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Leader-follower Formation Control with
Prescribed Performance Guarantees

Fei Chen and Dimos V. Dimarogonas, Senior Member, IEEE

Abstract— This paper addresses the problem of achiev-
ing relative position-based formation control for leader-
follower multi-agent systems in a distributed manner us-
ing a prescribed performance strategy. Both the first and
second-order cases are treated and a leader-follower frame-
work is introduced in the sense that a group of agents with
external inputs are selected as leaders in order to drive the
group of followers in a way that the entire system achieves
a target formation within certain prescribed performance
transient bounds. Under the assumption of tree graphs,
a distributed control law is proposed for the first-order
case when the decay rate of the performance functions is
within a sufficient bound. Then, two classes of tree graphs
that can have additional followers are investigated. For the
second-order case, we propose a distributed control law
based on a backstepping approach for the group of leaders
to steer the entire system achieving the target formation
within the prescribed performance bounds. Finally, several
simulation examples are given to illustrate the results.

Index Terms— Leader-follower control, formation control,
multi-agent systems, prescribed performance control.

I. INTRODUCTION

FORMATION control [1] of multi-agent systems has at-
tracted great interest due to its wide applications in

coordination of multiple robots. A formation is characterised
as achieving or maintaining desired geometrical patterns via
the cooperation of multiple agents. Relative position-based
formation control methods are summarised in [2], where both
the first and second-order relative position-based formation
protocol are discussed. These are extended from the first
and second-order consensus protocol, respectively. The first-
order consensus protocol was first introduced in [3], while the
second-order consensus protocol was investigated in [4].

In this work, we study relative position-based formation
control in a leader-follower framework, that is, one or more
agents are selected as leaders with external inputs in addition
to the first or second-order formation protocol. The remaining
agents are followers only obeying the first or second-order
formation protocol. Recent research that has been done in
the leader-follower framework can be divided into two parts.
The first part deals with the controllability of leader-follower
multi-agent systems. For instance, controllability of networked
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systems was first investigated in [5] by deriving conditions
on the network topology, which ensures that the network
can be controlled by a particular member which acts as a
leader. The second part targets leader selection problems [6]–
[8]. These involve the problem of how to choose the leaders
among the agents such that the leader-follower system satisfies
requirements such as controllability or optimal performance.

Prescribed performance control (PPC) was originally pro-
posed in [9] to prescribe the evolution of system output or
the tracking error within some predefined region. When it
comes to multi-agent systems, an agreement protocol that can
additionally achieve prescribed performance for a combined
error of positions and velocities was designed in [10] for
multi-agent systems with double integrator dynamics, while
PPC for multi-agent average consensus with single integrator
dynamics was presented in [11]. Funnel control, which uses a
similar idea as PPC was first introduced in [12] for reference
tracking.

In this work, both first and second-order leader-follower
multi-agent systems are treated and we are interested in how
to design control strategies for the leaders such that the leader-
follower multi-agent system achieves a relative position-based
formation within certain performance bounds. Compared with
existing work of PPC for multi-agent systems [10], we apply
a PPC law only to the leaders while most of the related work,
including [10], applies PPC to all the agents to achieve here
tasks such as consensus or formation. The benefit of this work
is to lower the cost of the control effort since the followers will
follow the leaders by obeying first or second-order formation
protocols without any additional control and knowledge of the
prescribed team bounds. Unlike other approaches for leader-
follower multi-agent systems using PPC [13], in which the
multi-agent system only has one leader and the leader is
treated as a reference for the followers, we focus on a more
general framework in the sense that we can have more than one
leader and the leaders are designed in order to steer the entire
system achieving the target formation within the prescribed
performance bounds. The difficulties in this work are due to
the combination of uncertain topologies, leader amount and
leader positions. In addition, the leader can only communi-
cate with its neighbouring agents. The contributions of the
paper can be summarized as: i) within this general leader-
follower framework, under the assumption of tree graphs, a
distributed control law is proposed when the decay rate of
the performance functions is within a sufficient bound; ii)
the specific classes of chain and star graphs that can have
additional followers are investigated; iii) for second-order case,
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we propose a distributed control law based on a backstepping
approach for the group of leaders to steer the entire system
to a target formation within certain prescribed performance
transient bounds for the whole team. Preliminary results of first
and second-order consensus for leader-follower multi-agent
systems with prescribed performance guarantees have been
presented in [14], [15], respectively. In this work, we extend
our previous results to the relative position-based formation.
In particular, under the leader-follower framework, PPC is
utilized in order to achieve the target formation along with the
prescribed performance guarantees. Applying PPC to forma-
tion control has more practical applications when compared
to applying PPC to consensus. For example, in cooperative
formation control, a key topic is collision avoidance and
connectivity maintenance, which can be tackled by prescribed
performance control. Thus this first result of leader-follower
formation control using PPC offers a more general framework
and paves the way for more general structures of the formation
than consensus. The challenges of uncertain leader-follower
topology also exist when considering formation control in the
leader-follower framework. Finally, several two-dimensional
simulations showing the target relative position-based forma-
tions are added in order to verify the results.

The rest of the paper is organized as follows. In Section
II, preliminary knowledge is introduced and the problem is
formulated, while Section III presents the main results, where
both the first and second-order cases are discussed. The results
are further verified by simulation examples in Section IV.
Section V includes conclusions and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Graph Theory

An undirected graph [16] is defined as G = (V, E) with the
vertices set V = {1, 2, . . . , n} and the edges set E = {(i, j) ∈
V ×V | j ∈ Ni} indexed by e1, . . . , em. Here, m = |E| is the
number of edges and Ni denotes the neighbourhood of agent
i such that agent j ∈ Ni can communicate with i. A path is a
sequence of edges connecting two distinct vertices. A graph is
connected if there exists a path between any pair of vertices.
By assigning an orientation to each edge of G the incidence
matrix D = D(G) = [dij ] ∈ Rn×m is defined. The rows of D
are indexed by the vertices and the columns are indexed by
the edges with dij = 1 if the vertex i is the head of the edge
(i, j), dij = −1 if the vertex i is the tail of the edge (i, j)
and dij = 0 otherwise. The graph Laplacian of G is described
as L = DDT . In addition, Le = DTD is the so called edge
Laplacian [17] and (Le)ij = cij denotes the elemnts of Le.

B. System Description
In this work, we consider a multi-agent system with vertices

V = {1, 2, . . . , n}. Without loss of generality, we suppose that
the first nf agents are selected as followers while the last nl
agents are selected as leaders with respective vertices set VF =
{1, . . . , nf}, VL = {nf + 1, . . . , nf + nl} and n = nf + nl.

Let pi, vi ∈ R be the respective position and velocity of
agent i, where we only consider the one dimensional case,
without loss of generality. Specifically, the results can be

extended to higher dimensions with appropriate use of the
Kronecker product. This work aims to design a control strategy
for the leader-follower multi-agent system such that it can
achieve the following target relative position-based formation

F := {p | pi − pj = pdesij , (i, j) ∈ E}, (1)

where pdesij := pdesi − pdesj , (i, j) ∈ E is the desired relative
position between agent i and agent j, which is constant
and denoted as the difference between the absolute desired
spositions pdesi , pdesj ∈ R. Here, pdesij is only needed to be
known and pdesi , pdesj are defined with respect to an arbitrary
reference frame and do not need to be known.

In the first-order case, the state evolution of each follower
i ∈ VF is governed by the first-order formation protocol:

ṗi = −
∑
j∈Ni

(pi − pj − pdesij ). (2)

The state evolution of each leader i ∈ VL is governed by the
first-order formation protocol with an external input ui ∈ R:

ṗi = −
∑
j∈Ni

(pi − pj − pdesij ) + ui. (3)

In the second-order case, the state evolution of each follower
i ∈ VF is governed by the second-order formation protocol:

ṗi = vi

v̇i = −
∑
j∈Ni

(
(pi − pj − pdesij ) + (vi − vj)

)
. (4)

The state evolution of leader i ∈ VL is governed by the second-
order formation protocol with an external input ui ∈ R:

ṗi = vi

v̇i = −
∑
j∈Ni

(
(pi − pj − pdesij ) + (vi − vj)

)
+ ui. (5)

Let us denote p = [p1, . . . , pn]T , v = [v1, . . . , vn]T , pdes =
[pdes1 , . . . , pdesn ]T ∈ Rn as the respective stack vector of
absolute positions, velocities and target positions and u =
[unf+1, . . . , unf+nl

]T ∈ Rnl is the control input vector
including the external inputs of leader agents in (3), (5).
Denote p̄ = [p̄1, . . . , p̄m]T , v̄ = [v̄1, . . . , v̄m]T , p̄des =
[p̄des1 , . . . , p̄desm ]T ∈ Rm as the respective stack vector of
relative positions, relative velocities and target relative posi-
tions between the pair of communication agents for the edge
(i, j) = k ∈ E , where p̄k , pij = pi − pj , v̄k , vij =
vi − vj , p̄desk , pdesij = pdesi − pdesj , k = 1, 2, . . . ,m. It can
be then verified that Lp = Dp̄ and p̄ = DT p. In addition, if
p̄ = 0, we have that Lp = 0. Similarly, it holds that Lv = Dv̄,
v̄ = DT v and Lpdes = Dp̄des, p̄des = DT pdes.

By stacking (2), (3), the dynamics of the first-order leader-
follower multi-agent system is rewritten as:

Σ1 : ṗ = −L(p− pdes) +Bu. (6)

Similarly, stacking (4) and (5), the dynamics of the second-
order leader-follower multi-agent system is rewritten as:

Σ2 :

[
ṗ
v̇

]
=

[
0n In
−L −L

] [
p− pdes

v

]
+

[
0n×nl

B

]
u, (7)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

where L is the graph Laplacian and B =
[

0nf×nl

Inl

]
.

In the sequel, we denote x = p − pdes = [x1, . . . , xn]T

as the shifted absolute position vector with respect to pdes.
Accordingly, x̄ = p̄− p̄des = [x̄1, . . . , x̄m]T is denoted as the
shifted relative position vector with respect to p̄des.

C. Prescribed Performance Control
The aim of PPC is to prescribe the evolution of the relative

position p̄i(t) within some predefined region described as

p̄desi − ρx̄i(t) < p̄i(t) < p̄desi + ρx̄i(t), (8)

or equivalently, to prescribe the evolution of the shifted relative
position x̄i(t) within

−ρx̄i
(t) < x̄i(t) < ρx̄i

(t). (9)

(8) and (9) are equivalent since x̄ = p̄ − p̄des (while in
component format also). Here ρx̄i(t) : R+ → R+ \ {0}, i =
1, 2, . . . ,m are positive, smooth and strictly decreasing per-
formance functions that introduce the predefined bounds for
the shifted relative positions. One example choice is

ρx̄i(t) = (ρx̄i0 − ρx̄i∞)e−lx̄i
t + ρx̄i∞ . (10)

with ρx̄i0
, ρx̄i∞ and lx̄i

positive parameters and ρx̄i∞ =
limt→∞ρx̄i

(t) represents the maximum allowable tracking
error at steady state.

Normalizing x̄i(t) with respect to the performance function
ρx̄i

(t), we define the modulated error as ˆ̄xi(t) and the corre-
sponding prescribed performance region Dx̄i

as:

ˆ̄xi(t) =
x̄i(t)

ρx̄i
(t)
, (11)

Dx̄i
, {ˆ̄xi : ˆ̄xi ∈ (−1, 1)}. (12)

Then the modulated error is transformed through a transformed
function Tx̄i

that defines the smooth and strictly increasing
mapping Tx̄i

: Dx̄i
→ R, Tx̄i

(0) = 0. One example choice is

Tx̄i(ˆ̄xi) = ln

(
1 + ˆ̄xi
1− ˆ̄xi

)
. (13)

The transformed error is then defined as

εx̄i
(ˆ̄xi) = Tx̄i

(ˆ̄xi) (14)

It can be verified that if the transformed error εx̄i
(ˆ̄xi) is

bounded, then the modulated error ˆ̄xi is constrained within
the region (12). This also implies the error x̄i evolves within
the predefined performance bounds (9). Differentiating (14)
with respect to time, we derive

ε̇x̄i
(ˆ̄xi) = JTx̄i

(ˆ̄xi, t)[ ˙̄xi + αx̄i
(t)x̄i] (15)

where

JTx̄i
(ˆ̄xi, t) ,

∂Tx̄i
(ˆ̄xi)

∂ ˆ̄xi

1

ρx̄i
(t)

> 0 (16)

αx̄i
(t) , − ρ̇x̄i

(t)

ρx̄i
(t)

> 0 (17)

are the normalized Jacobian of the transformed function Tx̄i

and the normalized derivative of the performance function,
respectively.

D. Problem Statement

In this work, we aim to design a control strategy for the
leader-follower multi-agent system (6) or (7) such that it can
achieve the target formation F as in (1). In addition, the
control strategy is only applied to the leaders and the evolution
of the relative positions between neighbouring agents should
satisfy the prescribed performance bounds (8). Formally,

Problem 1: Let the leader-follower multi-agent system Σ be
defined by (6) or (7) with the communication graph G = (V, E)
and the prescribed performance functions ρx̄i , i = 1, 2, . . . ,m.
Derive a ladder control strategy such that the controlled leader-
follower multi-agent system achieves the target formation F
as in (1) while satisfying (8).

III. MAIN RESULTS

In this section, we design the control for the leader-follower
multi-agent system (6) and (7) such that the system can
achieve the target formation F as in (1) within the prescribed
performance bounds (8). The respective performance functions
ρx̄i

(t) and transformed functions Tx̄i
(ˆ̄xi) are defined as (10)

and (13) without loss of generality. The later results can be
generalised to any positive, smooth and strictly decreasing
functions ρx̄i(t), and any smooth and strictly increasing trans-
formed functions Tx̄i

: Dx̄i
→ R that go through the origin.

We assume that communicating agents share information about
their performance functions ρx̄i

(t) and transformed functions
Tx̄i(ˆ̄xi). Hence, the communication between neighbouring
agents is bidirectional and the graph G is assumed undirected.

A. Formation control of first-order case using PPC

Since our target is the relative position-based formation and
the prescribed performance functions are defined based on x̄,
we first rewrite the dynamics of the leader-follower multi-
agent system (6) into the edge space in order to characterise
the dynamics of the relative positions. We then rewrite (6)
into the dynamics corresponding to followers and leaders,
respectively. The corresponding incidence matrix is decom-
posed into the first nf and the remaining last nl rows, i.e.,
D =

[
DT
F DT

L

]T
[16] with DF , DL denoting the incidence

matrices with respect to the followers and leaders, respectively.
Using x = p− pdes, the dynamics (6) are reorganised as

Σ1 :

[
ẋF
ẋL

]
=

[
AF BF
BTF AL

] [
xF
xL

]
+

[
0nf×nl

Inl

]
u, (18)

where xF = [x1, . . . , xnf
]T , xL = [xnf+1, . . . , xn]T and

AF = DFD
T
F , BF = DFD

T
L , AL = DLD

T
L . Multiplying

with DT on both sides of (18), we obtain the dynamics on
the edge space as

Σe1 : ˙̄x = −Lex̄+DT
Lu, (19)

with Le as the edge Laplacian and Le is positive definite if
the graph is a tree [18]. We thus here assume the following.

Assumption 1: The graph G = (V, E) is a tree.
We consider tree graphs as a starting point since we need the
positive definiteness of Le in the analysis, and motivated by
the fact that they require less communication load (less edges)
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for their implementation. Note however that further results for
a general graph could be built based on the results of tree
graphs, e.g., through graph decompositions [17]. For the edge
dynamics (19), the proposed controller applied to the leader
agents is the composition of the term based on prescribed
performance of the positions of the neighbouring agents:

uj = −
∑
i∈Φj

gx̄iJTx̄i
(ˆ̄xi, t)εx̄i(ˆ̄xi), j ∈ VL, (20)

where Φj = {i|(j, k) = i, k ∈ Nj}, i.e., the set of all the edges
that include agent j ∈ VL as a node, and gx̄i

is a positive scalar
gain to be appropriately tuned. Then the stack input vector is

u = −DLJTˆ̄x
Gx̄εˆ̄x, (21)

where ˆ̄x ∈ Rm is the stack vector of transformed errors ˆ̄xi,
Gx̄ ∈ Rm×m is the positive definite diagonal gain matrix with
entries the positive constant parameters gx̄i

, JTˆ̄x
, JT (ˆ̄x, t) ∈

Rm×m is a time varying diagonal matrix with diagonal entries
JTx̄i

(ˆ̄xi, t) given in (16), and εˆ̄x , ε(ˆ̄x) ∈ Rm is the stack
vector with entries εx̄i

(ˆ̄xi). Then the edge dynamics (19) with
input (21) can be written as

˙̄x = −Lex̄−DT
LDLJTˆ̄x

Gx̄εˆ̄x, (22)

In the sequel, we develop the following result and will use
Lyapunov-like methods to prove that the target formation can
be achieved and the prescribed performance can be guaranteed.

Theorem 1: Consider the leader-follower multi-agent sys-
tem Σ1 under Assumption 1 with dynamics (6), the predefined
performance functions ρx̄i

as in (10) and the transformed
functions Tx̄i

(ˆ̄xi) as in (13) s.t. Tx̄i
(0) = 0, and assume that

the initial conditions p̄i(0) are within the performance bounds
(8). If the following condition holds:

γ̄ ≥ l = max
i=1,...,m

(lx̄i), (23)

where l is the largest decay rate of ρx̄i(t) and γ̄ is the
maximum value of γ that ensures:

Γ =

[
DT

LDL
1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
≥ 0, (24)

then the controlled system achieves the target formation (1)
and satisfies (8) when applying the control law (21).

Proof: The underlying idea of the proof is based on
showing that εˆ̄x is bounded through a candidate Lyapunov
function. Then, the boundedness of εˆ̄x implies that the mod-
ulated error ˆ̄xi is constrained within the region (12). This
further implies that the error x̄i evolves within the predefined
performance bounds (9). Since the initial conditions p̄i(0) are
within the performance bounds (8), this is equivalent to that
the initial conditions x̄i(0) are within the performance bounds
(9). Consider the Lyapunov-like function

V (εˆ̄x, x̄) =
1

2
εTˆ̄xGx̄εˆ̄x +

γ

2
x̄T x̄. (25)

Then, V̇ = εTˆ̄xGx̄ε̇ˆ̄x + γx̄T ˙̄x. Replacing ε̇ˆ̄x by stacking the
components ε̇x̄i

(ˆ̄xi) that are derived in (15), we obtain V̇ =
εTˆ̄xGx̄JTˆ̄x

( ˙̄x+ αx̄(t)x̄) + γx̄T ˙̄x, where αx̄(t) is the diagonal

matrix with diagonal entries αx̄i
(t). According to (17) and

(10), we know that

αx̄i
(t) , − ρ̇x̄i

(t)

ρx̄i(t)
= lx̄i

ρx̄i
(t)− ρx̄i∞

ρx̄i(t)
< lx̄i ,∀t. (26)

Substituting (22), we can further derive that

V̇ =εTˆ̄xGx̄JTˆ̄x
(−Lex̄−DT

LDLJTˆ̄x
Gx̄εˆ̄x + αx̄(t)x̄)

+ γx̄T (−Lex̄−DT
LDLJTˆ̄x

Gx̄εˆ̄x)

=− εTˆ̄xGx̄JTˆ̄x
Lex̄+ εTˆ̄xGx̄JTˆ̄x

αx̄(t)x̄

− εTˆ̄xGx̄JTˆ̄x
DT
LDLJTˆ̄x

Gx̄εˆ̄x − γx̄TLex̄
− γx̄TDT

LDLJTˆ̄x
Gx̄εˆ̄x

(27)

Adding and subtracting γεTˆ̄xGx̄JTˆ̄x
x̄ on the right hand side of

(27), we obtain

V̇ =− εTˆ̄xGx̄JTˆ̄x
(γIm − αx̄(t))x̄

− εTˆ̄xGx̄JTˆ̄x
DT
LDLJTˆ̄x

Gx̄εˆ̄x

− εTˆ̄xGx̄JTˆ̄x
Lex̄− γx̄TLex̄

+ γεTˆ̄xGx̄JTˆ̄x
(Im −DT

LDL)x̄

=− εTˆ̄xGx̄JTˆ̄x
(γIm − αx̄(t))x̄

− yT
[

DT
LDL

1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
y

=− εTˆ̄xGx̄JTˆ̄x
(γIm − αx̄(t))x̄− yTΓy

(28)
with y =

[
εTˆ̄xGx̄JTˆ̄x

x̄T
]T

. Since Gx̄,JTˆ̄x
are both diag-

onal and positive definite matrices, we have that Gx̄JTˆ̄x
is

also a diagonal positive definite matrix; (γIm − αx̄(t)) is a
diagonal positive definite matrix if γ ≥ l = max(lx̄i

) >
ᾱ = supαx̄i

(t). Since the transformed function Tx̄i
(ˆ̄xi) is

strictly increasing and Tx̄i
(0) = 0, we have εx̄i

(ˆ̄xi)ˆ̄xi =
Tx̄i(ˆ̄xi)ˆ̄xi ≥ 0. Then, by setting γ := θ + ᾱ, with θ being
a positive constant we get that −εTˆ̄xGx̄JTˆ̄x

(γIm −αx̄(t))x̄ ≤
−θεTˆ̄xGx̄JTˆ̄x

x̄ Then, according to (11), (14), (16), we have

that JTx̄i
(ˆ̄xi, t)x̄i =

∂Tx̄i
(ˆ̄xi)

∂ ˆ̄xi

1
ρx̄i

(t)ρx̄i(t)ˆ̄xi =
∂εx̄i

(ˆ̄xi)

∂ ˆ̄xi

ˆ̄xi. We
thus further obtain

−θεTˆ̄xGx̄JTˆ̄x
x̄ = −θεTˆ̄xGx̄

∂εˆ̄x

∂ ˆ̄x
ˆ̄x ≤ 0. (29)

(29) holds because the transformed function is smooth and
strictly increasing and εx̄i

(ˆ̄xi)ˆ̄xi ≥ 0. Therefore, in order for
V̇ ≤ 0 to hold, it suffices that γ ≥ l = max(lx̄i) > supαx̄i(t)
and in addition, Γ should be semi-positive definite. Then,
based on condition (23), and choosing γ = γ̄, we obtain
−εTˆ̄xGx̄JTˆ̄x

(γ̄Im − αx̄(t))x̄ ≤ 0 and Γ ≥ 0. Finally, we
can conclude that V̇ ≤ 0 when γ = γ̄. This also implies
V (εˆ̄x, x̄) ≤ V (εˆ̄x(0), x̄(0)). Hence if x̄(0)) is chosen within
the region (12) then V (εˆ̄x(0), x̄(0)) is finite, which implies
that V (εˆ̄x, x̄) is bounded ∀t. Therefore εˆ̄x, x̄ are bounded
and the boundedness of the transformed error εˆ̄x implies
that the relative position x̄(t) evolves within the prescribed
performance bounds (9), ∀t. Then we can deduce the bound-
edness of V̈ (εˆ̄x, x̄) based on the boundedness of εˆ̄x, ε̇ˆ̄x. The
boundedness of V̈ (εˆ̄x, x̄) implies the uniform continuity of
V̇ (εˆ̄x, x̄), which in turn implies that V̇ (εˆ̄x, x̄)→ 0 as t→∞
by applying Barbalat’s Lemma. This implies x̄→ 0 as t→∞,
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which also means that p̄→ p̄des as t→∞. Hence, the target
formation (1) is achieved while satisfying (8).

Remark 1: Note that conditions (23) and (24) are not part
of the control laws. (24) is determined by the pair of matrices
(Le, DL) that characterises the leader-follower graph topology.
According to Theorem 1, we can first solve (24) to obtain
the maximum value γ̄ of γ that ensures Γ ≥ 0. Then, the
predefined largest decay rate l of performance functions ρx̄i(t)
cannot exceed this value γ̄. Nevertheless, Theorem 1 can be
useful in practical applications to predesign the maximum
exponential decay rate of the performance functions.

Remark 2: Compared with existing work [11] that applies
PPC for multi-agent systems, here we do not require that
DT
LDL to be positive definite in order to bound the quadratic

term −εTˆ̄xGx̄JTˆ̄x
DT
LDLJTˆ̄x

Gx̄εˆ̄x with the smallest eigenvalue
of DT

LDL because DT
LDL > 0 implies that the leader-follower

multi-agent system can only have at most 1 follower. This
would be very conservative, while Theorem 1 derives a more
general result that allows for additional followers.

Remark 3: The complexity of the control synthesis is in-
tuitively based on the number of leaders and the degree of
the leaders (i.e., how many agents connect with the leaders).
Since the method is decentralised, it is scalable in its imple-
mentation and can be applied to large scale leader-follower
networks. Hence, if we judge the complexity by interaction
between agents, it is indeed based on the leader-follower graph
topology. Decentralization results in that the implementation
is scalable with respect to the number of agents.

In the sequel, we will discuss the results for two specific
classes of tree graphs, i.e., the chain and the star graph.
First we consider the chain graph, which is widely used, for
instance, in autonomous vehicle platooning.

Definition 1: A chain Gc = (Vc, Ec) is a tree graph with
vertices set Vc = {1, 2, . . . , n}, n ≥ 2 and edges set Ec =
{(i, i + 1) ∈ Vc × Vc | i ∈ Vc \ {n}} indexed by ei =
(i, i+ 1), i = 1, 2, . . . , n− 1.
Note that (23) in Theorem 1 is a sufficient but not necessary
condition. For a chain graph, the matrix inequality (24) may
be actually infeasible when the graph has 2 or more followers.
The following result for Gc is derived.

Proposition 1: Consider the leader-follower multi-agent
system Σ1 described by (6) with the communication chain
graph Gc = (Vc, Ec) and the followers set VcF =
{1, 2, . . . , nf}, the predefined performance functions ρx̄i

as
in (10) and the transformed function Tx̄i

(ˆ̄xi) as in (13) s.t.
Tx̄i(0) = 0, and assume that the initial conditions p̄i(0)
are within the performance bounds (8). Then, the controlled
system can achieve the target formation (1) and satisfy the
prescribed performance bounds (8) when applying the control
law (21) if and only if nf ≤ 3 holds. Specifically,

max
i=1,...,m

(lx̄i
) = l ≤ 2, nf = 2;

max
i=1,...,m

(lx̄i) = l ≤ 1, nf = 3,
(30)

are the respective conditions on the largest decay rate of the
performance functions ρx̄i

such that the chain achieves the
target formation (1) and satisfies (8) when applying (21).

Proof: The proof is based on showing that the evolu-
tion of the shifted relative position x̄i(t) is always bounded
by an exponential decay function ρx̄i

(t) for any x̄i(0) ∈
(−ρx̄i

(0), ρx̄i
(0)). For the if part, we consider the cases that

nf ∈ {0, 1, 2, 3}. When the chain graph has no follower or
only one follower, that is nf = 0 or nf = 1, the result
can be proved by using Theorem 1. Let γ̄ be the maximum
value of γ that ensures that (24) holds. By further choosing
the decay rate of the performance functions (10) to satisfy
(23), we can conclude that the controlled system achieves
the target formation (1) within the prescribed performance
bounds by applying (21) based on Theorem 1. When the chain
has additional followers, the condition in Theorem 1 may be
infeasible. But for this kind of special chain structure, we can
resort to checking the edge dynamics (19) directly. It can be
shown that −Le has elements given by cij = −2 when i = j,
cij = 1 when |i− j| = 1 and cij = 0 otherwise in the case of
a chain graph. We then rewrite (19) as[

˙̄xF
˙̄xL

]
=

[
A B
BT C

] [
x̄F
x̄L

]
+

[
0
D

]
u, (31)

where x̄F ∈ R(nf−1) represents the edges between followers,
while x̄L ∈ Rnl represents the edge that connects the leader
indexed by nf + 1 and the follower indexed by nf , and
the edges between leaders. Both A ∈ R(nf−1)×(nf−1),C ∈
Rnl×nl have the same structure as −Le but with different
dimensions, i.e., both A and C have entries −2 in their
principle diagonal and entries 1 in their subdiagonal and
superdiagonal; B has an element 1 at row (nf − 1), column
1 (bottom left corner) that represents the connection between
the follower node {nf} and the leader node {nf + 1}. 0 is a
(nf − 1) × nl zero matrix. D ∈ Rnl×nl has elements given
by dij = 1 when i = j, dij = −1 when i − j = 1 and
dij = 0 otherwise. Then we can analyse the leader part x̄L
and the follower part x̄F separately. For x̄L, it can be regarded
as a chain graph with only one follower since x̄L represents
the edge that connects the leader indexed by nf + 1 and the
follower indexed by nf , and the edges between leaders. By
applying Theorem 1, we can prove that x̄L reaches zero within
the performance bounds (9) when applying the control law
(21), which implies that the target formation can be achieved
for the leader part while satisfying (8). We further rewrite the
follower part as

˙̄xF = Ax̄F + bx̄?, (32)

where b ∈ R(nf−1) is the first column of B, i.e.,
with the last element equals to 1 and all other ele-
ments equal to 0; x̄? represents the edge between the fol-
lower node {nf} and the leader node {nf + 1}. We can
further rewrite the state evolution of (32) as x̄F (t) =
eAtx̄F (0) +

∫ t
0
eA(t−τ)bx̄?(τ)dτ = MT eΛtMx̄F (0) +∫ t

0
eA(t−τ)bx̄?(τ)dτ = x̄0

F (t) +
∫ t

0
eA(t−τ)bx̄?(τ)dτ, where

x̄0
F (t) =

[
x̄0

1(t) x̄0
2(t) . . . x̄0

nf−1(t)
]T

are the zero input
trajectories, that is when x̄?(t) = 0,∀t; A = MTΛM , where
Λ is a diagonal matrix with negative diagonal entries and equal
to the eigenvalues of A, which is due to A having the same
structure as −Le, and M is the matrix composed with the
corresponding eigenvectors of A. Without loss of generality,



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

suppose all performance functions are the same and described
by ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞. When nf = 2, x̄F = x̄1

and A = −2, and we have that x̄0
1(t) = MT eΛtMx̄1(0) =

e−2tx̄1(0) < ρ0e
−2t. Then, x̄1(t) is within the performance

bound ρ(t), i.e., x̄1(t) < ρ(t),∀t, when l ≤ 2 and in addition,∫ t
0
e−2(t−τ)x̄?(τ)dτ < (ρ0−x̄1(0))e−2t+ρ∞(1−e−2t), which

can be ensured by tuning a large enough gain gx̄2
for the edge

e2 that connects the follower indexed by 2 and the leader
indexed by 3. When nf = 3, we can derive a similar result.
In particular, we now have that[

x̄0
1(t)
x̄0

2(t)

]
= MT eΛtM

[
x̄1(0)
x̄2(0)

]
< k

[
ρ0

ρ0

]
e−t, (33)

with k = 1, which implies that x̄0
i (t) < ρ0e

−t, i = {1, 2}.
Similarly, we can conclude that when l ≤ 1, and in addition
the tuning gain gx̄3 for the edge e3 that connects the follower
indexed by 3 and the leader indexed by 4 is large enough,
the controlled system achieves the target formation (1) within
the prescribed performance bounds (8). Until now, we have
proven the “if” part, the “only if” part can be proven through
contradiction. Suppose that we have more than 3 followers
and nf ≥ 4, we can then calculate the state evolution of the
shifted relative position and it can be shown similarly that
x̄0
i (t) < kρ0e

λmax(A)t, i = {1, 2, . . . , nf −1}, but with k > 1.
This means that x̄0

i (t) cannot be bounded by ρ0e
λmax(A)t for

any initial conditions within the performance bounds, i.e., for
any x̄i(0) ∈ (−ρx̄i(0), ρx̄i(0)). Therefore, we can conclude
that in order to achieve the target formation (1) within the
performance bounds (8) for all initial conditions p̄i(0) also
within the performance bounds (8), nf should be less or equal
to 3.

Remark 4: Proposition 1 indicates that for a chain graph, in
order to achieve the target formation (1) within the prescribed
performance bounds (8), we can only have at most 3 con-
secutive followers at the end of the graph. In addition, when
the initial relative position between 2 followers is close to the
prescribed performance boundary (8), we need to tune a large
enough gain for the edge that connects the follower indexed by
nf and the leader indexed by nf + 1. Note that the statement
“we can only have at most 3 consecutive followers at the end
of the graph” relies on the specific structure of chain graphs
or graphs that contain these chain graphs as subgraphs. The
essential difference with a general leader-follower graph is that
the chain graph that has consecutive followers contains fewer
couplings between the leaders and followers.
Now we consider another specific class, in particular the star
graph Gs = (Vs, Es) which is defined as follows.

Definition 2: A star Gs = (Vs, Es) is a tree graph with
vertices set Vs = {1, 2, . . . , n}, n ≥ 2 where vertex n is called
the centering node, and the edges set Es = {(i, n) ∈ Vs×Vs |
i ∈ Vs \ {n}} indexed by ei = (i, n), i = 1, 2, . . . , n− 1.
Then, the following result can be derived.

Proposition 2: Consider the leader-follower multi-agent
system Σ1 described by (6) with the communication star graph
Gs = (Vs, Es) and the leader set VsL = {n}, the predefined
performance functions ρx̄i as in (10) and the transformed
function Tx̄i

(ˆ̄xi) as in (13) s.t. Tx̄i
(0) = 0, and assume that

the initial conditions p̄i(0) are within the performance bounds

(8). If
max

i=1,...,m
(lx̄i) = l ≤ 1, (34)

then the controlled system achieves the target formation (1)
and satisfies the prescribed performance bounds (8) when
applying the control law (21).

Proof: We can apply Theorem 1 to prove this Proposition
for the specific case of star graphs. For a star graph defined as
in Definition 2 with the centering node n as the only leader, the
edge Laplacian Le and matrices DT

LDL, D
T
FDF have special

structures. DT
LDL has all elements equal to 1, while DT

FDF =
Le−DT

LDL is an identity matrix. Le has the elements given by
cij = 2 when i = j, and cij = 1 otherwise. Under this special
structure of star graphs and according to Theorem 1, it can
be verified that (23) is always feasible with γ̄ = 1, and from
(34), we know that the condition γ̄ ≥ l = max

i=1,...,m
(lx̄i

) holds.

Finally, by applying Theorem 1, for a star graph, when the
performance functions (10) are chosen such that (34) holds,
then we can conclude that the controlled system achieves the
target formation (1) and satisfies the prescribed performance
(8) when applying the control (21).
We conclude this subsection with the following observations.
The results in this subsection indicate the trade-offs between
the largest decay rate of the performance functions and the
leader amount and positions. A sufficient condition for a
general tree graph was derived in Theorem 1, under which
the leader-follower multi-agent system (6) achieves the target
formation (1) within the prescribed performance (8). It can
be seen that (23) may be infeasible when the decay rate of
the performance functions is too large. This means that we
need to constrain the decay rate of the performance functions
in order to achieve the target formation under prescribed
performance guarantees within the leader-follower framework.
This is reasonable since the followers only obey the first-order
formation protocol without any additional external input. And
the decay rate constraint differs for different graph topologies,
leader amount and leader positions.

B. Formation control of second-order case using PPC
Similar to the first-order case, we first rewrite the dynamics

of the second-order leader-follower multi-agent system (7) into
the edge space in order to characterise the dynamics of the
relative positions. Multiplying with DT on both sides of (7)
and using x̄ = p̄− p̄des, we obtain the edge dynamics as

Σe2 :

[
˙̄x
˙̄v

]
=

[
0m Im
−Le −Le

] [
x̄
v̄

]
+

[
0m×nl

DT
L

]
u. (35)

For (35), we first design the reference velocity vd ∈ Rn and
the corresponding reference relative velocity v̄d ∈ Rm as:

vd = −DJTˆ̄x
Gx̄εˆ̄x; v̄d = −LeJTˆ̄x

Gx̄εˆ̄x, (36)

where the parameters are the same as those defined in (21).
We then define the relative velocity error vector as ē =
[ē1, . . . , ēm]T = v̄− v̄d ∈ Rm. The insights here are basically
resorting to first designing the reference relative velocity that
can be proven to guarantee the prescribed performance for the
relative positions. Then, by defining the relative velocity error
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vector, another PPC law with respect to the relative velocities
is designed later to stabilise the relative velocity error vector
also within certain prescribed performance bounds. Hence,
we also define here the respective prescribed performance
functions ρēi(t), the transformed functions Tēi(ˆ̄ei) and the
transformed error εēi(ˆ̄ei), i = 1, 2, . . . ,m for the relative
velocity errors. These terms are similar to those defined for the
shifted relative positions. Note that enforcing the transformed
errors εx̄i(ˆ̄xi), εēi(ˆ̄ei) to be bounded will ensure the predefined
prescribed performance guarantees. This can be achieved
through the PPC laws that are going to be designed later.

The corresponding prescribed performance functions ρēi(t)
related to the relative velocity errors are defined as

ρēi(t) = (ρēi0 − ρēi∞)e−lēi t + ρēi∞ , (37)

and (37) is designed in a way such that the initial condition of
ēi is within the performance bounds, i.e., |ēi(0)| < ρēi(0) =
ρēi0 , i = 1, 2, . . . ,m. The related prescribed performance
region is described as

−ρēi(t) < ēi(t) < ρēi(t). (38)

Similar to (11), ēi(t) is normalized as

ˆ̄ei(t) =
ēi(t)

ρēi(t)
. (39)

Then the normalized error is transformed through a trans-
formed function Tēi such that Tēi(0) = 0, with one example
choice being

Tēi(ˆ̄ei) = ln

(
1 + ˆ̄ei
1− ˆ̄ei

)
. (40)

Therefore, the transformed error εēi is defined as

εēi(ˆ̄ei) = Tēi(ˆ̄ei). (41)

Similar to (15), differentiating (41) with respect to time, we
derive

ε̇ēi(ˆ̄ei) = JTēi
(ˆ̄ei, t)[ ˙̄ei + αēi(t)ēi] (42)

where

JTēi
(ˆ̄ei, t) ,

∂Tēi(ˆ̄ei)

∂ ˆ̄ei

1

ρēi(t)
> 0 (43)

αēi(t) , −
ρ̇ēi(t)

ρēi(t)
> 0 (44)

are the normalized Jacobian of the transformation function Tēi
and the normalized derivative of the performance function,
respectively. Using Tēi(0) = 0, we can derive that

ˆ̄ei
∂εēi(ˆ̄ei)

∂ ˆ̄ei
εēi(ˆ̄ei) ≥ µēiε2

ēi(ˆ̄ei) (45)

for some positive constant µēi [19]; (45) is useful for the
forthcoming stability analysis.

For the leader-follower multi-agent system (35), the pro-
posed controller applied to the leader agents is the composition
of the term based on the prescribed performance of the relative
velocity errors of the neighbouring agents:

uj = −
∑
i∈Φj

gēiJTēi
(ˆ̄ei, t)εēi(ˆ̄ei), j ∈ VL, (46)

where Φj = {i|(j, k) = i, k ∈ Nj}, i.e., the set of all the
edges that include agent j ∈ VL as a node. Then the stack
input vector is

u = −DLJTˆ̄e
Gēεˆ̄e, (47)

where ˆ̄e ∈ Rm is the stack vector of transformed errors ˆ̄ei,
Gē ∈ Rm×m is a positive definite diagonal gain matrix with
entries the positive constant parameters gēi , JTˆ̄e

, JT (ˆ̄e, t) ∈
Rm×m is a time varying diagonal matrix with diagonal entries
JTēi

(ˆ̄ei, t) given in (43), and εˆ̄e , ε(ˆ̄e) ∈ Rm is the stack
vector with entries εēi(ˆ̄ei).

Next, we derive the following result and will use Lyapunov-
like methods to prove that the prescribed performance can
be guaranteed for both relative positions and relative velocity
errors. In addition, the target formation (1) can be achieved.

Theorem 2: Consider the leader-follower multi-agent sys-
tem Σ2 under Assumption 1 with dynamics (7), and the
predefined performance functions ρx̄i

and ρēi as in (10) and
(37), respectively. The transformed functions Tx̄i

(ˆ̄xi), Tēi(ˆ̄ei)
are chosen as in (13), (40) respectively satisfying Tx̄i

(0) =
0, Tēi(0) = 0, and assume that the initial conditions x̄i(0)
and ēi(0) are within the performance bounds (8) and (38),
respectively. If the following condition holds:

γ̄ ≥ l′ = max
i=1,...,m

(lēi), (48)

where l′ is the largest decay rate of ρēi(t) and γ̄ is the
maximum value of γ that ensures:

Γ =

[
DT

LDL
1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
≥ 0, (49)

then, the shifted relative position x̄ under the control (47) con-
verges to an arbitrary small ball around zero while satisfying
(9). In addition, the relative velocity errors satisfy (38).

Proof: The proof is shown in the Appendix.

IV. SIMULATIONS

In this section, several simulation examples are presented
in order to verify the results. The simulations’ communication
graphs are shown as Fig. 1, where the leaders and followers
are represented by grey and white nodes, respectively. We
choose, without loss of generality, the same ρx̄i

for all
edges as ρx̄i(t) = 4.9e−lt + 0.1. The decay rate l are
different for the different simulation examples. For second-
order leader-follower multi-agent systems, the prescribed per-
formance functions ρēi(t) related to the relative velocity errors
are also chosen without loss of generality as the same, i.e.,
ρēi(t) = 7e−l

′t + 0.1. For all i = 1, . . . ,m, we choose
Tx̄i

(ˆ̄xi) = ln
(

1+ˆ̄xi

1−ˆ̄xi

)
;Tēi(ˆ̄ei) = ln

(
1+ˆ̄ei
1−ˆ̄ei

)
. In addition, the

prescribed performance bounds are depicted in black color in
the following simulation plots.

In Fig. 1a, we first consider a tree graph with leaders set as
VL = {4, 5, 6}. The positions of the agents are initialised as
p1 = [1, 1]T , p2 = [2, 1]T , p3 = [1, 2]T , p4 = [2, 2]T , p5 =
[3, 3]T , p6 = [4, 4]T and the target relative position-based
formation is pdes41 = [−3,−3]T , pdes42 = [−2,−3.5]T , pdes43 =
[−3,−3.5]T , pdes54 = [−3.5,−3]T , pdes65 = [−3.5,−3]T . Ac-
cording to Theorem 1, the matrix inequality is feasible with
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Fig. 1: Communication graphs with tree topologies.
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Fig. 2: Relative position-based formation control using PPC
for the leader-follower multi-agent system under the graph as
in Fig. 1a.

γ̄ = 1, hence it suffices that l ≤ γ̄ = 1. The simulation
result in two dimensions when applying the PPC law (21)
with a gain matrix Gx̄ whose diagonal entries are all equal to
1 is shown in Fig. 2. Here and also in the sequel, the dark
lines show the initial formation, while the blue lines show
the final positions of the agents. The dashed lines indicate
the evolution of the agents. It can be seen that the target
formation is achieved. In order to verify whether the prescribed
performance is guaranteed, we only plot the evolution of
the relative positions in y-direction between the neighboring
agents due to space limitations, which are depicted in Fig.
4a. The red lines show the result without PPC, and we can
see that the trajectories violate the prescribed performance
bounds, which are improved by applying the PPC law (21).
The result when applying PPC law is shown as the blue lines
and we can observe that all the trajectories evolve within the
prescribed performance bounds. Here the decay rate of the
prescribed performance function is 1 and we can conclude that
the controlled leader-follower multi-agent system achieves the
target formation within the prescribed performance bound.

In Fig. 1b, we consider a chain graph with followers set
as VF = {1, 2} and VF = {1, 2, 3}. The relative positions
are initialised as p̄ = [4.8, 3,−2, 1]T and the target relative
position-based formation is p̄des = 05×1. This means in this
example, we consider a special class of formation, that is
the consensus problem of leader-follower multi-agent systems
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(a) Trajectories of the relative positions with VF = {1, 2}.
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(b) Trajectories of the relative positions with VF = {1, 2, 3}.

Fig. 3: The left figures show the trajectories of relative
positions without PPC, while the controlled systems with the
PPC law but different gain matrix are shown in the middle
and right figures, respectively under the graph as in Fig. 1b

in one dimension and we will only show the evolution of
the trajectories in the edge space. When VF = {1, 2}, the
simulation results are shown in Fig. 3a, where the left figure
shows the simulation result without additional control. Here
the decay rate of the prescribed performance function is 2. We
can see that the trajectories violate the performance bound,
which is improved as shown in the middle figure by applying
the PPC law (21) with gain matrix Gx̄ = diag(1, 10, 1, 1),
where diag(a1, a2, . . . , an) represents the diagonal matrix
with diagonal entries a1, a2, . . . , an and gx̄2

= 10 is tuned
for leader {3} that connects the followers. However, it can
be seen that the trajectories still intersect the performance
bound. We then increase gx̄2

to 200, and the simulation result
is shown in the right figure. We can see that the controlled
system achieves consensus within the performance bound.
When VF = {1, 2, 3}, the simulation results are shown as in
Fig. 3b, in which the decay rate of the prescribed performance
function is 1. Similarly, it can be seen in the left figure that
the trajectories intersect the performance bound when there is
no extra input, which is improved as shown in the middle
and right figure by applying the PPC law (21) with gain
matrix Gx̄ = diag(1, 1, 10, 1) and Gx̄ = diag(1, 1, 100, 1),
respectively. We can also conclude that the controlled system
achieves consensus within the performance bound.

In Fig. 1c, we consider a star graph with only one
leader as VL = {11}, and all the agents are initialised at
the origin. The target relative position-based formation is
p̄des1 = [−4,−4]T , p̄des2 = [−3, 3]T , p̄des3 = [2,−2]T , p̄des4 =
[3, 3]T , p̄des5 = [−4.9, 0]T , p̄des6 = [−1,−4.8]T , p̄des7 =
[−4.7, 4.5]T , p̄des8 = [4, 1]T , p̄des9 = [−1, 4.8]T , p̄des10 =
[−4.8,−2]T . According to Theorem 1, the matrix inequality
is feasible with γ̄ = 1, hence it suffices that l ≤ γ̄ = 1.
The two dimension simulation result when applying the PPC
law (21) with a gain matrix Gx̄ whose diagonal entries are
all equal to 1 is shown in Fig. 5. It can be shown that the
leader-follower multi-agent system is initialised at the origin
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(a) Trajectories of the relative positions under the communication graph as in Fig. 1a.
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(b) Trajectories of the relative positions for the star graph as in Fig. 1c.
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(c) Trajectories of the relative positions under the graph as in Fig. 1a for the second-order multi-agent system Σ2 as in (7).

Fig. 4: Trajectories of the relative positions for different simulation examples. The blue and red lines indicate the results with
and without PPC, respectively.

and the target formation is achieved as indicated by the blue
lines. The evolution of the relative positions between the
neighboring agents is depicted in Fig. 4b and here we only
show the result for 5 edges in the x-direction due to space
limitations. It is shown that the trajectories (red lines) intersect
the performance bounds slightly when there is no extra input,
which can be improved by applying the PPC law (21) such
that the controlled system achieves the target formation within
the performance bound as shown by the blue lines. Here the
decay rate of the prescribed performance function is 1.
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Fig. 5: Relative position-based formation control using PPC
for the star graph as in Fig. 1c.
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Fig. 6: Relative position-based formation control using PPC
for the second-order leader-follower multi-agent system under
the communication graph as in Fig. 1a.

Now we consider the topology as in Fig. 1a again for the
case of a second-order leader-follower multi-agent system. The
positions and velocities are initialised as p1 = [1, 2]T , p2 =
[1.5, 3]T , p3 = [2.5, 7]T , p4 = [5, 5]T , p5 = [7, 8]T , p6 =
[8, 9]T and v1 = [1, 1]T , v2 = [1, 1]T , v3 = [1, 1]T , v4 =
[2, 2]T , v5 = [3, 3]T , v6 = [4, 4]T , respectively. The target
relative position-based formation is pdes41 = [1, 1]T , pdes42 =
[1.5, 0]T , pdes43 = [0,−1]T , pdes54 = [1,−1]T , pdes65 = [0.5, 1]T .
According to Theorem 2, the matrix inequality is feasible with
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γ̄ = 1, and l, l′ chosen to be 0.85 and 0.9 respectively, and
thus satisfying the constraint l′ ≤ γ̄ = 1. The two dimensional
simulation result when applying the PPC control law (47) with
gain matrices Gx̄, Gē whose diagonal entries are all equal to
1 is shown in Fig. 6. It can be seen that the target formation is
achieved. Next, we plot the evolution of the relative positions
between the neighboring agents in y-direction, which are
depicted in Fig. 4c. The red lines show the result without PPC,
and we can see that all the trajectories intersect the prescribed
performance bounds, which are improved by applying the PPC
law (47). Here the decay rate of the prescribed performance
function is 0.85 and we can conclude that the controlled
second order leader-follower multi-agent system achieves the
target formation within the prescribed performance bounds.

V. CONCLUSIONS

In this paper, we have studied relative position-based forma-
tion control problems of leader-follower multi-agent systems
with prescribed performance bounds for both first and second-
order dynamics. For the first-order leader-follower multi-agent
systems, under the assumption of tree graphs, a distributed
prescribed performance control law has been proposed for the
group of leaders in order to drive the followers such that the
entire system can achieve the target formation under prescribed
performance guarantees. We have proved that when the decay
rate of the performance functions is within a sufficient bound,
the target formation along with the performance guarantees
can be obtained. In addition, the two specific classes of chain
and star graphs that can have additional followers have been
investigated. For the second-order leader-follower multi-agent
systems, we have proved that when the decay rate of the
performance functions of the relative velocity errors is within
a sufficient bound, the relative velocity errors can also evolve
within certain performance bounds.

Future research directions include considering more general
graphs with circles, applying other transient approaches and
also investigating leader selection problems.

APPENDIX

A. Proof of Theorem 2

Proof: The proof is based on the following three steps.
We first show that there exists a maximal solution for both ˆ̄x
and ˆ̄e. Equivalently, that ˆ̄xi(t) and ˆ̄ei(t) remain in Dx̄i

and
Dēi = (−1, 1), respectively within the maximal time solution
interval [0, τmax), where Dx̄i

is defined in (12). Next, we prove
that the proposed control strategy restricts ˆ̄xi(t) and ˆ̄ei(t) in
compact subsets of Dx̄i and Dēi for t ∈ [0, τmax), which by
contradiction results in τmax = ∞ in the last step and the
proof is completed. In the sequel, we show the proof in detail
step by step. We first define the target open set D = Dx̄×Dē
such that:

Dx̄ = Dx̄1 ×Dx̄2 × · · · × Dx̄m ,

Dē = Dē1 ×Dē2 × · · · × Dēm .
(50)

Step 1. Since the initial conditions p̄i(0) are chosen within the
performance bounds (8), this implies that the initial conditions
x̄i(0) are within the performance bounds (9). And since the

initial conditions ēi(0) are chosen within the performance
bounds (38), we can verify that the initial normalized shifted
relative positions ˆ̄x(0) and the initial normalized relative
velocity errors ˆ̄e(0) are within the open sets Dx̄ and Dē,
respectively. We can conclude that z(0) ∈ D, where z(t) =
[ˆ̄x(t), ˆ̄e(t)]T . By calculating the derivative of ˆ̄x(t) and ˆ̄e(t),
we can verify that ż is continuous and also locally Lipschitz
on z. Hence, according to Theorem 54 of [20], there exists
a maximal solution z(t) in a time interval [0, τmax) such that
z(t) ∈ D,∀t ∈ [0, τmax).

Step 2. Based on Step 1, we know that x̄i and ēi satisfy (9)
and (38), respectively for all t ∈ [0, τmax). We first consider
the Lyapunov-like function Vx̄ = 1

2ε
T
ˆ̄x
Gx̄εˆ̄x related to the

relative positions. Differentiating Vx̄ with respect to time and
using the stacked vector version of equation (15), we obtain

V̇x̄ = εTˆ̄xGx̄ε̇ˆ̄x = εTˆ̄xGx̄JTˆ̄x
( ˙̄x+ αx̄(t)x̄), (51)

where αx̄(t) is the diagonal matrix with diagonal entries
αx̄i

(t) and we know that αx̄i
(t) < lx̄i

,∀t according to (26).
Since ˙̄x = v̄ = v̄d + ē where v̄d is given in (36), we obtain
˙̄x = −LeJTˆ̄x

Gx̄εˆ̄x + ē, and then by replacing ˙̄x in (51), we
further derive that

V̇x̄ =εTˆ̄xGx̄JTˆ̄x
(−LeJTˆ̄x

Gx̄εˆ̄x + ē+ αx̄(t)x̄)

=− εTˆ̄xGx̄JTˆ̄x
LeJTˆ̄x

Gx̄εˆ̄x + εTˆ̄xGx̄JTˆ̄x
ē

+ εTˆ̄xGx̄JTˆ̄x
αx̄(t)x̄

≤− λmin(Le)‖εTˆ̄xGx̄JTˆ̄x
‖2 + ‖εTˆ̄xGx̄JTˆ̄x

‖M̄x̄,

(52)

where M̄x̄ is a positive constant satisfying

‖ē+ αx̄(t)x̄‖ ≤ M̄x̄. (53)

(53) holds for a bounded M̄x̄ due to the boundedness of αx̄i
(t)

as shown in (26) and the boundedness of x̄i, ēi, i = 1, · · · ,m,
for t ∈ [0, τmax), which is shown in the beginning of Step
2. Then, we can conclude that V̇x̄ < 0 when ‖εTˆ̄xGx̄JTˆ̄x

‖ >
M̄x̄

λmin(Le) . This condition is guaranteed when ‖εˆ̄x‖ > M̄x̄

βλmin(Le)

with β selected satisfying that Gx̄JTˆ̄x
≥ βIm. The reason is

due to that Gx̄JTˆ̄x
is a diagonal positive definite matrix, and

we can thus derive the inequality ‖εTˆ̄xGx̄JTˆ̄x
‖ ≥ ‖εTˆ̄x βIm‖ =

β‖εˆ̄x‖. Then, β‖εˆ̄x‖ > M̄x̄

λmin(Le) , i.e., ‖εˆ̄x‖ > M̄x̄

βλmin(Le) will

ensure that ‖εTˆ̄xGx̄JTˆ̄x
‖ > M̄x̄

λmin(Le) holds. Hence, it can be
concluded that ‖εˆ̄x‖ is upper bounded by

‖εˆ̄x‖ ≤ ε̄1 = max

{
‖εˆ̄x(0)‖, M̄x̄

βλmin(Le)

}
, (54)

∀t ∈ [0, τmax). Due to the boundedness of ‖εˆ̄x‖ in t ∈
[0, τmax), we can restrict ˆ̄xi in a compact subset of Dx̄i

as

ˆ̄xi(t) ∈ [δx̄i
, δ̄x̄i

] , [−T−1
x̄i

(ε̄1), T−1
x̄i

(ε̄1)] ⊂ Dx̄i
, (55)

where T−1
x̄i

is the inverse function of the transformed function
Tx̄i

. T−1
x̄i

always exists because Tx̄i
is a smooth and strictly

increasing function. Therefore, the reference relative velocity
vector v̄d as designed in (36) and its derivative ˙̄vd are both
bounded in t ∈ [0, τmax). Moreover, since v̄ = v̄d + ē, we can
also conclude that v̄(t) is bounded for all t ∈ [0, τmax) due to
the boundedness of v̄d and ē.
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Next, for the velocity part, we consider the Lyapunov-like
function Vē = 1

2ε
T
ˆ̄e
Gēεˆ̄e + γ

2 ē
T ē. Differentiating Vē with

respect to time and using the stacked vector version of equation
(42), we obtain

V̇ē = εTˆ̄e Gēε̇ˆ̄e + γēT ˙̄e

= εTˆ̄e GēJTˆ̄e
( ˙̄e+ αē(t)ē) + γēT ˙̄e.

(56)

Then, from (35) we know that ˙̄v = −Lex̄−Lev̄+DT
Lu. Since

v̄ = ē+v̄d, and substituting the control strategy (47), we derive
that ˙̄e = ˙̄v− ˙̄vd = −Leē−Lev̄d−Lex̄−DT

LDLJTˆ̄e
Gēεˆ̄e− ˙̄vd.

Thus, replacing the above expression of ˙̄e in (56) and denoting
Ω = −Lev̄d − Lex̄− ˙̄vd, we further obtain

V̇ē =εTˆ̄e GēJTˆ̄e
(−Leē−DT

LDLJTˆ̄e
Gēεˆ̄e + αē(t)ē+ Ω)

+ γēT (−Leē−DT
LDLJTˆ̄e

Gēεˆ̄e + Ω)

=− εTˆ̄e GēJTˆ̄e
DT
LDLJTˆ̄e

Gēεˆ̄e − εTˆ̄e GēJTˆ̄e
Leē

+ εTˆ̄e GēJTˆ̄e
αē(t)ē− γεTˆ̄e GēJTˆ̄e

DT
LDLē− γēTLeē

+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ,

(57)
Adding and subtracting γεTˆ̄e GēJTˆ̄e

ē on the right hand side of
(57), we obtain

V̇ē =− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē

− εTˆ̄e GēJTˆ̄e
DT
LDLJTˆ̄e

Gēεˆ̄e

− εTˆ̄e GēJTˆ̄e
Leē− γēTLeē

+ γεTˆ̄e GēJTˆ̄e
(Im −DT

LDL)ē+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ

=− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē+ εTˆ̄e GēJTˆ̄e

Ω + γēTΩ

− yT
[

DT
LDL

1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
y

=− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē− yTΓy

+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ

(58)
with y =

[
εTˆ̄e GēJTˆ̄e

ēT
]T
, and where the block matrix Γ

is defined in (49). We have that GēJTˆ̄e
is a diagonal positive

definite matrix. Using (26), we can verify that (γIm − αē(t))
is a diagonal positive definite matrix if γ ≥ l′ = max(lēi) >
ᾱ′ = supαēi(t). Since Tēi is smooth, strictly increasing and
Tēi(0) = 0, we have εēi(ˆ̄ei)ˆ̄ei ≥ 0. Then, by setting γ := θ+
ᾱ′, with θ being a positive constant, we get −εTˆ̄e GēJTˆ̄e

(γIm−
αē(t))ē ≤ −θεTˆ̄e GēJTˆ̄e

ē Then, according to (39), (43), we
further obtain

−θεTˆ̄e GēJTˆ̄e
ē = −θεTˆ̄e Gē

∂εˆ̄e

∂ ˆ̄e
ˆ̄e ≤ 0. (59)

(59) holds because the transformed function Tēi is smooth and
strictly increasing and εēi(ˆ̄ei)ˆ̄ei ≥ 0. Then, based on condition
(48), and choosing γ = γ̄, we obtain −εTˆ̄e GēJTˆ̄e

(γIm −
αē(t))ē ≤ 0 and Γ ≥ 0. Then V̇ē is upper bounded as

V̇ē ≤ −θεTˆ̄e Gē
∂εˆ̄e

∂ ˆ̄e
ˆ̄e+ εTˆ̄e GēJTˆ̄e

Ω + γēTΩ, (60)

Since ēi = ρēi ˆ̄ei and ˆ̄ei can be mapped to εēi(ˆ̄ei) through the
transformed function Tēi(ˆ̄ei), we can then define a mapping
matrix Q between ē and εˆ̄e in order to reorganise (60),
i.e., ē = Qεˆ̄e, where Q is a time-varying diagonal positive
definite mapping matrix. This matrix Q always exists with

the diagonal entries qi = ρēi ˆ̄ei/εēi(ˆ̄ei) > 0. Then, (60) is
rewritten as V̇ē ≤ −θεTˆ̄e Gē

∂εˆ̄e

∂ ˆ̄e
ˆ̄e+εTˆ̄e (GēJTˆ̄e

Ω+γQΩ). Next,
according to inequality (45), we further derive that V̇ē ≤
−θµ‖εˆ̄e‖2 + ‖εˆ̄e‖M̄ē, where µ = min(µēi), i = 1, · · · ,m
and µēi is defined in (45). M̄ē is a positive constant satisfying

‖GēJTˆ̄e
Ω + γQΩ‖ ≤ M̄ē. (61)

(61) holds with a bounded M̄ē due to the boundedness of
x̄, v̄d, ˙̄vd, ∀t ∈ [0, τmax) as discussed in the relative position
part. Similarly, it can be concluded that V̇ē < 0 when ‖εˆ̄e‖ >
M̄ē

θµ and further ‖εˆ̄e‖ is upper bounded by

‖εˆ̄e‖ ≤ ε̄2 = max

{
‖εˆ̄e(0)‖, M̄ē

θµ

}
, (62)

∀t ∈ [0, τmax). Due to the boundedness of ‖εˆ̄e‖ in t ∈
[0, τmax), we can restrict ˆ̄ei in a compact subset of Dēi as

ˆ̄ei(t) ∈ [δēi , δ̄ēi ] , [−T−1
ēi (ε̄2), T−1

ēi (ε̄2)] ⊂ Dēi , (63)

where T−1
ēi is the inverse function of Tēi .

Step 3. Finally, we need to prove that τmax can be extended
to ∞. According to (55) and (63), we know that z(t) ∈
D′ = D′x̄ × D′ē,∀t ∈ [0, τmax), where D′x̄ = [δx̄1

, δ̄x̄1
] ×

· · ·× [δx̄m
, δ̄x̄m

] and D′ē = [δē1 , δ̄ē1 ]×· · ·× [δēm , δ̄ēm ]. Hence,
D′ ⊂ D is a nonempty and compact subset of D and it can be
concluded that z(t) ∈ D′,∀t ∈ [0, τmax). Let us now assume
that τmax <∞. According to Proposition C.3.6 of [20], there
exists a t′ ∈ [0, τmax) such that z(t′) /∈ D′, which leads to
a contradiction. Hence, we conclude that τmax is extended
to ∞, that is z(t) ∈ D′ ⊂ D,∀t ≥ 0. Therefore εˆ̄x, εˆ̄e are
bounded for all t ≥ 0 and the boundedness of the transformed
errors εˆ̄x, εˆ̄e implies that the shifted relative position x̄(t)
and the relative velocity error ē(t) evolve while satisfying (8)
and (38), respectively for all t ≥ 0. Finally, the convergence
result is discussed. By choosing small enough ρx̄i∞ , we can
conclude that x̄(t) achieves practical convergence in the sense
that x̄i ∈ (−ε, ε) as t→∞, where ε is close to 0 and satisfies
ε ≤ ρx̄i∞ , i = 1, . . . ,m. The convergence of x̄(t) also implies
that the target formation (1) is achieved.

Remark 5: The convergence result of x̄(t) in Theorem 2
is practical convergence since ε can be arbitrarily small but
not exactly zero. This kind of practical convergence is also
shown in [21], and is reasonable in practical design. Note that
it cannot be guaranteed that the errors converge to zero.
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[6] A. Y. Yazicioğlu and M. Egerstedt, “Leader selection and network
assembly for controllability of leader-follower networks,” in American
Control Conference (ACC), 2013. IEEE, 2013, pp. 3802–3807.

[7] K. Fitch and N. E. Leonard, “Optimal leader selection for controllability
and robustness in multi-agent networks,” in 2016 European Control
Conference (ECC). IEEE, 2016, pp. 1550–1555.

[8] S. Patterson and B. Bamieh, “Leader selection for optimal network
coherence,” in 49th IEEE Conference on Decision and Control (CDC).
IEEE, 2010, pp. 2692–2697.

[9] C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of
feedback linearizable mimo nonlinear systems with prescribed perfor-
mance,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp.
2090–2099, 2008.

[10] L. Macellari, Y. Karayiannidis, and D. V. Dimarogonas, “Multi-agent
second order average consensus with prescribed transient behavior,”
IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 5282–
5288, 2017.

[11] Y. Karayiannidis, D. V. Dimarogonas, and D. Kragic, “Multi-agent
average consensus control with prescribed performance guarantees,” in
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on.
IEEE, 2012, pp. 2219–2225.

[12] A. Ilchmann, E. P. Ryan, and S. Trenn, “Tracking control: Performance
funnels and prescribed transient behaviour,” Systems & Control Letters,
vol. 54, no. 7, pp. 655–670, 2005.

[13] I. Katsoukis and G. A. Rovithakis, “Output feedback leader-follower
with prescribed performance guarantees for a class of unknown nonlin-
ear multi-agent systems,” in 2016 24th Mediterranean Conference on
Control and Automation (MED). IEEE, 2016, pp. 1077–1082.

[14] F. Chen and D. V. Dimarogonas, “Consensus control for leader-follower
multi-agent systems under prescribed performance guarantees,” in 58th
IEEE Conference on Decision and Control. IEEE, 2019.

[15] ——, “Second order consensus for leader-follower multi-agent systems
with prescribed performance,” IFAC-PapersOnLine, vol. 52, no. 20, pp.
103–108, 2019.

[16] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010, vol. 33.

[17] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic perfor-
mance bounds and passivity analysis,” IEEE Transactions on Automatic
Control, vol. 56, no. 3, pp. 544–555, 2011.

[18] D. V. Dimarogonas and K. H. Johansson, “Stability analysis for multi-
agent systems using the incidence matrix: quantized communication and
formation control,” Automatica, vol. 46, no. 4, pp. 695–700, 2010.

[19] Y. Karayiannidis and Z. Doulgeri, “Model-free robot joint position reg-
ulation and tracking with prescribed performance guarantees,” Robotics
and Autonomous Systems, vol. 60, no. 2, pp. 214–226, 2012.

[20] E. D. Sontag, Mathematical control theory: deterministic finite dimen-
sional systems. Springer Science & Business Media, 2013, vol. 6.

[21] C. P. Bechlioulis and G. A. Rovithakis, “A low-complexity global
approximation-free control scheme with prescribed performance for
unknown pure feedback systems,” Automatica, vol. 50, no. 4, pp. 1217–
1226, 2014.

Fei Chen is currently a Ph.D. student in the
Division of Decision and Control Systems at
KTH Royal Institute of Technology (Sweden). He
received his M.Sc. degree from the Systems and
Control group in the Electrical Engineering De-
partment at Eindhoven University of Technology
(Netherlands) in 2016. He received his B.Sc.
degree in the Department of Control Science
and Engineering at Zhejiang University (China)
in 2014. His research interests are situated on
the edge between control theory and formal

methods in computer science, with particular interests in formal verifica-
tion and control synthesis for multi-agent systems under temporal logic
specifications.

Dimos V. Dimarogonas was born in Athens,
Greece, in 1978. He received the Diploma in
Electrical and Computer Engineering in 2001
and the Ph.D. in Mechanical Engineering in
2007, both from the National Technical Univer-
sity of Athens (NTUA), Greece. Between May
2007 and March 2010, he held postdoctoral
positions at KTH Royal Institute of Technology,
Stockholm, Sweden and at LIDS, MIT, Boston,
USA. He is currently a Professor at the Divi-
sion of Decision and Control Systems, School of

EECS, at the KTH Royal Institute of Technology. His current research
interests include Multi-Agent Systems, Hybrid Systems and Control,
Robot Navigation and Networked Control. He serves in the Editorial
Board of Automatica and the IEEE Transactions on Control of Network
Systems and is a Senior Member of the IEEE. He received an ERC
Starting Grant in 2014, an ERC Consolidator Grant in 2019, and was
awarded a Wallenberg Academy Fellow grant in 2015.


