navigation controller
from (11) is tuned properly to ensure that the robots track
the synthesized path. We omit the task description here due
to limited space, which is similar to the simulation case but
no robot actions are modeled in this experiment.

We run the system for 11 minutes and the robots have
reached the fourth goal point in their respective plans. The
whole experiment is recorded by an overhead camera and
communication links among the robots are projected onto
the ground. Some snapshots of the experiments are shown
in Figure 6, where the robots are heading for different
goal points. To verify that both continuous constraints are
satisfied, we also plot the diameter of G(t) and the minimal
distance between any two robots during the experiment in
Figure 7. The complete experiment video can be found
in [23], where more detailed descriptions are given.

VI. CONCLUSION AND FUTURE WORK

We have presented a hybrid control scheme for multi-
robot systems with local tasks, under collision avoidance and
connectivity maintenance constraints. Our solution relies on
embedded graph control grammars and imposes only local
communication and interactions. Future work includes the
consideration of static obstacles and dependent local tasks.

REFERENCES

[1] A. Bhatia, L. E. Kavraki and M. Y. Vardi. Sampling-based motion plan-
ning with temporal goals. IEEE International Conference on Robotics
and Automation(ICRA), 2689–2696, 2010.

[2] C. Baier and J.-P Katoen. Principles of model checking. The MIT Press,
2008.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins and G. J.
Pappas. Symbolic planning and control of robot motion. IEEE Robotics
and Automation Magazine, 14(1): 61–70, 2007.

[4] X. Ding, M. Kloetzer, Y. Chen and C. Belta. Automatic deployment of
robotic teams. IEEE Robotics Automation Magazine, 18: 75–86, 2011.

[5] D. V. Dimarogonas and K. J. Kyriakopoulos. Distributed cooperative
control and collision avoidance for multiple kinematic agents. IEEE
Conference on Decision and Control, 721-726, 2006.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit and G. J. Pappas. Temporal
Logic Motion Planning for Dynamic Mobile Robots. Automatica, 45(2):
343–352, 2009.

[7] G. E. Fainekos. Revising temporal logic specifications for motion
planning. IEEE Conference on Robotics and Automation, 2011.

[8] M. Guo and D. V. Dimarogonas. Bottom-up Motion and Task Co-
ordination for Loosely-coupled Multi-agent Systems with Dependent
Local Tasks. IEEE International Conference on Automation Science
and Engineering(CASE), 2015. To appear.

[9] M. Guo and D. V. Dimarogonas. Multi-agent Plan reconfiguration under
local LTL specifications. International Journal of Robotics Research,
34(2): 218-235, 2015.

[10] M. Guo, K. H. Johansson and D. V. Dimarogonas. Motion and Action
Planning under LTL Specification using Navigation Functions and
Action Description Language. IEEE/RSJ International Conference on
Intelligent Robots and Systems(IROS), 240–245, 2013

[11] M. Kloetzer, X. C. Ding and C. Belta. Multi-robot deployment from
LTL specifications with reduced communication, IEEE Conference on
Decision and Control(CDC), 4867–4872, 2011

[12] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-
agent motion tasks based on LTL specifications. IEEE Conference on
Decision and Control(CDC), 78–83, 2005.

[13] T. C. Lee, K. T. Song, C. C. Teng. Tracking control of unicycle-
modeled mobile robots using a saturation feedback controller. IEEE
Transactions on Control Systems Technology, 9(2): 305-318, 2001.

[14] J. M. McNew and E. Klavins. Locally interacting hybrid sys- tems
with embedded graph grammars. IEEE Conference on Decision and
Control(CDC), 6080-6087, 2006.

[15] J. M. McNew, E. Klavins, and M. Egerstedt. Solving Coverage Prob-
lems with Embedded Graph Grammars. Hybrid Systems: Computation
and Control, Springer-Verlag, 413-427, 2007.

[16] P. Gastin and D. Oddoux. Fast LTL to Büchi automaton translation.
International Conference on Computer Aided Verification, 2001.

[17] D. Pickem and M. Egerstedt. Self-Reconfiguration Using Graph Gram-
mars for Modular Robotics. IFAC Conference on Analysis and Design
of Hybrid Systems, 2012.

[18] B. Smith, A. Howard, J. M. McNew, J. Wang, M. Egerstedt. Multi-
robot deployment and coordination with embedded graph grammars.
Autonomous Robots, 26(1): 79-98, 2009.

[19] J. Tumova and D. V. Dimarogonas. A receding horizon approach to
multi-agent planning from local LTL specifications. American Control
Conference (ACC), 1775–1780, 2014.

[20] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, D. Rus. Optimality and
robustness in multi-robot path planning with temporal logic constraints.
The International Journal of Robotics Research, 32(8): 889–911, 2013.

[21] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic
connectivity control of mobile robot networks. Proceedings of the IEEE,
99(9): 1525–1540, 2011.

[22] Simulation video. https://vimeo.com/136210841
[23] Experiment video. https://vimeo.com/137872185

