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Abstract— This paper presents a finite-time topology identi-
fication method for complex dynamical networks. This method
prevents the difficulty of verifying linear independence condi-
tions and ensures the success of accurate topology identification.
The topology identification scheme first renders the error dy-
namics between the networks and reference signals zero in finite
time, and afterward, the topology is estimated by building an
auxiliary network. The identification of topology is achieved once
a relaxed excitation condition holds. The excitation condition is
guaranteed by the proposed tracking control scheme. A finite-
time topology identification and synchronization scheme for
complex systems is further proposed where synchronization is
realized by removing the exciting signals after the identification
of the topology. At last, the simulation results verify the
feasibility of the proposed method.

I. INTRODUCTION

Complex dynamical networks represent many systems,
ranging across social networks, distributed robots, sensor
networks and biological systems [1], [2], thus attracting
increasing attention. Analysis of complex dynamical networks
allows us to understand their behaviors better, like how the
influence spread in social networks [3] and biological systems
[4]–[6]. At the design level, increasingly complex tasks have
been realized by the coordination among agents [7], [8].

Most analyses and designs of dynamical networks assume
access to the network topology in advance, like consensus,
formation control, and distributed estimation problems [1].
The information on network topology allows us to address
how to control a network efficiently, how to optimize the
network based on the tasks, or analyze which node has the
most influence. But in some cases, the interaction network for
complex dynamical networks is unclear or unknown. For ex-
ample, how genes regulate via networks in biological systems
is still an open problem [5] and many methods are proposed
to infer the gene regulatory networks, including decision-
trees [6] and differential equations [9]. Hence, identifying the
network topology for complex dynamical networks plays a
key role in analyzing complex dynamical networks or making
designs for coordination tasks. A wide range of methods are
presented to deal with this problem for different complex
networks, like knock-out method [10], adaptive control [11],
[12], optimization [13]. A review can be found in [14].

This paper focuses on using adaptive control methods to
address the topology identification problem, which designs
one copy model to estimate the original network and identify
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the network topology once there is no difference between the
states of the copy model and that of the original network.
This method is applied to address the topology identification
problem for different network models like weighted complex
network [11], networks with time-delays [15] and perturbed
networks [16]. One underlying assumption in the above-
mentioned work is that linear independence conditions hold
during the identification process, which means that the states
or the output should be linearly independent. Typically, it
is challenging to verify if linear independence conditions
hold, causing the risk of failing in identification. Linear
independence conditions are guaranteed by tracking another
auxiliary network system [12], achieving topology identifica-
tion when time tends to be infinite. In practice, algorithms that
address this problem in finite time are needed. In addition, the
existing works don’t consider how to combine the information
inference and actuation in order to simultaneously identify the
network topology and achieve the control tasks.

Based on the above observations, we consider finite-time
topology identification problem for multi-agent systems. A
finite-time adaptive control method is proposed to estimate
the network topology. The main idea is to drive the system to
track the reference signals, providing sufficient excitation for
the identification process. The controller design and parameter
convergence scheme are presented to guarantee finite-time
identification. In addition, finite-time topology identification
and synchronization control is integrated to perform the con-
trol tasks under communication uncertainties in the dynamical
network. It has been shown that topology identification is not
guaranteed if the system is synchronized [17]. One solution is
to achieve identification before the synchronization. Switching
the exciting reference signals to the expected synchronized
state renders the synchronization in finite time.

The main contribution is two-fold. On the one hand, the
proposed strategy of tracking the reference signals suffices
a sufficient excitation condition for topology identification.
Compared to linear independence conditions [12] for the
reference signals during the identification process, the ex-
citation condition employed here has a broader family of
signals to choose from and is more practical. On the other
hand, the identification of network topology is achieved in
finite time. Compared to the topology identification in infi-
nite time approaches, the proposed scheme ensures topology
identification in finite time. This renders the combined finite-
time topology identification and synchronization for complex
dynamical networks possible. Furthermore, the feasibility of
the proposed scheme is guaranteed by theoretical results.

The remainder of this paper is structured as follows. In
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Section II, we introduce some concepts of excitation and a
relevant lemma. Section III presents the problem considered in
this paper. Section IV proposes a finite-time scheme for topol-
ogy identification and provides the sufficient condition un-
der which the proposed scheme ensures finite-time topology
identification. A combined scheme for topology identification
and synchronization is proposed in Section V. Section VI
demonstrates the the proposed scheme’s effectiveness with a
numerical example. Finally, Section VII concludes the paper.
Notations: Rn and Rn×m denote the sets of n-dimensional
real vector spaces and the n×m real matrices, respectively.
R≥0 denotes the set of non-negative real values. For any
vector z ∈ Rn, its 2-norm and infinite norm are denoted
by ∥z∥2 and ∥z∥∞. L∞ denotes the set of functions z(t) :
R≥0 → Rn with ∥z(t)∥∞ < ∞,∀t ≥ 0. For any matrix
M ∈ Rn×m, its transpose is represented by MT . For a
symmetric matrix M ∈ Rn×n, M ≻ 0 denotes that M
is positive definite. We say M ≻ N if M − N ≻ 0 for
M,N ∈ Rn×n. sign(z) is the sign function of z ∈ R. I
denotes the identity matrix with appropriate dimensions.

II. PRELIMINARIES

There are different definitions of excitation given in the
literature. Here, we use the definitions proposed by [18].

Definition 1: A function ϕ : R≥0 → Rn is said to be
exciting over [t, t+ T ] with t, T > 0 if for some α > 0∫ t+T

t

ϕ(τ)Tϕ(τ)dτ ≥ αI.

Compared to excitation, a stronger property of a signal is
persistent excitation, as follows.

Definition 2: A function ϕ : R≥0 → Rn is said to be
persistently exciting if for all t > 0 there exist T > 0 and
α > 0 such that, ∫ t+T

t

ϕ(τ)Tϕ(τ)dτ ≥ αI.

Lemma 1 shows that the output of a strictly stable,
minimum-phase filter driven by an exciting input keeps such
property, referred from Lemma 4.8.3 in [19].

Lemma 1: If z(t) : R≥0 → Rn satisfies the excitation
condition, z(t), ż(t) ∈ L∞ and H(s) is a strictly stable,
minimum phase, proper rational transfer function, then w =
H(s)z also satisfies the excitation condition. □

III. PROBLEM STATEMENT

Consider a dynamical network where the agents commu-
nicate via a topology abstracted as an undirected or directed
graph G = (V, E), with a set of nodes V = 1, 2, · · · , N and
a set of undirected or directed edges E ⊆ V × V [1]. The
dynamical network is represented as

ẋi(t) = fi(t, xi(t)) +

N∑
j=1

lijgij(xj(t)) + ui(t), (1)

where i = 1, 2, · · · , N . xi ∈ Rn is the state vector of the ith
node, fi(t, xi(t)) : R≥0 × Rn → Rn is a known smooth

function. function gij(xj(t)) : Rn → Rn is given as a
smooth function. ui(t) is the control input and lij denotes the
connection between agents i and j. If there is communication
between node i and node j(j ̸= i), then lij ̸= 0, otherwise,
lij = 0, 1 ≤ i ≤ N . We assume that L = (lij)N×N is an
unknown constant matrix.

The goal of this paper is to identify the unknown topology
G, in the form of the adjacency matrix L, of system (1) in
finite time.

Assumption 1: Assume the coefficients of L satisfy |lij | <
lmax, where i, j = 1, 2, · · ·N and lmax > 0 is known.

Lemma 2: [20] Consider a function V (x) : Rn → R in an
open neighbourhood Ω ⊂ Rn and the system ẋ = f(x), x ∈
Rn with f(0) = 0. If V (x) satisfies V̇ (x) ≤ −αV η(x) where
α > 0, 0 < η < 1, then x will converge to zero in finite time
t1 = V 1−η(0)/(α(1− η). □

Remark 1: In this paper, the maximum value lmax of each
element of L is assumed to be known as a priori. This
assumption is reasonable as the range of the elements of L
is typically known when estimating its values. Even if lmax

is unknown, a conservative guess about lmax can be made by
using a rather large value to ensure the finite-time tracking of
the reference signals. Here all state is observable. •

IV. FINITE-TIME TOPOLOGY IDENTIFICATION

We propose a method to guarantee successful topology
identification in a finite interval of time. This relies on a two-
step approach. First, an adaptive control-based algorithm is
employed here to deal with this problem, using the concept
of an excitation condition. The control for (1) is designed to
fully track reference signals in finite time, providing sufficient
rich information for the identification. After that, the network
topology is identified in finite time.

A. Design of finite-time controller

We first design an adaptive controller for (1) to track
reference signals zi(t) ∈ Rn for agent i in finite time, where
i = 1, 2, · · · , N .

Assumption 2: Assume zi(t), żi(t) ∈ L∞ for i =
1, 2, · · · , N and for z(t) := (z1(t), z2(t), · · · , zN (t))T the
following excitation condition: There exist T > 0 and α > 0
such that ∫ t+T

t

z(τ)T z(τ)dτ ≥ αI. (2)

Denote µi(t) = xi(t) − zi(t), 1 ≤ i ≤ N . Then the error
dynamics µi(t) follows

µ̇i(t) = fi(t, xi(t)) +

N∑
j=1

lijgij(xj(t)) + ui − żi(t). (3)

The proposed adaptive controller is given as

ui(t) = −fi(t, xi(t))−
∑N

j=1 l̂ijgij(xj(t))− ksign(µi(t))

+żi(t)− λ
∑N

j=1(l̂ij + lmax)
µi

∥µi∥2
, if ∥µi∥ ≠ 0,

ui(t) = 0, if ∥µi∥ = 0,
(4)
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where λ = k√
σij

, σij > 0, k > 0 and l̂ij is the estimation of

lij for i, j = 1, 2, · · · , N . Define l̃ij as the estimation error
l̃ij := lij − l̂ij .

The adaptive parameters l̂ij are updated as follows

˙̂
lij = σijµ

T
i gij(xj), (5)

where σij adjusts the rate of estimating the topology param-
eters. Noted that the states of all agents are observable here
and gij()̇ is known. Here i, j = 1, 2, · · · , N .

Corollary 1: Under Assumptions 1 and 2, consider the
control (4) and the parameter updating rules (5). Then the
tracking errors µi for agent i = 1, ..., N , converge to zero in
finite time t1, where t1 is defined by t1 :=

√
2V 1/2(0)

k and
V 1/2(0) = 1

2

∑N
i=1 µi(0)

Tµi(0) +
1
2

∑N
i=1

∑N
j=1

1
σij

l̃ij(0)
2.

□
Proof: Consider the function

V =
1

2

N∑
i=1

µT
i µi +

1

2

N∑
i=1

N∑
j=1

1

σij
l̃2ij .

Differentiating V along the error dynamics (3), one has

V̇ =
∑N

i=1 µ
T
i µ̇i −

∑N
i=1

∑N
j=1

1
σij

l̃ij
˙̂
lij ,

=
∑N

i=1 µ
T
i (fi(t, xi(t)) +

∑N
j=1 lijgij(xj(t)) + ui)

−
∑N

i=1 µ
T
i żi(t)−

∑N
i=1

∑N
j=1 l̃ijµ

T
j gij(xj(t))

≤
∑N

i=1 µ
T
i (

∑N
j=1 l̃ijgij(xj(t))− ksign(µi(t))

−λ
∑N

j=1(l̂ij + lmax)
µi

∥µi∥2
)

−
∑N

i=1

∑N
j=1 l̃ijµ

T
j gij(xj(t))

≤ −k(
∑N

i=1 ∥µi∥+
∑N

i=1

∑N
j=1

1√
σij

|l̂ij + lmax|)
(6)

The second equality above is obtained with (3) and (5). The
first inequality above is deduced after applying the control
(4). For l̃ij = lij − l̂ij , one has |l̃ij | ≤ lmax + |l̂ij |. The last
inequality is deduced from −|l̃ij | ≥ −lmax − |l̂ij |. Replacing
λ into this inequality, it yields

V̇ ≤ −k

 N∑
i=1

∥µi∥+
N∑
i=1

N∑
j=1

1
√
σij

|l̃ij |

 .

Using the following inequality

∥x1∥+ ∥x2∥+ · · ·+ ∥xn∥ ≥(
∥x1∥2 + ∥x2∥2 + · · ·+ ∥xn∥2

)1/2

where x1, x2, · · · , xn ∈ R, it follows

V̇ ≤ −
√
2k

1

2

N∑
i=1

µT
i µi +

1

2

N∑
i=1

N∑
j=1

1
√
σij

|l̃ij |2
1/2

.

From this, V̇ ≤ −
√
2kV 1/2 if ∥µi∥ ̸= 0 and V̇ = 0 if

∥µi∥ = 0. Hence, based on Lemma 1, the error dynamics ∥µi∥
will converge to zero in finite time t1. Let M =

{
V̇ = 0

}
=

{µi = 0, i = 1, 2, · · · , N}. According to LaSalle’s invariance
principle [21], the trajectory of µi will converges to the set
M in finite time t1 and remain there.

Remark 2: Assuming a special class of reference signals
guarantees linear independence conditions for the states of
(1) and it has been proven that in such case the topology
is identified when time tends to infinity [12]. However, it is
noted that using directly this method to identify the topology
in finite time, cannot guarantee finite-time topology identifi-
cation, particularly by using the control input (4) if ∥µi∥ ≠ 0
and ui(t) = −fi(t, xi(t)) −

∑N
j=1 l̂ijgij(xj(t)) − zi(t) if

∥µi∥ = 0, and the parameter updating laws (5). Using a
similar method as in [11] where the topology is identified in
infinite time, the proposed scheme drives the tracking errors
to zero in finite time, but cannot guarantee the topology
estimation errors l̃ij ∀i, j = 1, 2, · · · , N to converge to zero
in finite time. •

B. A Finite-time Topology Identification Scheme

Based on the analysis of Corollary 1, the control input (4)
and parameter updating laws (5) render the error dynamics
µi zero in finite time t1 for i = 1, 2, · · · , N . When µi tends
to be zero, l̃ij tends to be constant, but not necessarily zero.
Hence, additional effort is needed to address this problem.
We propose one method here to identify the network topology
accurately in finite time employing a technique introduced in
[22] and tailoring it to the networked problem in hand. The
main idea is to obtain the error between the estimated value
of the topology and the true value by establishing an auxiliary
network system, and then to estimate the true value once a
particular excitation condition holds.

Define the finite-time topology identification treated in this
paper for the network (1).

Definition 3: We say that the topology of the network (1)
is identified in a finite time if the coefficients lij in (1) are
estimated accurately in a finite time t′, where 0 < t′ < ∞,
i.e. l̃ij → 0 when t → t′ , ∀i, j = 1, ..., N .

Design an auxiliary network system to estimate the state
of agent i as follows:

˙̂xi =fi(t, xi(t)) + ui(t) +

N∑
j=1

l̂ijgij(xj(t))

+

N∑
j=1

wij
˙̂
lij + τei,

(7)

where τ > 0 and ei := xi − x̂i is the prediction error for
i = 1, 2, · · · , N . ui(t) is designed in (4), while wij is the
output of the filter equation

ẇij = gij(xj(t))− τwij , wij(0) = 0, (8)

and where i, j = 1, 2, · · · , N . Define wi :=
(wi1, wi2, · · · , wiN ).

Function gij(xj(t)) is assumed to be a linear function of
xj(t) here, without of generality, i.e., gij(xj(t)) = kijxj(t),
where kij ̸= 0 is a constant. The filter (8) can be written as

ẇT
i = Gix− τwT

i , wi(0) = 0, (9)

where x := (x1, x2, · · · , xN )T and Gi :=
diag (ki1, ki2, · · · , kiN ), since it has been assumed that

427

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 14,2024 at 19:56:08 UTC from IEEE Xplore.  Restrictions apply. 



gij(xj) = kijxj . With l̃ij = lij − l̂ij , we get from (1) and
(7) that

ėi =

N∑
j=1

l̃ijgij(xj(t))− τei −
N∑
j=1

wij
˙̂
lij . (10)

Define ζi := ei −
∑N

j=1 wij l̃ij , then it evolves according to

ζ̇i = −τζi, ζ(0) = ei(0). (11)

Define li and gi as li := (li1, li2, · · · , liN ) and gi :=
(gi1, gi2, · · · , giN ). Similarly, let l̂i := (l̂i1, l̂i2, · · · , l̂iN ) and
l̃i := (l̃i1, l̃i2, · · · , l̃iN ). Construct matrix Pi ∈ RN×N and
Hi ∈ RN :

Ṗi = wT
i wi, Pi(0) = 0

Ḣi = wT
i (wi l̂

T
i + ei − ζi), Hi(0) = 0.

(12)

The following assumption is necessary to estimate the
topology matrix L accurately.

Assumption 3: Suppose there exists a time tc > t > 0 and
γ > 0 such that Pi(tc) satisfies the excitation condition, i.e.,

Pi(tc) =

∫ tc

t

wT
i (τ)wi(τ)dτ ≻ γI, ∀i = 1, ..., N. (13)

The following lemma presents the relation between As-
sumption 2 and Assumption 3.

Lemma 3: Let Assumptions 1 and 2 of Corollary 1 hold.
Assuming that (1) is subject to the control (4) and the
parameter updating rules (5), then the output of the filter (8)
satisfies the excitation condition (13). □

Proof: Based on the analysis of the error dynamics µi in
Corollary 1, µi → 0 in finite time t1 and thus xi(t) → zi(t)
as t → t1. Recall also that, gij(xj(t)) = kijxj(t). Hence
gij(xj(t)) = kijzj(t) for t ≥ t1. Hence for agent i, (9)
becomes

ẇT
i = Giz − τwT

i , wi(0) = 0. (14)

We have that, z satisfies z, ż ∈ L∞ and z is exciting.
In addition, the transfer function of filter (14) is H(s) =
Gi/(s + τ), which is strictly stable and minimum-phase.
Hence according to Lemma 1, the output wi is exciting, too.
Therefore, the control design (4) and the updating laws (5)
with Assumptions 1 and 2 is sufficient for Assumption 3 to
hold as well.

The estimation of L is obtained in the following theorem.
Theorem 1: Let Assumptions 1 and 2 of Corollary 1 hold.

Assume that (1) is subject to the control (4) and the parameter
updating rules (5). Further considering (7), (8), (11) and (12),
the estimation of L is given by

li = Pi(t)
−1Hi(t) for all t ≥ tc. (15)

where li = (li1, li2, · · · , liN ) and i = 1, 2, · · · , N . □
Proof: The integral of Pi and Hi from t0 to t is deduced from
(12) as

Pi(t) =

∫ t

0

wT
i (τ)wi(τ)dτ

Hi(t) =

∫ t

0

wT
i (τ)(wi(τ)l̂

T
i (τ) + ei(τ)− ζi(τ))dτ

(16)

with Pi(0) = 0 and Hi(0) = 0. Using ζi = ei − wi l̃
T
i and

li = l̂i + l̃i, Hi(t) is further given as

Hi(t) =

∫ t

0

wT
i (τ)(wi(τ)l̂

T
i (τ) + wi(τ)l̃

T
i (τ))dτ

=

∫ t

0

wT
i (τ)(wi(τ)l

T
i )dτ

(17)

It is noted that li = (li1, li2, · · · , liN ) is an unknown but
constant vector. Therefore, after moving li outside of the
integral

∫ t

0
wT

i (τ)wi(τ)dτ , Hi(t) becomes

Hi(t) =

∫ t

0

wT
i (τ)wi(τ)dτ · lTi . (18)

According to Lemma 3, Assumption 3 holds from Assump-
tions 1 and 2 , the control input (4) and the parameter updating
laws (5). It also implies that Pi(t) is invertible. Hence the
value of li is obtained as

lTi = Pi(t)
−1Hi(t), ∀t ≥ tc. (19)

This concludes the proof.
Then, the network topology estimation algorithm is given

as

li =l̂i, if t < tc;

li =P (tc)
−1H(tc), if t ≥ tc.

(20)

Remark 3: Assumption 1 assuming the maximum value of
matrix L is known, is necessary to ensure that the tracking
of reference signals is achieved in finite time. The presented
tracking scheme guarantees that the excitation condition (13)
holds. Other tracking strategies can also be combined with the
topology identification algorithm presented in this subsection
if it ensures that wi satisfies the excitation condition (13). •

Remark 4: To identify the network topology L, the exci-
tation condition (13) needs to be satisfied for each agent.
Compared to the standard adaptive control scheme using the
persistent excitation condition, the conditions (2) and (13) are
a kind of excitation condition and (2) can be guaranteed by
designing specific signals over some interval. This estimation
algorithm allows us to compute L̂ = (L̂ij)N×N once the
matrix Pi are positive definite, thereby rendering the topology
identification in finite time rather than in infinite time. •

Remark 5: If we have a priori knowledge about the
structure of matrix L, the number of unknown coef-
ficients of the topology is reduced using this knowl-
edge. For example if lii =

∑N
j=1,i̸=j lij exists, we just

need to calculate N − 1 parameters of vector li :=
(li1, li2, · · · , li(i−1), li(i+1), · · · , liN ) for agent i. Denote
wi := (wi1, wi2, · · · , wi(i−1), wi(i+1), · · · , wiN ). And the
dimensions of Pi and Hi are reduced to Pi ∈ R(N−1)×(N−1)

and Hi ∈ R(N−1). Here i = 1, 2, · · · , N . In total, the number
of the estimated parameters of L is N × (N − 1) instead of
N×N . If G is undirected, only N(N−1)/2 coefficients of the
topology are needed to be estimated and the corresponding
estimation algorithm can be adjusted. •
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C. Excitation Signal Design

A design of z(t) = (z1(t), z2(t), · · · , zN (t))T is presented
so that the excitation condition (2) is met. The time-varying
signal zi(t) is decomposed into a constant matrix and a
periodic part by computing the trigonometric (or Fourier)
series expansion for each nonlinearity vector [22]. Here we
use the trigonometric series to design the signal z(t) as
z(t) = r + d(t), where r is a constant vector and d(t)
provides sufficient excitation. We set d(t) as d(t) = Aϕ(t),
where A = diag(a1, a2, · · · , aN ) and ϕ(t) = (sin(ϖ1t +
φ1), sin(ϖ2t+ φ2), · · · , sin(ϖN t+ φN )T , ϖi(t) ̸= ϖj(t) if
i ̸= j, where ai, ϖi, φi are constants for i = 1, 2, · · · , N .

V. FINITE-TIME IDENTIFICATION AND SYNCHRONIZATION

In this section, we present a finite-time identification and
synchronization scheme by switching the excitation signal to
zero once the topology is identified.

Definition 4 (Synchronization): A network is synchronized
if the manifold of synchronized motions is stable. The
manifold is S = x1 = x2 = · · · = xN = r, where r is the
synchronized state.

In order to achieve finite-time identification and synchro-
nization, one solution is to use the reference signals z(t) to
ensure that the excitation condition holds until the identifi-
cation of the network is achieved. Then signals d(t) in the
reference signals z(t) are set to zero in order to drive the
network to the desired synchronization in finite time.

For the parameter identification and synchronization
scheme, the amplitudes of the excitation signals are

âi(t) =

{
ai, if t ≤ tg
0, if t > tg

(21)

where tg = tc + δ is the time when the excitation condition
(13) is satisfied and δ is a positive constant. ai is given
in the excitation signals. Here i = 1, 2, · · · , N . When the
identification is achieved, the dither signals d(t) are set to
zero in tg . The updating parameters l̂ij stop updating and
keep constant for i, j = 1, 2, · · · , N . For t ≥ tg , the control
input is

ui(t) = żi(t)− fi(t, xi(t))−
∑N

j=1 l̂ijgij(xj(t))

−ksign(µi(t)), if ∥µi∥ ≠ 0
ui(t) = 0, if ∥µi∥ = 0.

(22)

Combing the above results, we can achieve finite-time
topology identification and synchronization as follows:

Corollary 2: Let Assumptions 1 and 2 hold, and assume
that (1) is subject to the control input (4) and the parameter
updating rules (5). Further consider (7), (8), (11) and (12).
With the control input (22), then the topology identification
and synchronization for (1) is achieved in finite time t =
ts + tg , where V 1/2(0) = 1

2

∑N
i=1 µi(0)

Tµi(0). □
Proof: The proof that synchronization is achieved in ts,
similar to that of Corollary 1, so it is omitted here. Topology
identification is guaranteed in tg through Theorem 1.

Remark 6: In addition to the synchronization task, other
control tasks, i.e. formation control, can be achieved by giving
different reference signals r(t). •

VI. SIMULATIONS

Consider a network of 6 agents modeled by (1), connected
by a graph in Fig 1. fi(t, xi(t)) = xi(t) and gij(xj(t)) =
kijxj(t), where kij = 2 for i, j = 1, 2, · · · , 6.

The topology L is

L =


2 −1 −1 0 0 0
−1 2 0 0 0 −1
−1 0 3 −2 0 0
0 0 −2 3 −1 0
0 0 0 −1 2 −1
0 −1 0 0 −1 2

 .

The initial values of (1) are x0 = (1.2, 1.5, 1.4, 0.3, 0.6, 1.1)T .
The goal is to estimate the topology lij for i, j = 1, 2, · · · , 6.

Fig. 1: The connecting graph representing the topology.

The reference signals z(t) are chosen as ż(t) = (cos(0.5πt−
1/8π), sin(0.7πt + 2/3π), cos(πt), sin(2πt), sin(3πt −
π/3), cos(4πt − 1/4π))T with zero initial values for
t ∈ [0, 2]s and ż(t) = [0, 0, 0, 0, 0, 0]T for t ∈ (2, 3]s. The
maximum value lmax is lmax = 4. The control input u is
given by (4) and (22). And the control gains are k = 1
and λ = 0.5. The estimation parameter is σij = 10 for
i, j = 1, 2, · · · , 6. The parameter in (8) is τ = 4. The initial
values of (5) and (7) are set to zero.

The simulation results are shown in Fig 2-5. The identifica-
tion results are displayed in Fig 2. The estimation errors L̃ :=
L−L̂ first decrease and then maintain using adaptive parame-
ters (5), which supports Corollary 1. The estimation errors are
zero using the estimation equation (20) after t = 1.13s, which
verifies Theorem 1 that the topology identification is achieved
in finite time using the proposed scheme. The resulting states
of all agents are depicted in Fig 3, representing that the
tracking errors decrease to zero using the control input (4)
after t = 0.24s, which supports Corollary 1. After removing
the exciting signals, the synchronized result is shown in Fig 5
after switching the control input (22), which verifies Corollary
2. From this, the topology identification and synchronization
is achieved within t = 2.70s. In conclusion, the identification
and control for multi-agent systems is achieved in finite time.

VII. CONCLUSION

In this paper, we consider a finite-time topology identifica-
tion problem for multi-agent systems. A finite-time topology
identification strategy is presented to address this problem by
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Fig. 2: Estimation errors of the topol-
ogy matrix L for t ∈ [0, 2]s.

Fig. 3: Evolution of tracking error ei
for t ∈ [0, 2]s.

Fig. 4: Evolution of xi of each agent
for t ∈ [0, 2]s.

Fig. 5: Evolution of synchronized state xi after 2s.

employing adaptive control methods, which offers a theoret-
ical guarantee for topology identification. The controller is
designed to track reference signals in finite time, providing
sufficient excitation for topology identification. The topology
is accurately estimated once the excitation condition for
each agent is satisfied and this estimation process ends in
finite time. Moreover, a finite-time topology identification
and synchronization scheme is presented, which achieves the
topology identification first, and then the multi-agent system
can be synchronized by switching the reference signals. This
paper only solves the fixed topology identification problem
and the identification of time-varying topology will be con-
sidered further. The coordination of the topology identification
and control tasks for complex dynamical networks properly
will also be studied further.
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