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Abstract— We propose a cooperative motion and task plan-
ning scheme for multi-agent systems where the agents have
independently-assigned local tasks, specified as Linear Tempo-
ral Logic (LTL) formulas. These tasks contain hard and soft
sub-specifications. A least-violating initial plan is synthesized
first for the potentially infeasible task and the partially-known
workspace. While the system runs, each agent updates its
knowledge about the workspace via its sensing capability and
shares this knowledge with its neighboring agents. Based on this
update, each agent verifies and revises its plan in real time. It
is ensured that the hard specification is always fulfilled and the
satisfaction for the soft specification is improved gradually. The
design is distributed as only local interactions are assumed. The
overall framework is demonstrated by a case study.

I. INTRODUCTION

Temporal-logic-based motion planning has gained signif-
icant attention in recent years, as it provides a correct-by-
design controller synthesis approach for autonomous robots.
Temporal logics such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) provide formal high level
languages that can describe planning objectives more com-
plex than the well-studied point-to-point navigation [20]. The
task is given as a logic formula with respect to the discretized
abstraction of the robot motion modelled as a finite transition
system [1], [5]. Then a high-level discrete plan is found
by off-the-shelf model-checking algorithms given the finite
transition system and the task specification [3], [9]. This
discrete plan is then implemented through the low-level
hybrid controller [17], [19]. This methodology has also been
applied for multi-agent systems [8], [15], [26]. Most of
the existing work focuses on how to decompose a global
specification to bisimilar local ones in a top-down approach,
which can be then implemented by individual agents in a
synchronized [16] and partially-synchronized [17] manner.

Here we instead assume that local task specifications are
assigned independently to each agent and there is no pre-
specified global task [10], [13]. Since the workspace is only
partially-known, the task specification might be infeasible
given the initial workspace model and the motion plan
might need to be revised whenever the workspace model
is updated. Our previous work [13] addresses the first aspect
by synthesizing the motion plan that fulfills a potentially
infeasible task the most. In this paper, we further improve this
technique by considering hard and soft sub-specifications,
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where the hard part should be always fulfilled while the
soft part can be relaxed. Similar problems are discussed
in [23], [24] to find the least-violating strategy under a
set of safety rules. However the level of satisfiability is
measured in a different way from our approach. In particular,
we do not only measure how many states along the plan
violate the task, but also how much each of those states
violates the task. Moreover we propose a weight function that
balances the task satisfiability of a plan and its implemen-
tation cost. Regarding the second aspect, related approaches
can be found, e.g., in our earlier work [12] by real-time
plan revising, in [21] by local “patching" and in [22] by
workspace re-abstraction. In this paper, a new technique is
proposed taking into account the fact that the knowledge
update comes not only from local sensing but also from inter-
agent communications.

The proposed scheme has the following attributes: (1)
locally assigned tasks and a partially-known workspace are
considered; (2) it is distributed since only local interaction
between neighboring agents is assumed; (3) the communi-
cation payload is significantly reduced compared to a fully
synchronized solution; (4) while the hard specification that
preserves safety is always guaranteed by the real-time recon-
figuration algorithm, the satisfaction of the soft specification
is improved by triggering the optimal synthesis algorithm in
an event-based fashion; (5) it can potentially be applied to
many existing partition and motion planning techniques, such
as probabilistic roadmap method [8], [14], rapidly-exploring
random trees [1], [2], and navigation functions [18].

The rest of the paper is organized as follows: Section II
briefly introduces essential preliminaries. In Section III, we
describe how to synthesize an initial optimal plan. Section IV
focuses on how the knowledge is transferred among the
agents. Real-time algorithms to update the motion plan are
provided in Section V. Section VI summarizes the overall
structure and the case study is presented in Section VII.

II. PRELIMINARY

Given a team of heterogeneous agents k ∈ K =
{1, 2 · · · ,K}, with unique identities (IDs) k, they move
within a workspace Π which consists of N regions with
unique and pre-defined labels πn, n = 1, 2 · · · , N .

A. Local Task Specifications

The basic ingredients of an Linear Temporal Logic (LTL)
formula ϕ are a set of atomic propositions (APs) AP
and several boolean and temporal operators. We omit the
syntax and semantics of LTL here and refer the readers to



Chapter 5 of [3]. There is a union of infinite words that
satisfy ϕ: Words(ϕ) = {σ ∈ (2AP )ω |σ |= ϕ}, where
|= ⊆ (2AP )ω × ϕ is the satisfaction relation [7].

Furthermore there exists a Nondeterministic Büchi au-
tomaton (NBA) Aϕ over 2AP corresponding to ϕ [3], [7]. It
is defined as Aϕ = (Q, 2AP , δ, Q0, F) where Q is a finite
set of states; Q0 ⊆ Q is the set of initial states, 2AP is the
set of input alphabets; δ : Q × 2AP → 2Q is a transition
relation and F ⊆ Q is a set of accepting states. Denote
by χ(qm, qn) = {l ∈ 2AP | qn ∈ δ(qm, l)} the set of all
input alphabets that enable the transition from qm to qn. An
accepting run of Aϕ is an infinite run that intersects with F
infinitely often. Denote by Lω(Aϕ) the accepted language of
Aϕ, It holds that Words(ϕ) = Lω(Aϕ) [3]. There are fast
translation algorithms [11] from an LTL formula to NBA.
This process can be done in time and space 2O(|ϕ|).

Denote by APk = {a1, a2, · · · , a|APk|} the set of APs
known to agent k. Its task specification ϕk is an LTL formula
over APk. We assume that ϕk remains unchanged for all
agents once the system starts. Denote by ϕk|APk

as the set
of APs appearing in ϕk. In particular, we consider the task
specification ϕk with the following structure:

ϕk = ϕsoft
k ∧ ϕhard

k , (1)

where ϕsoft
k and ϕhard

k are “soft” and “hard” sub-formulas over
APk. ϕhard

k could include safety constraints like collision-
avoidance: “avoid all obstacles" or energy-supply guarantee:
“visit the charging station infinitely often". Introducing soft
and hard specifications is due to the observation that the
partially-known workspace might render parts of the spec-
ification infeasible initially and thus yielding the needs for
them to be relaxed, while the safety-critical parts should not
be relaxed during the process.

B. Agent Description and Partially-known Workspace

The motion of agent k in the workspace is described by
a deterministic finite-transition system (FTS):

Tk = (Π, −→k,Π0,k, APk, Lk, Wk), (2)

where (i) −→k⊆ Π×Π is the transition relation; (ii) Π0,k ⊆
Π is the set of initial regions where agent k may start; (iii)
Lk : Π → 2APk is the labelling function that represents
agent k’s knowledge. Lk(πi) is the set of APs satisfied by πi;
(iv) Wk :−→k→ R+ is the cost of each transition.

We assume that each agent has only partial knowledge of
the workspace initially. Thus Tk might be updated afterwards
as described in Section IV-B. Denote by T tk the FTS of agent
k at time t. Note that APk might be different among the
agents due to heterogeneity; Tk does not have a terminal
state [3]. An infinite path of Tk is an infinite sequence of
states τk = π0π1π2 · · · such that (πi, πi+1) ∈−→k for all
i > 0. Its trace is defined as the sequence of APs that
are true at the states along the path, i.e., trace(τk) =
Lk(π0)Lk(π1)Lk(π2) · · · . Since ϕhard

k and ϕsoft
k are LTL

formulas over APk, then trace(τk) |= ϕhard
k if and only

if trace(τk) ∈ Words(ϕhard
k ) and trace(τk) |= ϕsoft

k if
and only if trace(τk) ∈ Words(ϕsoft

k ).

Definition 1: Given an infinite path τk = π0π1π2 . . . of Tk
and its task ϕk, τk is called: (i) valid if (πi, πi+1) ∈−→k, for
i = 0, 1, 2 . . .; (ii) safe if trace(τk) |= ϕhard

k ; (iii) satisfying
if trace(τk) |= ϕk. �

III. INITIAL OPTIMAL PLAN SYNTHESIS

Denote by Ahard
k = (Q1, 2APk , δ1, Q1,0, F1) and Asoft

k =
(Q2, 2APk , δ2, Q2,0, F2) as the NBA associated with ϕhard

k

and ϕsoft
k , respectively. The functions χ1() of Ahard

k and χ2()
of Asoft

k are defined analogously as in Section II-A. Now we
propose a way to construct the intersection of Ahard

k and Asoft
k ,

which is safety-ensured and relaxed.
Definition 2 (Relaxed Automata Intersection): The

relaxed intersection of Ahard
k and Asoft

k is defined by:

Ãϕk
= (Q, 2APk , δ, Q0, F), (3)

where Q = Q1 × Q2 × {1, 2}; Q0 = Q1,0 × Q2,0 × {1};
F = F1×Q2×{1}; δ : Q× 2APk → 2Q, with 〈q̌1, q̌2, ť〉 ∈
δ(〈q1, q2, t〉, l) when the following three conditions hold:
(1) l ∈ χ1(q1, q̌1); (2) χ2(q2, q̌2) 6= ∅; (3) qt /∈ Ft and
ť = t, or qt ∈ Ft and ť = mod (t, 2) + 1, where t ∈ {1, 2}
and mod is the modulo operation. �

Note we relax the requirement that there should exist a
common input alphabet that enables the transitions from qi
to q̌i for both i = 1, 2, compared with the standard definition
of Büchi automata intersection (see Chapter 4.3 of [3]). An
accepting run R of Ãϕk

intersects with F infinitely often.
The last component t ∈ {1, 2} in Q ensures that R has to
intersect with both F1×Q2×{1} and Q1×F2×{2}. Denote
by R|Q1 the projection of R onto the states of Ahard

k .
Theorem 1: Given an accepting run R of Ãϕk

, R|Q1
is an

accepting run of Ahard
k . Moreover, Lω(Ãϕk

) ⊆ Lω(Ahard
k ).

Proof: The projection of F onto Q1 is F1, therefore
one of the accepting states in F1 is visited infinitely often
by R|Q1

. Since l ∈ χ1(q1, q̌1) is ensured by the definition
of δ, R|Q1 is an accepting run of Ahard

k . Secondly, given any
word σ ∈ Lω(Ãϕk

), σ results in an accepting run of Ãϕk
,

denoted by Rσ . Since Rσ|Q1
is an accepting run of Ahard

k ,
it implies that σ ∈ Lω(Ahard

k ). Thus for any σ ∈ Lω(Ãϕk
),

σ ∈ Lω(Ahard
k ) holds, namely Lω(Ãϕk

) ⊆ Lω(Ahard
k ).

Since we need to guarantee that ϕhard
k is fulfilled fully and

ϕsoft
k is fulfilled the most, the standard model-checking-based

algorithm [8], [9] may fail to provide any solution. Thus we
rely product automaton construction proposed in [13].

Definition 3 (Weighted Product Automaton): The
weighted product Büchi automaton Ãp,k = Tk ×Ãϕk

=
(Q′, δ′, Q′0, F ′, Wp) is defined as follows:
• Q′ = Π×Q and q′ = 〈π, q〉, ∀π ∈ Π and ∀q ∈ Q.
• δ′ : Q′ → 2Q

′
. 〈πj , qn〉 ∈ δ′(〈πi, qm〉) iff

(πi, πj) ∈−→k and qn ∈ δ(qm, Lk(πi)).
• Q′0 = Π0,k ×Q0 is the set of initial states.
• F ′ = Π×F is the set of accepting states.
• Wp : Q′ × Q′ → R+ is the weight function,

defined as Wp(〈πi, qm〉, 〈πj , qn〉) = Wk(πi, πj) +
α · Dist(Lk(πi), χ2(q2, q̌2)), where 〈πj , qn〉 ∈
δ′(〈πi, qm〉), qm = 〈q1, q2, t〉 and qn = 〈q̌1, q̌2, ť〉;
α ≥ 0 is a design parameter. �



We denote by Ãtp,k as the product automaton corresponding
to T tk at time t. The detailed definition and examples of
computing Dist() can be found in Section III.A of [13].
We briefly restate it here. Firstly, an evaluation function over
2APk is defined: Eval : 2APk → {0, 1}|APk|. Eval(l) =
ν ⇐⇒ [ νi ] = 1, if ai ∈ l and [ νi ] = 0, if ai /∈ l, where
l ∈ 2APk , ν ∈ {0, 1}|APk| and i = 1, 2 · · · , |APk|. Then
a metric (2APk , ρ) is defined as ρ(l, l′) = ‖ν − ν′‖1 =∑|APk|
i=1 | νi − ν′i |, where ν = Eval(l), ν′ = Eval(l′) and

l, l′ ∈ 2APk . ‖ · ‖1 is the `1 norm [6]. The distance between
an element l ∈ 2APk to a set χ ⊆ 2APk (χ 6= ∅) is given
by [6]: Dist(l, χ) = 0, if l ∈ χ and Dist(l, χ) =
minl′∈χ ρ(l, l′) otherwise. Remind that χ2(q2, q̌2) 6= ∅
by the definition of δ in Definition 2. Moreover, it is easy
to see that Dist(Lk(πi), χ1(q1, q̌1)) = 0, ∀〈πj , qn〉 ∈
δ′(〈πi, qm〉) from the definition of δ′.

The weight function Wp in δ′ consists of two parts:
Wk(πi, πj) measures the implementation cost of the tran-
sition from πi to πj ; Dist(Lk(πi), χ2(q2, q̌2)) measures
how much this transition violates the constraints imposed by
Asoft
k . The design parameter α reflects the relative penalty

on violating the soft specification, which should be chosen
relatively large under partially-known workspace.

Theorem 2: Assume Rk is an accepting run of Ãp,k. Then
τk = Rk|Π, is both valid and safe for Tk and ϕk.

Proof: The fact that τk is valid can be verified from
the definition of δ′. Because every transition in δ′ when
projected onto Π is a valid transition within −→k, meaning
that τk is always implementable by Tk. Secondly, since Rk
is an accepting run of Ãp,k, then trace(τk) ∈ Lω(Ãϕk

),
which implies trace(τk) ∈ Lω(Ahard

k ) by Theorem 1. Since
Words(ϕhard

k ) = Lω(Ahard
k ), trace(τk) ∈ Words(ϕhard

k ),
which indicates that τk is also safe by Definition 1.

In order to measure the implementation cost of dif-
ferent accepting runs of Ãp,k and how much they vi-
olate the soft specification, we consider the accepting
runs with the following prefix-suffix structure: Rk =
q′0 q
′
1 · · · q′f−1[ q′f q

′
f+1 · · · q′n ]ω, where q′0 ∈ Q′0 and q′f ∈

F ′. The prefix part (q′0 q
′
1 · · · q′f−1q

′
f ) of Rk from an ini-

tial state q′0 to one accepting state q′f is executed only
once. The suffix part (q′f q

′
f+1 · · · q′n) of Rk from q′f

back to itself is repeated infinitely. The total cost of Rk
is defined by: Cost(Rk, Ãp,k) =

∑f−1
i=0 Wp(q

′
i, q
′
i+1) +

γ
∑n−1
i=f Wp(q

′
i, q
′
i+1), where the design parameter γ ≥ 0

represents the relative weighting on the cost of transient
response (the prefix) and steady response (the suffix) to the
task specification [26]. The accepting run Rk of Ãp,k that
minimizes Cost(Rk, Ãp,k) is called the optimal accepting
run and denoted by Ropt,k. Its projection onto Π, τopt,k =
Ropt,k|Π, is called the optimal motion plan.

Given the desired value of α and γ, Algorithm 1 in [13]
generates the optimal accepting run of Ãp,k and the corre-
sponding plan in the prefix-suffix format. We omit the com-
plete algorithm here due to limited space. Briefly speaking, it
utilizes Dijkstra’s algorithm [20] for computing the shortest
path from any initial state to an accepting state and the the
shortest cycle containing this accepting state. This procedure

Algorithm 1: Optimal Plan Synthesis OptiPlan( )

Input: Tk, Ãϕk

Output: Ropt,k, τopt,k
1 Choose the desired α and γ;
2 Compute Ãp,k = Tk × Ãϕk

by Definition 3;
3 Derive Ropt,k in Ãp,k by Algorithm 1 in [13];
4 τopt,k = Ropt,k|Π

is summarized in Algorithm 1. By Theorem 2, τopt,k is always
valid and safe no matter how α and γ are chosen.

IV. KNOWLEDGE UPDATE AND TRANSFER

The agents have both the sensing ability to discover the
workspace and the communication functionality to share
knowledge with their neighboring agents.

Denote by Sensetk = {A(t), A¬(t), B(t)} as the set of
sensing information [12] obtained at time t ≥ 0 by agent
k, where: Type-A information: ((πi, πj), w) ∈ A(t) if a
new transition (πi, πj) is added to −→t

k with weight w, or
the weight of an existing transition (πi, πj) is updated to
w. (πi, πj) ∈ A¬(t) if (πi, πj) needs to be removed from
−→t

k. Type-B information: denote (a, Π̃a, Π̃a,¬) ∈ B(t)
where a ∈ APk; Π̃a ⊆ Π is the set of regions that satisfy
a; Π̃a,¬ ⊆ Π is the set of regions that do not satisfy a.
This sensing functionality can be modelled by assigning a
sensing radius Sk ≥ 0, such that all regions lying in the
sphere {p ∈ Rn | |p−ptk| ≤ Sk} are visible, where ptk ∈ Rn
is agent k’s position at time t.

A. Knowledge Transfer

In this section, we explain how the knowledge about the
workspace is shared among the agents.

1) Communication Network: It represents how the infor-
mation flows among the agents. Each agent k has a set of
neighboring agents, denoted by Kk ⊆ K. Agent k can send
messages directly to any agent belonging to Kk. We take
into account two different ways to model the communication
network: (1) global communication with a fixed topology; (2)
limited communication with a dynamic topology.

2) Communication Protocol: Agent k is interested in
all the propositions appearing in ϕk, namely ϕk|APk

. We
propose a subscriber-publisher mechanism to reduce the
communication load. Whenever agent g communicates with
agent k ∈ Ktg for the first, it follows the subscribing
procedure: agent g sends a request message to agent k that
Requesttg,k = ϕg|APg , which informs agent k the set of
propositions agent g is interested. Each agent has a subscriber
list, containing the requests it has received. Note that each
agent sends a request to any of its neighbors only once since
it also keeps track of the agents which it has subscribed to.

Afterwards, the publishing phase of each agent follows an
event-driven approach: whenever an agent k has obtained a
sensing update Sensetk, it checks its subscriber list whether
the content might be of interest to any of the subscribers
regarding some propositions. If it is of interest to agent g,



Algorithm 2: Transfer Knowledge, TranKnow( )

Input: Sensetk, Requestt0g,k
Output: Replytk,g

1 forall the Requestt0g,k received at t0 < t do
2 if g ∈ Ktk then
3 forall the a ∈ ϕg|APg do
4 if (a, Π̃a, Π̃a,¬) ∈ B(t) of Sensetk then
5 add (a, Π̃a, Π̃a,¬) to Replytk,g

for example regarding proposition a, then agent k checks
if g ∈ Ktk. If so, it publishes a reply message to agent
g that Replytk,g = {(a, Π̃a, Π̃a,¬)}, where a ∈ ϕg|APg

;
Π̃a, Π̃a,¬ ⊆ Π are defined as in B(t). The above procedure
is summarized in Algorithm 2. Note that through this com-
munication mechanism, any request only needs to be sent
once and every reply message contains useful knowledge.

B. Knowledge Update

At time t, agent k might obtain new knowledge from
Sensetk and Replytg,k, based on which it needs to update
its FTS accordingly. Denote by T t−k and T t+k as the FTS
before and after the update at time t. Given Sensetk, T t+k is
obtained by updating the transition relation of T t−k according
to A(t), A¬(t) and the labelling function of T t−k according
to B(t). Given (a, Π̃a, Π̃a,¬) ∈ Replytg,k, for regions inside
Π̃a, if proposition a does not belong to Lt

−

k (π), a is added
to Lt

−

k (π) and π is added to Π̃t
k, where Π̃t

k ⊆ Π is used to
store the regions of which the labelling function is changed.
Similar procedure is applied to Π̃a,¬; Π̃t

k is used to update the
product automaton later. Note that if Sensetk and Replytg,k
are empty, T t+k remains the same as T t−k .

V. REAL-TIME RECONFIGURATION

Since T tk might be updated as described in Section IV,
the optimal accepting run and its corresponding optimal
motion plan derived by Algorithm 1 in Section III need to
be evaluated regarding its validity, safety and optimality.

A. Product Automaton Update

Denote by Ãt−p,k and Ãt+p,k as the product automaton before
and after the update at time t. It is possible to reconstruct
completely Ãt+p,k by Definition 3 using Ãϕk

and the updated
T t+k . Here we propose to revise Ãt−p,k locally based on the
latest changes in T tk .

Definition 4: Given T t+k , (〈πi, qm〉, 〈πj , qn〉) ∈ δ
′t−

k is
called: (i) invalid if (πi, πj) /∈−→t+

k ; (ii) unsafe if Lt
+

k (πi) /∈
χ1(qm|Q1 , qn|Q1). �

To update Ãt−p,k, all transitions in Ãt−p,k corresponding to
removed transitions contained in A¬(t) have to be removed.
On the other hand, all transitions in Ãt−p,k corresponding to
added or modified transitions contained in A(t) and regions
with modified labelling function contained in Π̃t

k need to be

Algorithm 3: Revise the plan, ReviPlan( )

Input: Rt
−

k , Ξtk, ℵtk, Ãt+p,k
Output: Rt

+

k , τ t
+

k

1 Rt
+

k = Revise(Ãt+p,k, Rt
−

k , Ξtk ∪ ℵtk) by Algorithm 5
in [12];

2 τ t
+

k = Rt
+

k |Π

reconstructed. The notations Ξtk and ℵtk are used to store the
sets of invalid and unsafe transitions by Definition 4 above,
given A¬(t) in Sensetk and Π̃t

k from Section IV-B.

B. Validity and Safety

Now that we have derived the updated product automaton
At+p,k, an accepting run Rt

−

k of Ãt−p,k and its corresponding
plan τ t

−

k , two natural questions arise: 1. is τ t
−

k still valid or
safe? 2. if not, how can we modify τ t

−

k such that it remains
valid and safe for T̃ t+k and ϕk? Denote by edge(Rt

−

k ) the
set of transitions appearing in Rt

−

k . The first question is
answered by the following theorem.

Theorem 3: Assume Rt
−

k is an accepting run of Ãt−p,k. Let
Ãt−p,k be updated to Ãt+p,k. Then (i) τ t

−

k remains valid if and
only if Ξtk ∩ edge(Rt

−

k ) = ∅; (ii) τ t
−

k remains safe if ℵtk ∩
edge(Rt

−

k ) = ∅.
Proof: Since Rt

−

k is an accepting run of Ãt−p,k, τ t
−

k

is both valid and safe for T t−k by Theorem 2. If Ξtk ∩
edge(Rt

−

k ) = ∅ and ℵtk ∩ edge(Rt
−

k ) = ∅, Rt−k does
not contain any invalid or unsafe transitions. Thus Rt

−

k is
still an accepting run of Ãt+p,k. Then (i) by Theorem 2, τ t

−

k

is still valid. On the other hand, if Ξtk ∩ edge(Rt
−

k ) 6= ∅,
Rt
−

k |Π contains at least one invalid transition, thus not valid
by Definition 1; (ii) by Theorem 2, τ t

−

k is also safe.
One possible solution for the second question could be to

recall Algorithm 1 with respect to Ãt+p,k, which generates a
new optimal accepting run of Ãt+p,k. But this method requires
a complete new search of Ãt+p,k, which is computationally
inefficient in case of large Tk and complex ϕk, especially
when Ãp,k has to be updated frequently.

Instead we are interested in revising Rt
−

k locally such that
it fulfils the accepting condition of Ãt+p,k, but not necessarily
optimal. The idea is that since most of the path segments
belonging to Ãt−p,k remain unchanged for Ãt+p,k, we only need
to make up the edges that are invalid or unsafe in Ãt+p,k.
In our earlier work [12], we proposed a real-time revising
algorithm to revise an accepting run whenever this accepting
run contains invalid transitions due to updates in the product
automaton. Function Revise() from Algorithm 5 in [12]
essentially determines the location of the removed transition
in Rt

−

k and locally finds a “bridging” segment that make up
the removed transition by depth-first search, such that the
accepting run becomes valid. The updated Rt

+

k is projected
onto Π as the motion plan at time t. It is proved by Theo-
rem 3 in [12] that an accepting run of Ãt+p,k can always be



found by this algorithm if there exists one. It is summarized
in Algorithm 3, where Revise() is the main tool.

C. Optimality

Algorithm 3 offers a way to locally revise the invalid
or unsafe plan, which however does not maintain the cost
optimality as Algorithm 1. We propose the following cri-
terion to ensure the optimality check. Denote by Υt

k the
accumulated number of number of changes in Ãp,k: Υt+

k =

Υt−

k + |Ξtk| + |ℵtk|. Denote by ∆t
k the timespan since the

last time the optimal planner Algorithm 1 is called. Let the
thresholds N call

k , T call
k ≥ 0 be chosen freely by each agent.

Then whenever at least one of the following condition holds:
(1) Υt

k ≥ N call
k ; (2) ∆t

k ≥ T call
k , Algorithm 1 is called

with respect the latest product automaton Ãtp,k to derive
the optimal motion plan τ topt,k, but using agent k’s current
position as the initial state in its FTS. Both Υt+

k and ∆t+

k

are reset to zero after Algorithm 1 is called.

VI. OVERALL ARCHITECTURE

The overall architecture is summarized as follows: When
the system starts, each agent synthesizes its own initial mo-
tion plan using Algorithm 1. It sends requests to neighboring
agents that it has not requested before. Then it checks if it
receives any reply, sensing or request messages, based on
which it replies to its subscribers, and updates its FTS and
product automaton. At last, it decides whether the revising
algorithm or the optimal planner should be called based on
the triggering condition.

Theorem 4: For each agent k at any time t ≥ 0, its motion
plan τ tk is always valid and safe. Moreover, for any t′ ≥ 0,
there exists time t ∈ [t′, t′+T call

k ] such that τ tk is the optimal
motion plan for T tk and ϕk.

Proof: It is guaranteed that an accepting run for Ãt+p,k
will be found if there exists one by both Algorithms 1
and 3. As a result, Rtk is always an accepting run for Ãtp,k,
meaning that the corresponding motion plan τ tk is always
valid and safe. Due to the triggering condition described
earlier, Algorithm 1 is called at least once within any time
period with length T call

k , which completes the proof.
The implementation of the discrete motion plan involves

navigating the agents from one region to the next goal
region accordingly. The correctness of the proposed solutions
follows from Theorem 4. Let |Ãp,k| be the size of Ãp,k.
Algorithm 1 runs in O(|Ãp,k| · log |Ãp,k| · (|Q′0|+ |F ′|)).

VII. CASE STUDY

In this case study, we apply the framework to a team of
9 autonomous robots: three of them are aerial vehicles and
the rest are ground vehicles. All modules are implemented
in Python 2.7. All simulations are carried out on a desktop
computer (3.06 GHz Duo CPU and 8GB of RAM).

A. Workspace and Agent Description

As shown Fig. 1, the workspace we consider is a 9 ×
9 square consisting of 5 base stations (in yellow, denoted
by b1 · · · ,b5): four in the corners and one in the middle.

Fig. 1. Left: the actual workspace model as described in Section VII-A.
Right: the final optimal motion plan for aerial vehicles, which corresponds
to the final optimal plan in Fig. 3. It satisfies both ϕhard

Ar_i and ϕsoft
Ar_i.

Fig. 2. The final optimal motion plan for agents Gw_i (left) and for agents
Gf_i (right). It can be seen that water (in blue) or food (in green) is fetched
before any base station and all base stations are visited infinitely often,
while at the same time obstacle avoidance is ensured.

Besides, they are no-fly zone (in cyan, denoted by nfly)
and numerous obstacles (in red, denoted by obs). Food (in
green, denoted by food) and water (in blue, denoted by
water) resources are scattered in the free space.

Three aerial vehicles (Ar_1, Ar_2, Ar_3) start randomly
from one of the base stations. They have the hard specifica-
tion “repetitively visit at least one of the base stations, while
avoiding the no-fly zone", and soft specification “visit all
base stations infinitely often". Initially, they do not know the
location of base station b5, no-fly zone, nor the location of
water and food resources. They have a sensing radius of 5 in
the x-y coordinates. In LTL formulas, the specifications are
given as ϕhard

Ar_i = (�¬nfly)∧ (�♦(b1∨b2∨b3∨b4∨b5))
and ϕsoft

Ar_i = (�(♦b1 ∧ ♦b2 ∧ ♦b3 ∧ ♦b4 ∧ ♦b5)), for
i = 1, 2, 3. The other six robots are ground vehicles: three
of them collect food (denoted by Gf_1, Gf_2, Gf_3) and
the rest for water (denoted by Gw_1, Gw_2, Gw_3), to
supply the base stations. The hard specification is “avoid all
obstacles and repetitively collect water (or food) resources
to at least one base station" and the soft specification is
“supply all base stations infinitely often". Initially, they start
randomly from one base station and only knows the location
of one water (or food) resource, but not the obstacles and
other base stations. In LTL formulas, the hard and soft
specifications for Gw_i are given by ϕhard

Gw_i = (�♦¬obs) ∧
Order and ϕsoft

Gw_i = ϕsoft
Ar_i, where i = 1, 2, 3; Order =

(�♦water) ∧ (�(water ⇒ ©(¬waterU(b1 ∨ b2 ∨
b3 ∨ b4 ∨ b5))) ∧ (�((b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5) ⇒
©(¬(b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5)Uwater)). They have a
sensing radius of 3 in the x-y coordinates. The soft and hard
specifications ϕhard

Gw_i and ϕsoft
Gw_i for Gw_i is defined similarly



Fig. 3. It shows how the optimal plans of Ar_1, Ar_2, Ar_3 evolve
under the complete, clustered and dynamic communication topologies (up
to down). Each plan is labelled by the cost of its prefix and suffix. The
initial plan has a total cost 3352 ([32, 332]). The final plan has a total cost
563 ([4, 56]).

by replacing proposition water with food.
Clearly, the soft specification is impossible to fulfil ini-

tially for all agents as they have no knowledge about the
location of all base stations. Three different communication
topologies are analysed in the simulation, including a (1)
complete topology, where every pair of agents are neighbors;
(2) clustered topology, where the groups of Ar_i, Gw_i, Gf_i
are fully connected within each group, but only Ar_1, Gw_1,
Gf_1 are neighbors between different groups; (3) dynamic
topology, where the communication radius is set to 5.

B. Simulation Results

The whole scheme is implemented in the experiments.
For aerial vehicles the product automaton has 240 states
and 10296 edges, while the ground vehicles have a product
automaton with 1920 states and 63180 edges. We choose
(α, γ) to be (1000, 10) to construct the product automaton.
We set N call

k and T call
k to be (40, 20) for aerial vehicles and

(80, 15) for ground vehicles. Fig. 1 and 2 show the final
optimal motion plan of groups Ar_i, Gf_i, Gw_i. It can be
seen that both soft and hard specifications are fulfilled by
all agents. Fig. 3 shows how the total costs of the aerial
vehicles’ motion plans evolve with time under different three
communication topologies. Under the complete topology,
three aerial vehicles converge to the same optimal plan
within 10 steps while it takes 65 steps under the clustered
topology and around 160 steps under the dynamic topology.
Nevertheless, it can be seen that Algorithm 1 is only called
sparsely following the triggering rule in Section V-C.

VIII. CONCLUSION AND DISCUSSION

We have proposed a knowledge transfer scheme for coop-
erative motion planning of multi-agent systems under local
LTL task specifications. The workspace is assumed to be
partially known. Future work could include the consideration
of dependent task specifications.
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