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Abstract— This paper addresses the problem of cooperative
transportation of an object rigidly grasped by N robotic agents.
We propose a decentralized Nonlinear Model Predictive Control
(NMPC) scheme that guarantees the navigation of the object
to a desired pose in a bounded workspace with obstacles, while
complying with certain input saturations of the agents. The
control scheme is based on inter-agent communication and is
decentralized in the sense that each agent calculates its own
control signal. Moreover, the proposed methodology ensures
that the agents do not collide with each other or with workspace
obstacles as well as that they do not pass through singular
configurations. Finally, simulation results illustrate the validity
and efficiency of the proposed method.

I. INTRODUCTION

Over the last years, multi-agent systems have gained a
significant amount of attention, due to the advantages they
offer with respect to single-agent setups. Robotic manipula-
tion is a field where the multi-agent formulation can play
a critical role, since a single robot might not be able to
perform manipulation tasks that involve heavy payloads or
challenging maneuvers.

Regarding cooperative manipulation, the literature is rich
with works that employ control architectures where the
robotic agents communicate and share information with each
other as well as completely decentralized schemes, where
each agent uses only local information or observers [1]–[5].
The most common methodology used in the related literature
constitutes of impedance and force/motion control [1], [6]–
[10]. Most of the aforementioned works employ force/torque
sensors to acquire knowledge of the manipulator-object con-
tact forces/torques, which, however, may result to perfor-
mance decline due to sensor noise.

Moreover, in manipulation tasks, such as pose/force or
trajectory tracking, collision with obstacles in the environ-
ment has been dealt with only by exploiting the potential
extra degrees of freedom of over-actuated agents, or by
using potential field-based algorithms. These methodologies,
however, may suffer from local minima, even in single-
agent cases, and in many cases they yield high control
inputs that do not comply with the saturation of actual
motor inputs, especially close to collision configurations. In
our previous works, [11], [12], we considered the problem
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of trajectory tracking for decentralized robust cooperative
manipulation, without taking into account singularity- or col-
lision avoidance. Another important property that concerns
robotic manipulators is the singularities of the Jacobian ma-
trix, (kinematic singularities), that should be always avoided,
especially when dealing with task-space control in the end-
effector [13]. In the same vein, representation singularities
can also occur in the mapping from coordinate rates to
angular velocities of a rigid body.

In this work, we design decentralized control laws for the
navigation of a grasped object to a final pose, while avoiding
inter-agent collisions as well as collisions with obstacles.
Moreover, we take into account constraints that emanate from
control input saturation as well kinematic and representation
singularities. The proposed approach to address this problem
is the repeated solution of a Finite-Horizon Open-loop Opti-
mal Control Problem (FHOCP) of each agent, by assigning
a set of priorities. Control approaches using this strategy are
referred to as Nonlinear Model Predictive Control (NMPC)
(see e.g. [14]–[17]). A decentralized NMPC scheme has
been considered in our submitted work [18], which concerns
multi-agent navigation with inter-agent connectivity mainte-
nance and collision avoidance.

In our previous work [19], a similar problem was consid-
ered in a centralized way. However, the computation burden
was high, due to the fact that the number of states in the
centralized case increases proportionally with the number
of agents, causing exponential increase in the computational
time and memory. In this work, we decouple the dynamic
model among the object and the agents by using certain load-
sharing coefficients and consider a communication-based
leader-follower formulation, where a leader agent determines
the followed trajectory for the object and the follower agents
comply with it through appropriate constraints.

Regarding the remainder of the paper, Section II provides
the preliminary background, and III gives the problem state-
ment. Section IV proposes the solution and Section V is
devoted to a simulation example. Conclusions and future
work are discussed in Section VI.

II. NOTATION AND PRELIMINARIES

The set of positive integers is denoted as N and the real
n-coordinate space, with n ∈ N, as Rn; Rn≥0 and Rn>0 are
the sets of real n-vectors with all elements nonnegative and
positive, respectively; In ∈ Rn×n and 0m×n ∈ Rm×n are
the identity matrix and the m × n matrix with all entries
zeros, respectively. Given a vector a ∈ R3, S(a) is the skew-
symmetric matrix defined according to S(a)b = a × b. We



further denote by ηA/B = [φA/B, θA/B, ψA/B]> ∈ T ⊆ R3

the x-y-z Euler angles representing the orientation of frame
{A} with respect to frame {B}, where T := (−π, π) ×
(−π2 ,

π
2 ) × (−π, π); Moreover, RB

A ∈ SO(3) is the rotation
matrix associated with the same orientation and SO(3) is
the 3-D rotation group. Define also the sets M := R3 × T,
N := {1, . . . , N}.

III. PROBLEM FORMULATION

The formulation we adopt in this paper follows the one
from our previous work [19]. Consider a workspace with N
robotic agents rigidly grasping an object, and Z static ob-
stacles described by the ellipsoids Oz, z ∈ Z := {1, . . . , Z}.
The agents are considered to be fully actuated and they
consist of a base that is able to move around the workspace
(e.g., mobile or aerial vehicle) and a robotic arm. The
reference frames corresponding to the i-th end-effector and
the object’s center of mass are denoted with {Ei} and {O},
respectively, whereas {I} corresponds to an inertial reference
frame. The rigidity of the grasps implies that the agents can
exert any forces/torques along every direction to the object.
We consider that each agent i knows the position and velocity
only of its own state as well as its own and the object’s
geometric parameters. Moreover, no interaction force/torque
measurements or on-line communication is required. Next,
we present the agents’ and the object’s modeling.

1) Robotic agents: We denote by qi ∈ Rni
the joint space variables of agent i ∈ N , with
ni = nαi + 6, qi = [p>Bi , η

>
Bi
, α>i ]>, where

pBi = [xBi , yBi , zBi ]
> ∈ R3, ηBi = [φBi , θBi , ψBi ]

> ∈ T is
the position and Euler-angle orientation of the agent’s base,
and αi ∈ Rnαi , nαi > 0, are the degrees of freedom of the
robotic arm. The overall joint space configuration vector is
denoted as q := [q>1 , . . . , q

>
N ]> ∈ Rn, with n :=

∑
i∈N ni.

The linear and angular velocities of the agents’ base
are described by the functions vL,Bi : Rni → R3,
with vL,Bi(q̇i) := ṗBi and ωBi : R2ni → R3, with
ωBi(qi, q̇i) := JBi(ηBi)η̇Bi , where JBi : T → R3×3 is
the representation Jacobian matrix [19]. We consider that
each agent i ∈ N has access to its own state qi, q̇i, and
can compute, therefore, the terms vL,Bi(q̇i), ωBi(qi, q̇i). In
addition, we denote as pEi : Rni → R3, ηEi : Rni → T
the position and Euler-angle orientation of agent
i’s end-effector. More specifically, it holds that:
pEi(qi) = pBi +RBi

(ηBi)kpi(αi), ηEi(qi) = ηBi + kηi(αi),
where kpi : Rnαi → R3, kηi : Rnαi → T are the forward
kinematics of the robotic arm [13], and RBi

: T → SO(3)
is the rotation matrix of the agent i’s base. Let also
vi = [ṗ>Ei , ω

>
i ]> : Rni × Rni → R6 denote a function

that represents the generalized velocity of agent i’s
end-effector, with ωi : Rni × Rni → R3 being the
angular velocity. Then, vi can be computed as vi(qi, q̇i) =[
ṗBi − S(RBi

(ηBi)kpi(αi))ωBi(qi, q̇i) +RBi
(ηBi)

∂kpi (αi)

∂αi
ωBi(qi, q̇i) +RBi

(ηBi)JAi(qi)α̇i

]
,

where JAi : Rnαi → R3×nαi is the angular Jacobian of the
robotic arm with respect to the agent’s base [13]. The latter

can be also written as:

vi(qi, q̇i) = Ji(qi)q̇i, (1)

where Ji : Rni → R6×ni is the Jacobian matrix [19].

Remark 1. The matrix JBi(φBi , θBi , ψBi) becomes singular
at representation singularities, when θBi = ±π2 and Ji(qi)
becomes singular at kinematic singularities defined by the set
Qi := {qi ∈ Rni : det(Ji(qi)[Ji(qi)]

>) = 0}, i ∈ N . In the
following, we will aim at guaranteeing that qi will always be
in the closed set: Q̃i := {qi ∈ Rni : |det(Ji(qi)[Ji(qi)]

>)| ≥
ε > 0}, i ∈ N , for a small positive constant ε.

The task-space dynamics for agent i ∈ N can be computed
using the Lagrangian formulation [13]:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − λi, (2)

where Mi : Rni\Qi → R6×6 is the positive definite inertia
matrix, Ci : Rni\Qi × Rni → R6×6 represents the Coriolis
matrix, gi : Rni\Qi → R6 is the joint-space gravity vector,
λi ∈ R6 is the generalized force vector that agent i exerts
on the object and ui ∈ R6 is the task-space input wrench;
ui can be translated to the generalized joint space inputs
τi ∈ Rni via τi = [Ji(qi)]

>ui + τ̄i(qi), where τ̄i belongs to
the nullspace of [Ji(qi)]

> and concerns over-actuated agents
[13]; τi = [λ>Bi , τ

>
αi ]
>, where λBi = [f>Bi , µ

>
Bi

]> ∈ R6 is the
generalized force vector on the center of mass of the agent’s
base and ταi ∈ Rnαi are the torque inputs of the robotic
arms’ joints. We define by Ai : Rni ⇒ R3, i ∈ N , the union
of the ellipsoids that bound the i-th agent’s volume, i.e.,
which is essentially the union of the ellipsoids that bound
the volume of the agents’ links.

2) Object and coupled dynamics: Regarding the object,
we denote its state as xO ∈ M, vO = [v>L,O, ω

>
O ]> ∈ R6,

representing the pose and velocity of the object’s center of
mass, with xO = [p>O , η

>
O ]>, pO ∈ R3, ηO = [φO, θO, ψO]> ∈

T. The second order Newton-Euler dynamics of the object
are given by:

ẋO = [JOr (ηO)]−1vO, (3a)
λO = MO(xO)v̇O + CO(xO, vO)vO + gO(xO), (3b)

where MO : M → R6×6 is the positive definite inertia
matrix, CO : M × R6 → R6×6 is the Coriolis matrix,
and gO : M → R6 is the gravity vector. In addition,
JOr : T→ R6×6 is the object representation Jacobian, which
is singular when θO = ±π2 . Finally, λO ∈ R6 is the force
vector acting on the object’s center of mass. Also, similarly to
the robotic agents, we define by CO : M ⇒ R3 the bounding
ellipsoid of the object.

Consider now N robotic agents rigidly grasping an ob-
ject. Then, the coupled system object-agents behaves like a
closed-chain robot and we can express the object’s pose and
velocity as a function of qi and q̇i, ∀i ∈ N . It holds that:

pO = pOi(qi) := pEi(qi) +REi
(qi)p

Ei
O/Ei

, (4a)
ηO = ηOi(qi) := ηEi(qi) + ηO/Ei , (4b)



∀i ∈ N , where pOi : Rni → R3, ηOi : Rni → are
local functions of the agents that provide the object’s pose,
p
Ei
O/Ei

represents the constant distance and ηO/Ei the relative
orientation offset between the ith agent’s end-effector and
the object’s center of mass, which are considered known. The
grasp rigidity implies that ωEi(qi) = ωO, ∀i ∈ N . Therefore,
by differentiating (4a), we can also express vO as a function
of qi, q̇i as

vO = vOi(qi, q̇i) := JiO (qi)vi(qi, q̇i), (5)

from which, we obtain: v̇Oi(qi, q̇i) = JiO (qi)v̇i(qi, q̇i) +
J̇iO (qi)vi(qi, q̇i), where JiO : Rni → R6×6 is a smooth
mapping representing the Jacobian from the object to the i-th

agent: JiO (qi) =

[
I3 S(pEi/O(qi))

03×3 I3

]
, and has always

full rank due to the grasp rigidity.

Remark 2. Since the geometric object parameters pEiO/Ei and
ηO/Ei are known, each agent can compute pO(qi), ηO(qi) and
vO(qi, q̇i) by (4) and (5), respectively, without employing any
sensory data. In the same vein, all agents can also compute
the object’s bounding ellipsoid CO(xO(qi)).

The Kineto-statics duality [13] along with the grasp
rigidity suggest that λO =

∑
i∈N J

>
Oi
λi. Consider now the

constants ci, with 0 < ci < 1 and
∑
i∈N

ci = 1, that play

the role of load sharing coefficients for the agents. Then
(3b) can be written as:

∑
i∈N ci

{
MO(xOi(qi))v̇Oi(qi, q̇i)

+ gO(xOi(qi))CO(xOi(qi), vOi(qi, q̇i))vOi(qi, q̇i)
}

=∑
i∈N [JOi(qi)]

>λi, from which, by employing (1), (5), (2)
and after straightforward algebraic manipulations, we obtain
the coupled dynamics∑
i∈N

{
M̃i(qi)q̈i + C̃i(qi, q̇i)q̇i + g̃i(qi)

}
=
∑
i∈N

[JOi(qi)]
>ui,

(6)

where M̃i(qi) := ciMO(xOi(qi))JiO (qi)Ji(qi) +

[JOi(qi)]
>Mi(qi)Ji(qi), C̃i(qi, q̇i) := [JOi(qi)]

>
(
Mi(qi)J̇i(qi)+

Ci(qi, q̇i)Ji(qi)
)

+ ciMO(xOi(qi))JiO (qi)J̇i(qi) +

ciMO(xOi(qi))J̇iO (qi)Ji(qi) + ciCO(xOi(qi), vOi(qi, q̇i)),
g̃i(qi) := cigO(xOi(qi)) + [JOi(qi)]

>gi(qi). and
xOi := [ṗ>Oi , η

>
Oi

]> ∈M, ∀i ∈ N .

Problem 1. Consider N robotic agents, rigidly grasping
an object, governed by the coupled dynamics (6). Given a
desired pose xdes for the object, design the control inputs
ui ∈ R6N such that lim

t→∞
‖xO(t)−xdes‖ → 0, while ensuring

the satisfaction of the following collision avoidance and
singularity properties: 1) Ai(qi(t))∩Oz = ∅,∀i ∈ N , z ∈ Z ,
2) CO(xO(t))∩Oz = ∅,∀z ∈ Z , 3) Ai(qi(t))∩Aj(qj(t)) =
∅,∀i, j ∈ N , i 6= j, 4) −π2 < −θ̄ ≤ θO(t) ≤ θ̄ < π

2 ,
∀i ∈ N , 5) −π2 < −θ̄ ≤ θBi(t) ≤ θ̄ < π

2 , ∀i ∈ N , 6)

qi ∈ Q̃i, ∀t ∈ R≥0, for 0 < θ̄ < π
2 , as well as the velocity

and input constraints: |τik(t)| ≤ τ̄i, |τ̇ik(t)| ≤ ¯̇τi, |q̇ik(t)| ≤
¯̇qi, ‖α̇i(t)‖≤ 1,∀k ∈ {1, . . . , ni}, i ∈ N , for some positive
constants τ̄i, ¯̇qi, i ∈ N .

In order to solve the aforementioned problem, we need
the following assumption regarding the workspace and the
agent communication:

Assumption 1. (Problem feasibility) The set {q ∈ Rn :
Ai(qi) ∩ Oz = ∅,Ai(qi) ∩ A`(q`) = ∅, Ci(xOi(qi)) ∩ Oz =
∅,∀i, ` ∈ N , i 6= `, z ∈ Z}, is connected.

Assumption 2. (Sensing and communication capabilities)
Each agent i ∈ N is able to continuously measure the other
agents’ state qj , q̇j , j ∈ N\{i}. Moreover, each agent i ∈ N
is able to communicate with the other agents j ∈ N\{i}
without any delays.

Moreover, each agent i ∈ N can construct at every time
instant the set-valued functions Aj(qj), ∀j ∈ N\{i}, whose
structure can be transmitted off-line to all agents.

Define also the sets: Si,O := {qi ∈ Rni : Ai(qi) ∩ Oz 6=
∅,∀z ∈ Z}, Si,A := {q ∈ Rn : Ai(qi) ∩ Aj(q`) 6= ∅,∀` ∈
N\{i}}, as well as SOi := {qi ∈ Rni : CO(xOi(qi)) ∩Oz 6=
∅,∀z ∈ Z}, ∀i ∈ N , associated with the desired collision-
avoidance properties. Moreover, define the projection sets for
agent i as the set-valued functions S̃i,A([q`]`∈N\{i}) := {qi ∈
Rni : q ∈ Si,A}, ∀i ∈ N , where the notation [q`]`∈N\{i}
stands for the stack vector of all q`, ` ∈ N\{i}.

IV. MAIN RESULTS

In this section, a systematic solution to Problem 1 is
introduced. Our overall approach builds on designing a
NMPC scheme for the system of the manipulators and the
object. The proposed methodology is decentralized, since
we do not consider a centralized system that calculates all
the control signals and transmits them to the agents, like
in our previous work [19]. As expected, this relaxes greatly
the computational burden of NMPC approach, which is also
verified by the simulation results. To achieve that, we employ
a leader-follower perspective. More specifically, as will be
explained in the sequel, at each sampling time, a leader
agent solves part of the coupled dynamics (6) via an NMPC
scheme, and transmits its predicted variables to the rest of
the agents. Assume, without loss of generality, that the leader
corresponds to agent i = 1. Loosely speaking, the proposed
solution proceeds as follows: agent 1 solves, at each sampling
time step, the receding horizon model predictive control
subject to the forward dynamics:

M̃1(q1)q̈1 + C̃1(q1, q̇1)q̇1 + g̃(q1) = [JO1
(q1)]>u1, (7)

and a number of inequality constraints, as will be clari-
fied later. After obtaining a control input sequence and a
set of predicted variables for q1, q̇1, denoted as q̂1, ˆ̇q1, it
transmits the corresponding predicted state for the object
xO1

(q̂1), vO1
(q̂1, ˆ̇q1) for the control horizon to the other

agents {2, . . . , N}. Then, the followers solve the receding
horizon NMPC subject to the forward dynamics:

M̃i(qi)q̈i + C̃i(qi, q̇i)q̇i + g̃(qi) = [JOi(qi)]
>ui, (8)

the state equality constraints:

xOi(qi) = xO1
(q̂1), vOi(qi, q̇i) = vO1

(q̂1, ˆ̇q1), (9)



i ∈ {2, . . . , N} as well as a number of inequality constraints
that incorporate obstacle and inter-agent collision avoidance.
More specifically, we consider that there is a priority se-
quence among the agents, which we assume, without loss
of generality, that is defined by {1, . . . , N}, and can be
transmitted off-line to the agents. Each agent, after solving
its optimization problem, transmits its calculated predicted
variables to the agents of lower priority, which take them into
account for collision avoidance. Note that the coupled object-
agent dynamics are implicitly taken into account in equations
(7), (8) in the following sense. Although the coupled model
(6) does not imply that each one of these equations is
satisfied, by forcing each agent to comply with the specific
dynamics through the optimization procedure, we guarantee
that (6) is satisfied, since it’s the result of the addition of (7)
and (8), for every i = 1 and i ∈ {2, . . . , N}, respectively.
Intuitively, the leader agent is the one that determines the
path that the object will navigate through, and the rest of the
agents are the followers that contribute to the transportation.
Moreover, the equality constraints (9) guarantee that the
predicted variables of the agents {2, . . . , N} will comply
with the rigidity at the grasping points through the equality
constraints (9).

By using the notation xi := [x>i1 , x
>
i2

]> := [q>i , q̇
>
i ]> ∈

R2ni , i ∈ N , the nonlinear dynamics of each agent can be
written as:

ẋi = fi(xi, ui) :=

[
fi1(xi)

fi2(xi, ui)

]
, (10)

where fi : Ei×R6 → R2ni is the locally Lipschitz function:
fi1(xi, ui) = xi2 , fi2(xi, ui) = M̂i(qi)

(
[JOi(qi)]

>ui −

C̃i(qi, q̇i)q̇ − g̃i(qi)
)

, i ∈ N , M̂i : Rni\Qi → Rni×6 is

the pseudo-inverse M̂i(qi) := M̃i(qi)
(
M̃i(qi)[M̃i(qi)]

>
)−1

,
and Ei := Rni\Qi × Rni , ∀i ∈ N . It can be proved that in
the set Rni\Qi the matrix M̃i(qi)[M̃i(qi)]

> has full rank
and hence, M̂i(qi) is well defined for all q ∈ Rni\Qi.
We define then the error vector e1 : E1 → M × R6,

as: e1(x1) :=

[
xO1

(q1)− xdes
vO1

(q1, q̇1),

]
which gives us the error

dynamics:
ė1 = g1(x1, u1), (11)

with g1 : E1 × R6 → R2ni : g1(x1, u1) :=[
[JOr (ηO1(q1))]

−1J1O (q1)J1(q1)q̇1

J1O (q1)J1(q1)f12(x1, u1) +
(
J1O J̇1(q1) + J̇1O (q1)J1(q1)

)
q̇1.

]
,

where we employed (11) and (3a). The time
derivative of the joint space inputs is given by:
τ̇i = [J̇i(qi)]

>ui + [Ji(qi)]
>u̇i. Hence, the constraints

for τik and τ̇ik , k ∈ Rni ,i ∈ N , can be written as coupled
state-input constraints: ‖τi‖ ≤ τ̄i ⇔ ‖[J(qi)]

>ui‖ ≤ τ̄i,
‖τ̇i‖ ≤ ¯̇τi ⇔ ‖[J̇i(qi)]>ui + [Ji(qi)]

>u̇i‖ ≤ ¯̇τi. Let us
now define the sets Ui := {(ui, u̇i, xi) ∈ R6×6×(2ni) :
‖[J(qi)]

>ui‖ ≤ τ̄i, ‖[J̇i(qi)]>ui + [Ji(qi)]
>u̇i‖ ≤ ¯̇τi},

i ∈ N , as the sets that capture the control input
constraints of (10), as well as their projections
Ui,u := {ui ∈ R6 : (ui, u̇i, xi) ∈ Ui}, i ∈ N . Define also

the set-valued functions Xi : Rn−ni ⇒ R2ni , i ∈ N , by:
X1([q`]`∈{2,...,N}) :=

{
x1 ∈ R2n1 : θO1

(q1) ∈ [−θ̄, θ̄], θB1
∈

[−θ̄, θ̄], |q̇k1 | ≤ ¯̇q1, q1 ∈ Q̃1\
(
S1,O ∪ S̃1,A([q`]`∈{2,...,N})

)
,

xO1
(q1) ∈ R3\SO1

}
, Xi([q`]`∈N\{i}) :=

{
xi ∈ R2ni : θBi ∈

[−θ̄, θ̄], |q̇ki | ≤ ¯̇qi, qi ∈ Q̃i\ (Si,O ∪ Si,A([q`]`∈N\{i}))
}

, i ∈
{2, . . . , N}. Note that qi ∈ Xi([q`]`∈N\{i}) =⇒ qi /∈ Qi.

The sets Xi capture all the state constraints of the
system dynamics (10), i.e., representation- and singularity-
avoidance, collision avoidance among the agents and the
obstacles, as well as collision avoidance of the object with
the obstacles, which is assigned to the leader agent only.
We further define the set-valued functions E1 : Rn−n1 ⇒
M × R6 as E1([q`]`∈{2,...,N}) := {e1(x1) ∈ M × R6 : x1 ∈
X1([q`]`∈{2,...,N})}.

The main problem at hand is the design of a feedback
control law u1 ∈ U1 for agent 1 which guarantees that
the error signal e1 with dynamics given in (11), satisfies
limt→∞ ‖e1(x1(t))‖ → 0, while ensuring singularity avoid-
ance, collision avoidance between the agents, between the
agents and the obstacles as well as the object and the
obstacles. The role of the followers {2, . . . , N} is, through
the load-sharing coefficients c2, . . . , cN in (6), to contribute
to the object trajectory execution, as derived by the leader
agent 1. In order to solve the aforementioned problem, we
propose a NMPC scheme, that is presented hereafter.

Consider a sequence of sampling times {tj}, j ∈ N
with a constant sampling period h, 0 < h < Tp, where
Tp is the prediction horizon, such that: tj+1 = tj + h,
j ∈ N. Hereafter we will denote by j the sampling instant.
In sampled-data NMPC, a FHOCP is solved at the discrete
sampling time instants tj based on the current state error
information e1(x1(tj)). The solution is an optimal control
signal û?1(s), computed over s ∈ [tj , tj + Tp]. For agent 1,
the open-loop input signal applied in between the sampling
instants is given by the solution of the following FHOCP:

min
û1(·)

J1(e1(x1(tj)), û1(·)) = min
û1(·)

{
V1(e1(x̂1(tj + Tp)))

+

∫ tj+Tp

tj

[
F1(e1(x̂1(s)), û1(s))

]
ds

}
(12a)

subject to:
ė(x̂1(s)) = g1(x̂1(s), û1(s)), e1(x̂1(tj)) = e1(x1(tj)), (12b)
e1(x̂1(s)) ∈ E1([q`(tj)]`∈{2,...,N}), s ∈ [tj , tj + Tp], (12c)

(û1(s), ˆ̇u1(s), x̂1(s)) ∈ U1, s ∈ [tj , tj + Tp], (12d)
e1(x̂1(tj + Tp)) ∈ F1([q`]`∈{2,...,N}). (12e)

At a generic time tj then, agent 1 solves the aforementioned
FHOCP. The notation (̂·) is used to distinguish the predicted
variables which are internal to the controller, corresponding
to the system (12b). This means that e1(x̂1(·)) is the solution
of (12b) driven by the control input û1(·) : [tj , tj+Tp]→ U1

with initial condition e1(x1(tj)). Note that, since the predic-
tion horizon is finite, the predicted values are not the same
with the actual closed-loop values (see [15]). In the follow-
ing, we use the notation E1(·) instead of E1([q`]`∈{2,...,N})
for brevity. The functions F1 : E1(·) × U1,u → R≥0,



V1 : E1(·) → R≥0 stand for the running cost and the
terminal penalty cost, respectively, and they are defined
as: F1

(
e1, u1

)
= e>1 Q1e1 + u>1 R1u1, V1

(
e1
)

= e>1 P1e1;
R1 ∈ R6×6, P1 ∈ R(2n1)×(2n1), and Q1 ∈ R(2n1)×(2n1) are
positive definite and semi-definite matrices, respectively. The
terminal set F1(·) ⊆ E1(·) is chosen as: F1([q`]`∈{2,...,N}) =
{e1 ∈ E1([q`]`∈{2,...,N}) : V1(e1) ≤ ε1}, where ε1 ∈ R>0 is
an arbitrarily small constant to be appropriately tuned.

The solution to FHOCP (12a) - (12e) at time tj provides an
optimal control input, denoted by û?1(s; e1(x1(tj)), x1(tj)),
s ∈ [tj , tj + Tp]. This control input is then applied to the
system until the next sampling instant tj+1:

u1 (s; x1(tj), e1(x1(tj))) = û?
1 (s; x1(tj), e1(x1(tj))) , (13)

for every s ∈ [tj , tj + h). At time tj+1 = tj + h a
new FHOCP is solved in the same manner, leading to
a receding horizon approach. The control input u1(·) is
of feedback form, since it is recalculated at each sam-
pling instant based on the then-current state. The solu-
tion of (11) at time s, s ∈ [tj , tj + Tp], starting at
time tj , from an initial condition x1(tj), e1(x1(tj)), by
application of the control input u1 : [tj , s] → U1,u

is denoted by e1
(
x1(s); u1(·); x1(tj), e1(x1(tj))

)
, s ∈

[tj , tj + Tp]. The predicted state of the system (12b) at
time s, s ∈ [tj , tj + Tp] based on the measurement of
the state at time tj , x1(tj), by application of the control
input u1

(
t; x1(tj), e1(x1(tj))

)
as in (13), is denoted by

x̂1
(
s; u1(·); x1(tj), e1(x1(tj))

)
, and the predicted error

by e1(x̂1(·); u1(·); x1(tj), e1(x1(tj))
)
, s ∈ [tj , tj + Tp].

After the solution of the FHOCP and the calculation of
the predicted states x̂1

(
s; u1(·), e1(x1(tj)), x1(tj)

)
, s ∈

[tj , tj + Tp] at each time instant tj , agent 1 transmits
the values q̂1(s, ·), ˆ̇q1(s, ·) as well as xO1

(q̂1(s, ·)) and
vO1

(q̂1(s, ·), ˆ̇q1(s, ·)), as computed by (4), (5), ∀s ∈ [tj , tj +
Tp] to the rest of the agents {2, . . . , N}. Then, each agent
i ∈ {2, . . . , N}, solves the following FHOCP:

min
ûi(·)

Ji(xi(tj)), ûi(·)) (14a)

subject to:
ẋi = fi(xi(s), ui(s)), (14b)

xi(s) ∈ Xi

(
[q`(tj)]`∈{i+1,...,N}

)
, (14c)

xi(s) ∈ Xi

(
[q̂`(s, ·)]j∈{1,...,i−1}

)
, (14d)

xOi(qi(s)) = xO1(q̂1(s; ·)), (14e)

vOi(qi(s), q̇i(s)) = vO1
(q̂1(s; ·), ˆ̇q1(s; ·)), (14f)

(ui(s), u̇i(s), xi(s)) ∈ Ui, s ∈ [tj , tj + Tp], (14g)

at every sampling time tj . Note that, through the equality
constraints (14e), (14f), the follower agents must comply
with the trajectory computed by the leader q̂1(s, ·), ˆ̇q1(s, ·).
This can be problematic in the sense that this trajectory might
drive the followers to collide with an obstacle or among each
other, i.e., a solution to (14) might not exist. Resolution of
such cases is not in the scope of this paper (see Assumption
3) and constitutes part of future research.

Assumption 3. The sets {(q, s) ∈ Rn × [tj , tj +
Tp] : xOi(qi(s)) = xO1

(q̂1(s; ·)), vOi(qi(s), q̇i(s)) =

vO1
(q̂1(s; ·), ˆ̇q1(s; ·)) ∩ Si,O ∩ S̃i,A([q`(tj)]`∈{i+1,...,N} ∩

S̃i,A([q`(s)]`∈{1,...,i−1})} are nonempty, ∀i ∈ {2, . . . , N}.

Next, similarly to the leader agent i = 1, it calculates
the predicted states q̂i(s, ·), ˆ̇qi(s, ·), s ∈ [tj , tj + Tp], which
then transmits to the agents {i+ 1, . . . , N}. In that way, at
each time instant tj , each agent i ∈ {2, . . . , N} measures
the other agents’ states (as stated in Assumption 2), incor-
porates the constraint (14c) for the agents {i + 1, . . . , N},
receives the predicted states q̂`(s, ·), ˆ̇q`(s, ·) from the agents
` ∈ {2, . . . , i − 1} and incorporates the collision avoidance
constraint (14d) for the entire horizon. Loosely speaking,
we consider that each agent i ∈ N takes into account
the first state of the next agents in priority (q`(tj), ` ∈
{i+1, . . . , N}), as well as the transmitted predicted variables
q̂`(s, ·), ` ∈ {1, . . . , i− 1} of the previous agents in priority,
for collision avoidance. Intuitively, the leader agent executes
the planning for the followed trajectory of the object’s center
of mass (through the solution of the FHOCP (12a)-(12e)),
the follower agents contribute in executing this trajectory
through the load sharing coefficients ci (as indicated in
the coupled model (6)), and the agents low in priority are
responsible for collision avoidance with the agents of higher
priority. Moreover, the aforementioned equality constraints
(14e), (14f) as well as the forward dynamics (14a) guarantee
the compliance of all the followers with the model (6). For
the followers, the cost Ji(xi(tj), ûi(·)) can be selected as
any function of xi, ui, ∀i ∈ {2, . . . , N}. Therefore, given the
constrained FHOCP (14a)-(14g), the solution of the problem
lies in the capability of the leader agent to produce a state
trajectory that guarantees xO1

(q1(t))→ xdes, by solving the
FHOCP (12a)-(12e), which is discussed in Theorem 1.

Definition 1. A control input u1 : [tj , tj + Tp] → Rm for
e1(x1(tj)) is called admissible for the FHOCP (12a)-(12e)
if: 1) u1(·) is piecewise continuous; 2) u1(s) ∈ U1,u,∀s ∈
[tj , tj + Tp]; 3) e1

(
x1(s); u1(·); x1(tj), e1(x1(tj))

)
∈

E1(·),∀ s ∈ [tj , tj + Tp], and 4) e1
(
x1(tj +

Tp); u1(·); x1(tj), e1(x1(tj))
)
∈ F1(·).

Theorem 1. Suppose that: 1) Assumption 1 - 3 hold; 2) The
FHOCP (12a)-(12e) is feasible for the initial time t = 0; 3)
There exists an admissible control input κ1 : [tj +Tp, tj+1 +
Tp] → U1 such that for all e1 ∈ F1(·) and for every s ∈
[tj + Tp, tj+1 + Tp] it holds that: e1(x1(s)) ∈ F1(·) and
∂V1
∂e1

g1(e1(x1(s)), κ1(s))+F1(e1(x1(s)), h1(s)) ≤ 0. Then,

the system (11), under the control input (13), converges to
the set F1(·) when t→∞.

Proof. The proof is similar to the one of Theorem 1 in [19,
Section IV, p. 6], and is omitted.

V. SIMULATION RESULTS

We consider N = 3 ground vehicles equipped with 2 DOF
manipulators, rigidly grasping an object with n1 = n2 =
n3 = 4, n = n1 +n2 +n3 = 12. The states of the agents are
given as: qi = [p>Bi , α

>
i ]> ∈ R4, pBi = [xBi , yBi ]

> ∈ R2,
αi = [αi1 , αi2 ]> ∈ R2, i ∈ {1, 2, 3}. We set state constraints
to ε < α11 <

π
2 − ε, −

π
2 + ε < α12 <

π
2 − ε, −

π
2 + ε <

α21 < −ε, −π2 + ε < α22 <
π
2 − ε to avoid the kinematic

singularities sin(αi1) = 0, i ∈ {1, 2}, with ε = 0.001. We



Time [sec]
0 10 20 30 40 50 60

q 1
(t
)−

q 1
,d
es
,q̇

1(
t)
−

q̇ 1
,d
es

-5

-4

-3

-2

-1

0

1

Error states of agent 1

xB1
(t)− 5.5

yB1
(t)

α11
(t)− π

4
α12

(t)− π

4
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Fig. 1: The error states of the agents.

Time [sec]
0 10 20 30 40 50 60

u
1,
j(
t)
,j

∈
{1

,2
,3
,4
}

-1

0

1

2

3

4

5

6

7

8

9

Control Inputs of Agent 1

u1,1(t)
u1,2(t)
u1,3(t)
u1,4(t)

Time [sec]
0 10 20 30 40 50 60

u
2,
j(
t)
,j

∈
{1

,2
,3
,4
}

-6

-4

-2

0

2

4

6

8

Control Inputs of Agent 2

u2,1(t)
u2,2(t)
u2,3(t)
u2,4(t)

Time [sec]
0 10 20 30 40 50 60

u
2,
j(
t)
,j

∈
{1

,2
,3
,4
}

-1

0

1

2

3

4

5

6

7

8

Control Inputs of Agent 3

u3,1(t)
u3,2(t)
u3,3(t)
u3,4(t)

Fig. 2: The control inputs of the agents.

also consider the input constraints: −8.5 ≤ ui,j(t) ≤ 8.5,
i ∈ {1, 2}, j ∈ {1, . . . , 4}. The initial conditions are set to:
q1(0) = [0.5, 0, π4 ,

π
4 ]>, q2(0) = [0,−4.4142,−π4 ,−

π
4 ]>,

q3(0) = [−0.50,−4.4142,−π4 ,−
π
4 ]>, q̇1(0) = q̇2(0) =

q̇3(0) = [0, 0, 0, 0]> and xO(0) = [0,−2.2071, 0.9071, π2 ]>.
The desired goal of state the object is set to xO,des =
[5,−2.2071, 0.9071, π2 ]>, which, due to the structure of
the considered robots, corresponds uniquely to q1,des =
[5.5, 0, π4 ,

π
4 ]>, q2,des = [5,−4.4142,−π4 ,−

π
4 ]>, q3,des =

[4.5, 0,−π4 ,−
π
4 ]>, q̇3,des = [0, 0, 0, 0]> and q̇1,des = q̇2,des =

q̇3,des = [0, 0, 0, 0]>. The leader is agent 1 and we set a
spherical obstacle centered at [2.5,−2.2071, 1] with radius√

0.2. The sampling time is h = 0.1 sec, the horizon is
Tp = 0.5 sec, and the total simulation time is 60 sec; We
also choose P = Q = 0.5I8×8, R = 0.5I4×4 and the
load sharing coefficients as c1 = 0.3, c2 = 0.5, and c3 =
0.2. The simulation results are depicted in Fig. 1 and 2,
which depict the errors and the control inputs of the agents,
respectively. The simulation took 13450 sec in MATLAB
R2015a Environment on a desktop with 8 cores, 3.60 GHz
CPU and 16GB of RAM using the NMPC toolbox of [16].
In our previous work [19], the corresponding centralized
simulation took 45547 sec on the same computer.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a NMPC scheme for de-
centralized cooperative transportation of an object rigidly
grasped by N robotic agents, subject to singularity- and
collision-avoidance. Future efforts will be devoted towards
reconfiguration in case of task infeasibility for the followers,
and event-triggered communication.
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