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Abstract— This paper addresses the event-triggered control
of cascade connected systems. In particular, we present event-
triggered mechanisms that guarantee the stabilization of cas-
cade systems with partial state feedback without infinitely fast
sampling. Our approach is based on growth conditions on the
interconnection terms and does not follow the framework of
input-to-state stability with respect to the subsystems and/or
measurement errors.

I. INTRODUCTION

During the last decade, the study of event triggered control
has attracted considerable attention within the control sys-
tems community, see [1]-[5], [9]-[?], [16]-[18], [21], [25],
[29], [30] and references therein. The main feature that
characterizes the event-triggered feedback strategies is that
information is exchanged only when a certain condition is
violated resulting in aperiodic controller updates. Although
event-based schemes are not a new concept (see for instance
[2]), recent advances in systems and control provided pow-
erful tools for the analysis and design of such methods.

The introduction of the input-to-state stability (ISS) prop-
erty by Sontag [28], provided a new approach to the study
of nonlinear systems with inputs. For event-triggered control,
the ISS framework was firstly implemented in [29] for the
design of a mechanism that is based on the state of the
system and yields asymptotic stability of the closed-loop
system. Specifically, under the assumption that the system
is ISS with respect to measurement errors, a simple event
trigger was proposed such that the sampling error is bounded
by a specific threshold depending on the system’s state
and also the intervals between sampling instants are lower
bounded by a positive constant. This technique proved to
be very useful and inspired several authors to use analogous
assumptions to study a variety of problems for linear and
nonlinear systems. For instance, similar designs have been
used for output-feedback and decentralized control in [5],
for distributed network control [4], [30], for stabilization of
systems subject to quantization and time-varying network
induced delays in [10]. In the recent papers, [4], [16],
and [17], the authors study the event-triggered control for
large scale interconnected systems, by employing ISS small
gain theorems. For the event-triggered control of nonlinear
systems various other approaches and formalisms have also
been considered; see for instance [11], [18], [21], [25].

For linear systems, the property of ISS follows immedi-
ately from the stabilizability of the system. However, for
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Fig. 1: Cascade connection of systems

general nonlinear systems, this property holds for some
special classes, see for instance [6], [8], [15] for such designs.
In particular, in [6] and [8], there are counterexamples that
show that the design of a feedback law that renders the
system ISS wrt measurement errors is not always feasible.

In this work, we study the event-triggered control for a
class of cascade connected systems, Fig.1. A feature that
characterizes these systems is that the control input enters
only the z-subsystem, and the state of the z-subsystem is
considered as the input for the x-subsystem.

The problem of stabilization of cascade systems was
addressed by various authors in the past years under dif-
ferent assumptions and techniques. For instance, in [23],
it was proved that the uncontrolled cascade is globally
asymptotically stable (GAS) if all trajectories are bounded
and both subsystems are GAS. In [22], the authors studied
the stabilization of partially linear cascade systems, i.e. the
composition of a nonlinear system with a linear one. Several
generalizations were also obtained in [7], [13] and [19] for
general classes of cascade systems under growth restrictions
on the interconnection terms. Various other approaches have
also appeared in the literature, see for instance [20], [24]
and references therein. Finally, the ISS framework provided
new techniques for the study of cascades as in [27] and for
general interconnected systems in [14].

This paper presents event-triggered control strategies for
a class of cascade connected systems with partial state
feedback designs, i.e. the feedback is based on the state
of the second subsystem. A key feature of those strategies
is that the stabilizing feedback is not necessarily ISS with
respect to measurement errors. It should be noted that similar
time-dependent triggering schemes have also appeared in
[12] and [26]. However, here, we mainly deal with nonlinear
systems. The paper is organized as follows. In Section II we
recall some basic concepts and definitions. In Section III,
a partially linear cascade system is considered to introduce
the main ideas for the event-triggered control of cascade
systems. Finally, in Section IV, we generalize the results of
Section III for more general classes of systems. Examples
and simulations are also included throughout the paper, to
demonstrate the proposed techniques.

II. PRELIMINARIES

A function α : R≥0 → R≥0 is of class K, if it is
continuous and strictly increasing with α(0) = 0. If in



addition lims→∞ α(s) = ∞, then α is said to be of class
K∞. A function β : R≥0 × R≥0 → R≥0 is of class KL
if for each fixed t the mapping β(·, t) is of class K and
for each fixed s it is decreasing to zero as t → ∞. By
|x| we denote the Euclidean norm of a vector x ∈ Rn. A
function f : Rn → Rm is said to be Lipschitz continuous
on compact sets if for every compact S ⊂ Rn there exists
a constant L such that |f(x) − f(y)| ≤ L|x − y|, for every
x, y ∈ S. By λmin(A) and λmax(A) we denote the minimum
and maximum real part of the eigenvalues of A ∈ Rn×n,
respectively. Next we recall some known definitions.

Definition 2.1: The system ẋ = f(x) with f : Rn → Rn
being locally Lipschitz and f(0) = 0, is globally asymptoti-
cally stable (GAS) if there exists a class KL function β(·, ·)
such that for any initial state x(0) the solution exists for all
t ≥ 0 and satisfies |x(t)| ≤ β(|x(0)|, t).

Definition 2.2: The system ẋ = f(x) with f : Rn → Rn
being locally Lipschitz and f(0) = 0, is globally exponen-
tially stable (GES) if there exist positive constants κ, µ such
that |x(t)| ≤ κ|x(0)|e−µt, t ≥ 0, x(0) ∈ Rn.

Lemma 2.1: [Gronwall-Bellman Lemma] Let χ, ψ : R →
R>0 be continuous functions and a, b > 0. If χ2(t) ≤ a +

b
∫ t

0
ψ(s)χ2(s)ds, then, χ(t) ≤

(
a exp

[
b
∫ t
s
ψ(τ)dτ

])1/2

.

III. PARTIALLY LINEAR CASCADE SYSTEMS

In this section we present then main ideas of event-
triggered stabilization for partially linear cascade systems of
the form:

ẋ =F (x) +G(x, z)z, x ∈ Rn, z ∈ Rp, (1a)
ż =Az +Bu, u ∈ Rm, (1b)

where F , G ∈ C∞ and A, B are constant matrices of
appropriate dimensions. In particular, we will study the
behavior and performance of the cascade system when the
(partial) state feedback u(t), that stabilizes the z-subsystem,
is implemented in a sample-and-hold fashion, i.e.: u(t) =
u(tk), ∀t ∈ [tk, tk+1), where tk, k ∈ N are the time instants
the controller is recomputed and updated.

Systems of the form (1) have been extensively studied
and several results appear in the literature (see for instance
[13], [22]). There are several examples where, even if both
systems are GAS, the state of the x-subsystem may escape
to infinity in finite time. In order to deal with such cases, the
idea is to restrict the interconnection term G(x, z) by a linear
growth condition. Then, the stability of the cascade can be
guaranteed as shown in [7], [13], [20], and [22]. Specifically,
in [22], it was proved that the cascade (1) is GES if the
following assumptions hold
(A1) The pair (A,B) is stabilizable.
(A2) There exist a C1 function V : Rn → R≥0 and positive

constants a1, a2, a3, a4 with

a1|x|2 ≤ V (x) ≤ a2|x|2, (2a)

V̇ = ∂V (x)
∂x F (x) ≤ −a3|x|2, (2b)∣∣ ∂V (x)

∂x

∣∣≤ a4|x|, (2c)

that establish global exponential stability of the equi-
librium x = 0 of the nominal system ẋ = F (x).

(A3) There exists a nondecreasing function k(|z|) ≥ 0, such
that |G(x, z)| ≤ k(|z|)|x| for all x, z.

Remark 3.1: By using standard converse Lyapunov theo-
rems, there exists a Lyapunov function V (x) satisfying (2),
provided that F (x) is globally Lipschitz.

Assume first that assumptions (A1), (A2), and (A3) hold.
Then, by virtue of assumption (A1), the linear feedback
u = Kz renders the closed-loop system ż = (A + BK)z
globally asymptotically stable. Since between updates the
value of u is held constant, the sampled closed-loop system
is written ż(t) = Az(t) + BKz(tk). Let us define the state
measurement error er(t) = z(tk) − z(t), k ∈ N. Then, the
cascade closed-loop system is written

ẋ =F (x) +G(x, z)z, (3a)
ż =(A+BK)z +BKer. (3b)

Our objective is to define a suitable triggering mechanism
T (t, er(t)) ≥ 0, with which the sample-and-hold imple-
mentation of the partial state feedback law u = Kz will
guarantee the stability of the cascade, and also that the inter-
sampling times are lower bounded avoiding Zeno behavior.
In particular, we have the following.

Proposition 3.1: Consider the partially linear cascade sys-
tem (1) that satisfies assumptions (A1), (A2), and (A3).
Suppose that the triggering condition is given by

T (t, er(t)) = |er(t)| − ce−at, (4)

with c > 0, 0 < a < λ = |λmax(A + BK)|. Then, the
closed-loop system (3) is exponentially stable and the inter-
event times are bounded by a constant τ > 0. /

Proof: For brevity and conciseness, let us first define
A := A + BK and B := BK. Consider now the analytic
solution of the closed loop system (3b) for z0 ∈ Rp, t ≥ 0:
z(t) = eAtz0 +

∫ t
0
eA(t−s)Ber(s)ds, which implies, |z(t)| ≤

|eAt||z0| +
∫ t

0
|eA(t−s)||B||er(s)|ds. Since the matrix A is

Hurwitz, it follows that there exist constants κ, λ > 0 such
that |eAt| ≤ κe−λt, t ≥ 0. Thus, we get

|z(t)| ≤κ|z0|e−λt + κ

∫ t

0

e−λ(t−s)|B||er(s)|ds. (5)

Now, let us turn our attention to the subsystem (3a).
Consider the derivative of V given in assumption (A2) for
the subsystem (3a): V̇ = ∂V

∂x F (x)+∂V
∂xG(x, z(t))z(t), where

z(t) is the solution of the system (3b) and satisfies (5). Thus,
by taking into account assumptions (A2), (A3), and (5) we
obtain:

V̇ ≤− a3|x|2+
∣∣ ∂V (x)

∂x

∣∣ |G(x, z(t))||z(t)|
≤ − a3

a2
V + k(|z(t)|)a4a1κ|z0|e−λtV

+ k(|z(t)|)a4a1κV
∫ t

0

e−λ(t−s)|B||er(s)|ds. (6)

The triggering condition (4) with c > 0 and 0 < a < λ =
|λmax(A+BK)|, will guarantee boundedness of (5) which



will result in exponential stability of the cascade system (3).
Indeed, with this triggering condition we get from (6),

V̇ ≤− a3
a2
V + k(|z(t)|)a4a1κ|z0|e−λtV

+ k(|z(t)|) a4κ|B|ca1(λ−a) (e−at − e−λt)V, (7)

where λ − a > 0. Notice first, that since k(|z|) is nonde-
creasing and bounded for bounded z, it follows that

k(|z(t)|) ≤ k
(
κ|z0|e−λt + κ

∫ t

0

e−λ(t−s)|B||er(s)|ds
)

≤ k
(
κ|z0|e−λt + κ|B|c

λ−a (e−at − e−λt)
)
≤ k

(
κ|z0|+ κ|B|c

λ−a

)
.

From the previous inequality and (7) we have that

V̇ ≤− a3
a2
V + k

(
κ|z0|+ κ|B|c

λ−a

)
a4
a1
κ|z0|e−λtV

+ k
(
κ|z0|+ κ|B|c

λ−a

)
a4κ|B|c
a1(λ−a) (e−at − e−λt)V. (8)

It follows from (8) and the Gronwall-Bellman inequality that
V (x(t)) ≤ γe−

a3
a2
tV (x(0)), where γ := exp{k(κ|z0| +

κ|B|c
λ−a )a4κa1λ

(|z0| + |B|
a )}, which implies exponential stability

for the cascade system (3).
Next, we prove that Zeno behavior is excluded, namely,

that there exist a lower bound on the inter-event times.
Without loss of generality, let us assume first that |A| 6= 0.
Then, between two consecutive events [tk, tk+1) it holds
that ėr(t) = −ż(t) = −Az(t) − BKz(tk), or equivalently,
|ėr(t)| = |A(z(tk)− er) +BKz(tk)| ≤ |A+BK||z(tk)|+
|A||er|. At the event time tk it also holds that |e(tk)| = 0.
Thus, by solving the previous differential inequality for
t ∈ [tk, tk+1), we have that

|er(t)| ≤ |A+BK||z(tk)|
|A|

(
e|A|(t−tk) − 1

)
. (9)

Recall now that, according to the triggering condition (4), the
next event instant occurs when, |er(tk+1)| = ce−atk+1 . Thus,
it follows from (9) that ce−atk+1 ≤ Γ|z(tk)|(e|A|(tk+1−tk) −
1), where Γ = |A+BK|

|A| . Then, from the previous inequality,
a lower bound on the inter-event intervals is given by,

tk+1 − tk ≥ 1
|A| ln

(
1 + ce−atk+1

Γ|z(tk)|

)
, |A| 6= 0. (10)

To prove that there is no Zeno behavior, it suffices to show
that tk+1−tk > 0. Recall that by the triggering condition (4)
we have |er(tk+1)| = |z(tk)−z(tk+1)| ≥ |z(tk)|−|z(tk+1)|,
or equivalently

|z(tk)| ≤ ce−atk+1 + |z(tk+1)|. (11)

Notice now that from (4), (5), and the fact that (e−at −
e−λt) ≥ 0 for all t ≥ 0, the state z(t) is bounded by

|z(t)| ≤ κ|z0|e−λt+ κ|B|c
λ−a (e−at−e−λt) ≤ κ1|z0|e−at, (12)

where κ1 := max{κ|z0|, κ|B|cλ−a }. Then, it follows from
(11) and (12) that the following holds ce−atk+1

|z(tk)| ≥
ce−atk+1

ce−atk+1+|z(tk+1)| ≥
ce−atk+1

ce−atk+1+κ1|z0|e−atk+1
= c

c+κ1|z0| > 0.

Thus, (10) and the previous inequality imply that for |A| 6= 0,

tk+1 − tk ≥ 1
|A| ln

(
1 + c

Γ(c+κ1|z0|)

)
> 0,∀k ∈ N. (13)

Fig. 2: Evolution of state of system (14) and inter-sampling times.

Finally, we consider the case where |A| = 0. Then, neces-
sarily we have that the matrix B has full rank due to assump-
tion (A1). With similar manipulations as above and by taking
into account (4) and the fact that ėr(t) = −BKz(tk) and
|er(tk)| = 0, we get tk+1 − tk ≥ ce−atk+1/(|BK||z(tk)|),
with 0 < a < λ = λmax(BK). Then, with similar arguments
as above we can obtain the lower bound tk+1 − tk ≥

c
|BK|(c+κ1|z0|) > 0, ∀k ∈ N.

Remark 3.2: We note that the triggering condition (4) is
not new and variants of it have appeared in the literature,
see for instance [12], [26].

Example 3.1: Consider the system{
ẋ1 = −(3 + cos(x2))x1 + x2 + x1z

2
1

ẋ2 = −x1 sin(x1)− 2x2
(14a){

ż1 = −z1 + z2

ż2 = 2z1 + z2 + 2u
(14b)

Notice first that the nominal system ẋ = F (x), x =
(x1, x2)T , F (x) := (−(2 + cos(x2))x1 + x2,−x1 sin(x1)−
x2)T is GES with Lyapunov function V := 1/2x2

1 + 1/2x2
2

and the interconnection term satisfies |G(x, z)| ≤ k(|z|)|x|
with k(|z|) = |z1|. Thus, both assumptions A2 and A3 hold.
Finally, the feedback law u = −2z1 − 5/2z2 stabilizes the
linear subsystem (14b). Therefore, according to the previous
analysis, the triggering condition is chosen as |er(t)| ≤
ce−at, with c > 0 and a satisfying the following condition
0 < a < λ = |λmax(A + BK)|, where λmax(A + BK) is
the maximum real part of the eigenvalues of (A+BK). In
Fig. 2, are shown the state of the cascade (14) with a = 0.55,
c = 0.38 (blue) and with a = 0.55 and c = 0.6 (yellow),
where we have experience with a number of 26 and 21 events
respectively. It can be seen that larger values of c reduce the
number of controller updates at the cost of performance.

IV. A GENERAL CASE

In this section we address the problem of event triggered
control for the following general case of cascade systems

ẋ = F (x) +G(x, z)z, x ∈ Rn, z ∈ Rm, (15a)
ż = f(z) + g(z)u, u ∈ Rp, (15b)

with f , g ∈ C1. In particular, we will present two triggering
schemes, with which, Zeno behavior is avoided and the
cascade system (15) is GAS. For the latter we will exploit
assumption (A3) as well as, the following two hypotheses

(A4) There exist a C1 function Vz : Rm → R, a locally
Lipschitz map h : Rm → R with h(0) = 0, and



constants bi > 0, i = 1, . . . , 4 such that

b1|z|2 ≤ Vz(z) ≤ b2|z|2 (16a)

V̇z = ∂Vz(z)
∂z (f(z) + g(z)h(z)) ≤ −b3|z|2 (16b)∣∣ ∂Vz(z)

∂z

∣∣≤ b4|z|. (16c)

(A5) The equilibrium x = 0 of ẋ = F (x) is GAS and there
exists a C1 function Vx : Rn → R with Vx(0) = 0
such that a1|x|2 ≤ Vx(x) ≤ a2|x|2, |∂Vx

∂x | ≤ a3|x|, a1,
a2, a3 > 0 and ∂Vx(x)

∂x F (x) ≤ 0, x ∈ Rn.
Note that, assumption (A4) implies that the closed-loop
system ż = f(z) + g(z)h(z) is GES and assumption (A5)
requires a Lyapunov function for the nominal system ẋ =
F (x) to be known. Next, we recall a theorem from [23]:

Theorem 4.1: Consider the cascade system

ẋ = f1(x, z), x ∈ Rn, z ∈ Rm, (17a)
ż = f2(z), (17b)

where f1, f2 are locally Lipschitz and f2(0) = f1(0, 0) = 0.
Then, if ẋ = f1(x, 0) and ż = f2(z) are both GAS, and
every trajectory of (17) is bounded for t > 0, then (17) is
GAS. /

We will present next, two triggering mechanisms that
guarantee the stability of the cascade closed-loop system (15)
and prevent the occurrence of Zeno behavior. In particular,
the following result holds

Proposition 4.1: Under assumptions (A3), (A4), and (A5)
the system (15) with each of the triggering conditions

(i) |z(tk)− z(t)| ≤ σ|z(t)|, σ = σ(z0) > 0;
(ii) |z(tk)− z(t)| ≤ ce−at, c, a > 0,

is asymptotically stable and Zeno behavior is avoided.
Proof: Suppose that we sample and hold the mea-

surement at time t = tk and use the constant feedback
u = h(z(tk)), t ∈ [tk, tk+1), k ∈ N. Then the subsystem
(15b) is written ż = f(z) + g(z)h(z(tk)), t ∈ [tk, tk+1), or
equivalently

ż(t) =f(z(t)) + g(z(t))h(z(t))

+ g(z(t))(h(z(tk))− h(z(t))). (18)

(i) Let z0 ∈ Rm, and define the set Ωs := {z ∈ Rm : |z| ≤√
b2
b1
|z0|}, where b1, b2 > 0 are given in assumption (A4).

Then, by taking into account (16b), (16c), and the facts that
g ∈ C1 is bounded on Ωs by a constant kg > 0, and h is
locally Lipschitz, with Lipschitz constant Lh on the compact
set Ωs, we calculate the derivative V̇z of Vz along (18) to
obtain the following estimate

V̇z(z(t)) ≤ −b3|z(t)|2 + b4kgLh|z(t)||z(tk)− z(t)|. (19)

If we enforce the triggering condition

|z(tk)− z(t)| ≤ σ|z(t)|, (20)

with 1 > σ > 0 sufficiently small in such a way that
σb4kgLh < b3, then, we get from (16a) and (19)

V̇z(z(t)) ≤ − b3b2 (1− σb4kgLh)Vz(z(t)). (21)

Notice that Ωs is a forward invariant set for the closed-loop
system, since the triggering rule (20) guarantees that V̇ ≤ 0.
Indeed, suppose on the contrary that there exists T ∈ (t0, t1),
where t1 is the first event, such that z(T ) /∈ Ωs. Due to con-
tinuity of z(·), there exists t̄ ∈ (t0, T ) such that Vz(z(t̄)) =
b2
b1
|z0|2 and z(t) /∈ Ωs, t ∈ (t̄, T ]. Then we get from (16a)

that b2
b1
|z0|2 < Vz(z(T )) = Vz(z(t̄)) +

∫ T
t̄
V̇z(z(s))ds ≤

Vz(z(t̄)) = b2
b1
|z0|2, which is a contradiction. Finally, from

the Gronwall-Bellman inequality, (16a), and (21) we get that

|z(t)| ≤
√
b2
b1
|z0|e−

b3
2b2 (1−σb4kgLh)t. (22)

Next, consider the Lyapunov function Vx given in as-
sumption (A5). Then we have V̇x ≤ ∂Vx

∂x G(x, z(t))z(t)
from which it follows that Vx(x(t)) ≤ Vx(x0) +∫ t

0
|∂Vx

∂x ||G(x(s), z(s))||z(s)|ds. From the latter and by tak-
ing now into account assumptions (A3) and (A5), we obtain

|x(t)|2 ≤ Vx(x0)
a1

+ a3
a1

∫ t

0

|x(s)|2k(|z(s)|)|z(s)|ds. (23)

Consider now the estimate (22) for the state z(t). Since
k(|z(t)|) ≥ 0 is nondecreasing, we get from (23) that
|x(t)|2 ≤ β1 + β2

∫ s
0
|x(s)|2k(κ|z0|)e−µsds, where β1 =

Vx(x0)/a1, β2 = (κ|z0|a3)/a1, κ =
√
b2/b1, and µ =

b3(1− σb4kgLh)/(2b2). By applying Lemma 2.1, with a =
β1, b = β2k(κ|z0|) and ψ(t) = e−µt we get

|x(t)| ≤
(
β1 exp

{∫ t

0

k(κ|z0|)β2e
−µsds

}) 1
2

, t ≥ 0,

(24)
which implies that x(t) is bounded. Since z(t) is also
bounded by (22), we conclude from Theorem 4.1, that the
cascade is asymptotically stable.

Finally, we prove that the sampling intervals are bounded
from below. The proof follows similar arguments to [29].
First, define e = ẑ − z, ẑ := z(tk) and notice that since f ,
g are C1 and h is Lipschitz on compact sets, it follows that
|ż| ≤ (Lf+kgLh)|z|+(kgLh)|e| ≤ (Lf+kgLh)(|z|+|e|) :=
L(|z| + |e|), where Lf > 0 and Lh > 0 are the Lipschitz
constants of f and h respectively, kg > 0 a bound of g on
the compact set Ωs. Similar to [29], it can be shown that the
derivative of |e|/|z| satisfies the estimate d

dt
|e|
|z| ≤ L(1+ |e||z| )

2,

with L := Lf + kgLh. By denoting y = |e|/|z|, we have
ẏ ≤ L(1 + y)2 and by the Comparison Principle, it follows
that y satisfies the bound y(t) ≤ φ(t, φ0), where φ(t, φ0)
is the solution of the differential equation φ̇ = L(1 + φ)2,
φ(0, φ0) = φ0. Thus, the inter-event times are bounded by
the time τ that satisfies φ(τ, 0) = σ, with σ satisfying (20).
From the solution φ(τ, 0) = τL/(1− τL) we get the lower
bound τ = σ/(L(1 + σ)) which completes the proof that
Zeno behavior is excluded.

(ii) Assume now that we enforce |z(tk)− z(t)| to satisfy

|z(tk)− z(t)| ≤ ce−at, (25)

for some positive constants c and a. Notice first that the
triggering condition (25) implies that

|z(t)| ≤ ce−at + |z(tk)|, ∀t ∈ [tk, tk+1). (26)



Let 0 < C ≤ 1 and define the sets B(|z0|) := {z ∈
Rm : |z| ≤ |z0|}, Q1 := B(|z0|) + C, and Q2 :=
V −1
z (Vz(B(|z0|))) + C , where V −1

z (Vz(B(|z0|))) := {z ∈
Rm : Vz(z) ∈ Vz(B(|z0|))}. Then it holds that

Q1 ⊂ Q2. (27)

Let t0 = 0. Then, until the first event at t1 occurs, (26)
implies that for 0 < c < C, z(t) ∈ Q1 and consequently
from (27) that z(t) ∈ Q2. By taking into account, assumption
(A4), (19), and (25) we obtain

V̇z(z(t)) ≤ −b3|z(t)|2 + cb4kgLh|z(t)|e−at, (28)

where Lh > 0 is a Lipschitz constant of h(·) on the compact
set Q2, and kg > 0 is a bound of g on the same set. Let
0 < c < min{C, b3

b4kgLh
}, where 0 < C ≤ 1. Then, if it

holds that |z(t)| ≥ e−at, it follows from (16a) and (28) that

V̇z(z(t)) ≤ − 1
b2

(b3 − cb4kgLh)Vz(z(t)), (29)

with b3 − cb4kgLh > 0. Indeed, assume first that
min{C, b3

b4kgLh
} = C ≤ 1. This would imply that b4kgLh <

b3 and (29) holds with 0 < c < C ≤ 1. On the other
hand, if min{C, b3

b4kgLh
} = b3

b4kgLh
, then with c = b3

αb4kgLh
,

α > 1 we again obtain (29) with (b3 − cb4kgLh) =
b3(1 − 1

α ) > 0. Additionally, it follows from (29) that

|z(t)| ≤
√

b2
b1
|z0|e−µt, where µ = (b3 − cb4kgLh)/(2b2).

Notice now that, at time t0 = 0, due to continuity of
z(·) the triggering will not happen instantaneously. Thus,
until the next event occurs at time t1 > t0, V̇z ≤ 0. The
latter implies that z(t) ∈ V −1

z (Vz(B(|z0|))), t ∈ [t0, t1).
Similar arguments hold for all intervals [tk, tk+1), k ∈ N. In
particular, let k ∈ N. Then, since z(tk) ∈ V −1

z (Vz(B(|z0|))),
we get from (26) that z(t) ∈ Q2 for all t ∈ [tk, tk+1). The
latter, in conjunction with the fact that V̇z ≤ 0, implies that
z(t) ∈ V −1

z (Vz(B(|z0|))), t ∈ [tk, tk+1).
Finally, if |z(t)| ≤ e−at, t ≥ 0, we get from (16a)

that |z(t)| ≤
√
b2/b1e

−at, t ≥ 0. On the other hand,
if there exists time T > 0 such that |z(T )| ≥ e−aT ,
then from continuity of z(·), there exists t̂ < T such that
|z(t̂)| = e−at̂ and |z(t)| ≥ e−at, t ∈ [t̂, T ]. Then, from
(16a), (29), and by further restricting 0 < a ≤ µ =
(b3 − cb4kgLh)/(2b2), we obtain b1|z(T )|2 ≤ V (z(T )) ≤
V (z(t̂)) ≤ b2|z(t̂)|2 ≤ b2e−2µt̂, which implies that |z(T )| ≤√
b2/b1 max{|z0|, 1}e−at̂. Next, for every τ > 0 such that

|z(t)| ≥ e−at, t ∈ [0, τ ], it follows from (29) that |z(t)| ≤√
b2/b1|z0|e−at, t ≥ 0 with 0 < a ≤ µ. If there exists T > 0

such that |z(T )| ≤ e−aT it follows with similar arguments
as before that |z(t)| ≤

√
b2/b1 max{|z0|, 1}e−at, t ≥ T .

Hence, |z(t)| ≤
√
b2/b1 max{|z0|, 1}e−at, t ≥ 0, provided

that 0 < a ≤ µ.
Next, we will show that, with 0 < c <

min{C, b3/(b4kgLh)}, 0 < C ≤ 1 and 0 < a ≤
µ = (b3 − cb4kgLh)/(2b2), we can avoid infinitely fast
sampling. In order to show that the inter-event times are
lower bounded, we follow similar arguments with those
of Proposition 3.1. First, define er(t) := z(tk) − z(t). By
taking into account that f , g ∈ C1 and h is Lipschitz

on compact sets with constants Lf and Lh respectively,
we have |ėr(t)| ≤ (Lf + Lhkg)|z(tk)| + Lf |er(t)|.
Solving this differential inequality with |e(tk)| = 0 we get
|er(t)| ≤ (Lf+Lhkg)|z(tk)|

Lf
(e(Lf+Lhkg)(t−tk) − 1). From

the triggering condition (25), we know that the next event
instant occurs when |er(tk+1)| = ce−atk+1 . Hence, from
the previous inequality we have that the inter-event times
satisfy tk+1 − tk ≥ 1

(Lf+Lhkg) ln(1 +
Lf ce

−atk+1

(Lf+Lhkg)|z(tk)| ).
Thus, it suffices to prove that the argument of the logarithm
is greater than one. With similar arguments to those in
the proof of Proposition 3.1, it follows, by taking into
account that |z(tk+1)| ≤

√
b2/b1|z0|e−atk+1 and the fact

that |z(tk)| ≤ ce−atk+1 + |z(tk+1)|, that

tk+1 − tk ≥
1

L
ln(1 +

cLf

L(c+
√
b2/b1|z0|)

) > 0

where L := Lf + Lhkg .
Finally, by taking into account assumption (A5) and with

similar arguments as in part (i), we again obtain (24) with
β1 = V (x0)/a1, β2 = (κa3)/a1, κ =

√
b2/b1 max{1, |z0|}.

The latter, together with Theorem (4.1), implies asymptotic
stability of the cascade system (15).

Remark 4.1: In (28), we used the fact that the set Q2 is
compact in order to obtain the positive constants kg and Lh.
In practice it is not always easy to calculate explicitly this
set. However, for any z0 ∈ Rm, it is easier to calculate the
constants kg and Lh on the set Q3 := B(

√
b2/b1|z0|) + C

which includes Q2.
Remark 4.2: For the triggering mechanism (25), analo-

gous results were obtained in [9], where system (18) was
considered as a perturbed system with perturbation terms
resulting from sampling.

Finally, we provide an extension of Proposition 3.1 for
the general system (15), that relaxes the need for (A5). In
particular, the following holds

Proposition 4.2: Under assumptions (A2), (A3), and (A4),
the cascade system (15) with each of the triggering condi-
tions (20) and (25) is exponentially stable and Zeno behavior
is excluded.

Proof: [Sketch] Similarly to the proof of Proposition
4.1, we can obtain an estimate fo the form |z(t)| ≤
κ|z0|e−µt, with κ and µ depending on each of the triggering
conditions (20) and (25). Specifically, for the case (20), κ =√
b2/b1 and µ = (1 − σb4kgLh)b3/(2b2), 0 < σ < 1; and

for the case (25), κ =
√
b2/b1, 0 < c < min{1, 1/(kgLh)}

and 0 < µ ≤ (1− c)b3/(2b2). Then, from assumption (A2),
there exists a positive definite and proper Lyapunov function
Vx and positive constants a1, a2, a3, a4 such that (2) holds.
Then, by taking into account (2), the previous estimate of
z(t), and assumption (A3) we obtain

V̇x ≤ −a3a2Vx + a4
a1
k(κ|z0|)e−µtVx,

for µ, κ > 0 as previously defined and therefore, Vx(x(t)) ≤
γ exp{−a3t/a2}Vx(x(0)), for some γ > 0, which implies
exponential stability. Similar to the proof of Proposition 4.1,
it can be shown that Zeno behavior is excluded.



Fig. 3: Evolution of states with state-dependent threshold (left) and
time-dependent threshold (right).

Fig. 4: Evolution of |z(tk) − z(t)| with state-dependent threshold
(left) and time-dependent threshold (right).

Remark 4.3: It should be noted that the feedback u =
h(z) that exponentially stabilizes the z-subsystem in assump-
tion (A4), does not necessarily render the closed-loop system
ISS with respect to measurement errors e ∈ Rm. This is
illustrated in the following example.

Example 4.1: Consider the planar system

ẋ =− x+ xz2

ż =− z sin2(z2) + u cos(z2)

This system satisfies assumptions (A2), (A3) and (A4). In-
deed, the state feedback u = −z cos(z2) renders the closed-
loop system exponentially stable with Lyapunov function
Vz = 1/2z2. However, as has been proved in [6], this
feedback does not render the z-subsystem ISS with respect to
measurement errors. From the time-derivative of Vz = 1/2z2

we get V̇z = −z2 and thus (16) holds with b1 = b2 = 1/2,
b3 = 1, b4 = 1. Similarly, we also have for the nominal
system ẋ = −x, that a1 = a2 = 1/2, a3 = a4 = 1. With
initial conditions (x0, z0) = (1, 2), we can find Lh = 5.5,
kg = 1 and we can select σ = 0.15, c = 0.15 and a = 0.4.
The simulation results are depicted in Fig. 3 and 4.

V. CONCLUSION

This paper presents results for the event-triggered control
of a class of cascade systems with partial state feedback.
The proposed mechanisms ensure stability of the system
and avoid infinitely fast sampling. A main feature of those
techniques is that no assumption of ISS with respect to
measurement errors is required. Future work will include
event-triggered control of cascade systems with full state
feedback and also more general classes of cascades, i.e., the
first subsystem being also augmented by the control input.
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