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Abstract— This paper addresses the problem of navigation
control of a general class of uncertain nonlinear multi-agent
systems in a bounded workspace, which is subset of Rn, with
static obstacles. In particular, we propose a decentralized con-
trol protocol such that each agent reaches a predefined position
at the workspace, while using only local information based on
a limited sensing radius. The proposed scheme guarantees that
the initially connected agents remain always connected. In addi-
tion, by introducing certain distance constraints, we guarantee
inter-agent collision avoidance, as well as, collision avoidance
with the obstacles and the boundary of the workspace. The
proposed controllers employ a class of Decentralized Nonlinear
Model Predictive Controllers (DNMPC) under the presence of
disturbances and uncertainties. Finally, simulation results verify
the validity of the proposed framework.

I. INTRODUCTION

During the last decades, decentralized control of multi-
agent systems has gained a significant amount of attention
due to the great variety of its applications, including multi-
robot systems, transportation, multi-point surveillance and
biological systems. An important topic of research is multi-
agent navigation in both the robotics and the control com-
munities, due to the need for autonomous control of multiple
robotic agents in the same workspace.

The literature on the problem of navigation of multi-agent
systems is rich. In [1] and [2], a decentralized control proto-
col of multiple non-point agents and point masses with col-
lision avoidance guarantees is considered, respectively. The
problem is approached by designing navigation functions
which have been initially introduced in [3]. However, this
method requires preposterously large actuation forces and it
may give rise to numerical instability due to computations
of exponentials and derivatives. A decentralized potential
field approach of navigation of multiple unicycles and aerial
vehicles with collision avoidance has been considered in [4]
and [5], respectively; Robustness analysis and saturation in
control inputs are not addressed. In [6], the collision avoid-
ance problem for multiple agents in intersections has been
studied. An optimal control problem is solved, with only time
and energy constraints. Authors in [7] proposed decentralized
controllers for multi-agent navigation and collision avoidance
with arbitrarily shaped obstacles in 2D environments. blue-
However, connectivity maintenance properties are not taken
into consideration in all the aforementioned works.

In [8], a decentralized receding horizon protocol for for-
mation control of linear multi-agent systems is proposed.
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The authors in [9] considered the path-following problems
for multiple Unmanned Aerial Vehicles (UAVs) in which
a decentralized optimization method is proposed through
linearization of the dynamics of the UAVs. A DNMPC
along with potential functions for collision avoidance has
been studied in [10]. A feedback linearization framework
along with Model Predictive Controllers (MPC) for multiple
unicycles in leader-follower networks for ensuring collision
avoidance and formation is introduced in [11]. The authors
of [12]–[14] proposed a decentralized receding horizon ap-
proach for discrete time multi-agent cooperative control.
However, in the aforementioned works, plant-model mis-
match or uncertainties and/or connectivity maintenance are
not considered. In [15] a centralized and a decentralized lin-
ear MPC formulation and integer programming is proposed,
respectively, for dealing with collision avoidance of multiple
UAVs.

The contribution of this paper is to provide decentralized
control protocols which guarantee that a team of rigid-bodies
modeled by 2nd order uncertain Lagrangian dynamics sat-
isfy: collision avoidance between agents; obstacle avoidance;
connectivity preservation; singularity avoidance; that agents
remain in the workspace; while the control inputs are satu-
rated. This constitutes a general problem that arises in many
multi-agent applications where the agents need to perform a
collaborative task, stay close and connected to each other and
navigate to desired goal points. In order to address the afore-
mentioned problem, we propose a Decentralized Nonlinear
Model Predictive Control (DNMPC) framework in which
each agent solves its own optimal control problem, having
availability of information on the current and estimated
actions of all agents within its sensing range. The proposed
control scheme, under relatively standard Nonlinear Model
Predictive Control (NMPC) assumptions, guarantees that all
the aforementioned control specifications are satisfied. Due
to space constraints, a more detailed version of this paper that
contains: omitted definitions, remarks, extra figures, proofs
of lemmas/theorems, and omitted calculations, can be found
in [16].

II. NOTATION AND PRELIMINARIES

The set of positive integers is denoted by N. The real n-
coordinate space, n ∈ N, is denoted by Rn; Rn

≥0 and Rn
>0

are the sets of real n-vectors with all elements nonnegative
and positive, respectively. The notation ‖x‖ is used for the
Euclidean norm of a vector x ∈ Rn. Given a real symmetric
matrix A, λmax(A) denotes the maximum absolute value of
eigenvalues of A. Its maximum singular value is denoted
by σmax(A); In ∈ Rn×n and 0m×n ∈ Rm×n are the
identity matrix and the m× n matrix with all entries zeros,



respectively. The set-valued function B : Rn × R>0 ⇒
Rn, given as B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r},
represents the n-th dimensional ball with center x ∈ Rn

and radius r ∈ R>0. Given the sets S1, S2 ⊆ Rn, the
Minkowski addition and the Pontryagin difference are defined
by: S1 ⊕ S2 = {s1 + s2 ∈ Rn : s1 ∈ S1, s2 ∈ S2} and
S1	S2 = {s1 ∈ Rn : s1 +s2 ∈ S1,∀s2 ∈ S2}, respectively.
For the definitions of Class K, Class KL functions, Input-
to-State Stability (ISS Stability), ISS Lyapunov Function and
positively invariant sets, which will be used thereafter in this
manuscript, we refer the reader to [17], [18].

III. PROBLEM FORMULATION

A. System Model
Consider a set V of N agents, V = {1, 2, . . . , N},

N ≥ 2, operating in a workspace D ⊆ Rn. The workspace
is assumed to be modeled by a bounded ball B (xD, rD),
where xD ∈ Rn and rD ∈ R>0 are its center and radius,
respectively. We consider that over time t each agent i ∈ V
occupies the ball B (xi(t), ri), where xi : R≥0 → Rn is
the position of the agent at time t ∈ R≥0, and ri < rD is
the radius of the agent’s rigid body. The uncertain nonlinear
dynamics of each agent i ∈ V are given by:

ẋi(t) = fi(xi(t), ui(t)) + wi(xi(t), t), (1)

where ui : R≥0 → Rm stands for the control input and
fi : Rn × Rm → Rn is a twice continuously differen-
tiable vector field satisfying fi(0n×1, 0m×1) = 0n×1. The
continuous function wi : Rn × R≥0 → Rn is a term
representing disturbances and modeling uncertainties. We
consider bounded inputs and disturbances as ui ∈ Ui and
wi ∈ Wi, where Ui = {ui ∈ Rm : ‖ui‖ ≤ ũi} and
Wi = {wi ∈ Rn : ‖wi‖ ≤ w̃i}, for given finite constants ũi,
w̃i ∈ R>0, i ∈ V .

Assumption 1. The nonlinear functions fi, i ∈ V are locally
Lipschitz continuous in D × Ui with Lipschitz constants
Lfi . Thus, for every x, x′ ∈ Rn and u ∈ Ui it holds that:
‖fi(x, u)− fi(x′, u)‖ ≤ Lfi‖x− x′‖.

We consider that in the given workspace there exist L ∈ N
static obstacles, with L = {1, 2, . . . , L}, also modeled by the
balls B

(
xO`

, rO`

)
, with centers at positions xO`

∈ Rn and
radii rO`

∈ R>0, where ` ∈ L. Their positions and sizes are
assumed to be known a priori to each agent.

Assumption 2. Agent i ∈ V has: 1) access to measurements
xi(t) for every t ∈ R≥0; 2) A limited sensing range di ∈
R>0 such that: di > max

i,j∈V,i6=j,`∈L
{ri + rj , ri + rO`

}.

The latter implies that each agent is capable of perceiving
the agent and the obstacle with the largest volume. The
consequence of points 1 and 2 of Assumption 2 is that
by defining the set of agents j that are within the sensing
range of agent i at time t as: Ri(t) , {j ∈ V\{i} :
‖xi(t) − xj(t)‖ < di}, agent i is also able to measure at
each time instant t the vectors xj(t) of all agents j ∈ Ri(t).

Definition 1. The multi-agent system is in a
collision/singularity-free configuration at a time instant
τ ∈ R≥0 if the following hold: for every i, j ∈ V , i 6= j it

holds that: ‖xi(τ)− xj(τ)‖ > ri + rj ; for every i ∈ V and
for every ` ∈ L it holds that: ‖xi(τ)− xO`

‖ > ri + rO`
and

for every i ∈ V it holds that: ‖xD − xi(τ)‖ < rD − ri.

Definition 2. The neighboring set of agent i ∈ V is defined
by: Ni = {j ∈ V\{i} : j ∈ Ri(0)}. We will refer to agents
j ∈ Ni as the neighbors of agent i ∈ V .

The set Ni is composed of indices of agents j ∈ V which
are within the sensing range of agent i at time t = 0. Agents
j ∈ Ni are agents which agent i is instructed to keep within
its sensing range at all times t ∈ R>0, and therefore maintain
connectivity with them. While the sets Ni are introduced for
connectivity maintenance specifications and they are fixed,
the sets Ri(t) are used to ensure collision avoidance, and,
in general, their composition varies through time.

Assumption 3. For sake of cooperation needs, we assume
that Ni 6= ∅, ∀i ∈ V , i.e., all agents have at least one
neighbor. We also assume that at time t = 0 the multi-
agent system is in a collision/singularity-free configuration,
as given in Definition 1.

Given the aforementioned modeling of the system, the
objective of this paper is the stabilization of the agents i ∈
V starting from a collision/singularity-free configuration as
given in Definition 1 to a desired configuration xi,des ∈ Rn,
while maintaining connectivity between neighboring agents,
and avoiding collisions between agents, obstacles, and the
workspace boundary.

Definition 3. The desired configuration xi,des ∈ D of
agent i ∈ V is feasible if the following hold: 1) It is a
collision/singularity-free configuration according to Defini-
tion 1; 2) It does not result in a violation of the connectivity
maintenance constraint between neighboring agents, i.e.,
‖xi,des − xj,des‖ < di, ∀i ∈ V, j ∈ Ni.

Definition 4. Let xi,des ∈ D, i ∈ V be a desired feasible
configuration as given in Definition 3. Then, the set of all
initial conditions xi(0) according to Assumption 3, for which
there exist time constants ti ∈ R>0∪{∞} and control inputs
u?i ∈ Ui, i ∈ V , which define a solution x?i (t), t ∈ [0, ti] of
the system (1), under the presence of disturbance wi ∈ Wi,
such that: 1) x?i (ti) = xi,des; 2) ‖x?i (t)−x?j (t)‖ > ri+rj , for
every t ∈ [0, ti], i, j ∈ V , i 6= j; 3) ‖x?i (t)−xO`

‖ > ri+rO`
,

for every t ∈ [0, ti], i ∈ V , ` ∈ L; 4) ‖xD−x?i (t)‖ < rD−ri,
for every t ∈ [0, ti], i ∈ V; 5) ‖x?i (t) − x?j (t)‖ < di, for
every t ∈ [0, ti], i ∈ V, j ∈ Ni, are called feasible initial
conditions.

The feasible initial conditions are essentially all the initial
conditions xi(0) ∈ D, i ∈ V from which there exist
controllers ui ∈ Ui that can navigate the agents to the
given desired states xi,des, under the presence of disturbances
wi ∈ Wi while the initial neighbors remain connected,
the agents do not collide with each other, they stay in the
workspace and they do not collide with the obstacles of the
environment. Initial conditions for which one or more agents
can not be driven to the desired state xi,des by a controller
ui ∈ Ui, i.e., initial conditions that violate one or more of
the conditions of Definition 4, are considered as infeasible



initial conditions.

Problem 1. Consider N agents governed by dynamics as in
(1), modeled by the balls B (xi, ri), i ∈ V , operating in a
workspace D which is modeled by the ball B (xD, rD). In
the workspace there are L obstacles B

(
xO`

, rO`

)
, ` ∈ L.

The agents have communication capabilities according to
Assumption 2, under the initial conditions xi(0), imposed
by Assumption 3. Then, given a desired feasible configura-
tion xi,des according to Definition 3, for all feasible initial
conditions, as given in Definition 4, the problem lies in
designing decentralized feedback control laws ui ∈ Ui, such
that for every i ∈ V and for all times t ∈ R≥0, the
following specifications are satisfied: 1) position stabilization
is achieved: lim

t→∞
‖xi(t)−xi,des‖ → 0; 2) inter-agent collision

avoidance: ‖xi(t)−xj(t)‖ > ri+rj ,∀ j ∈ V\{i}; 3) connec-
tivity maintenance between neighboring agents is preserved:
‖xi(t) − xj(t)‖ < di, ∀ j ∈ Ni; 4) agent-with-obstacle
collision avoidance: ‖xi(t) − xO`

(t)‖ > ri + rO`
, ∀ ` ∈

L; 5) agent-with-workspace-boundary collision avoidance:
‖xD − xi(t)‖ < rD − ri.

IV. MAIN RESULTS

In this section, a systematic solution to Problem 1 is
introduced. Our overall approach builds on designing a
decentralized control law ui ∈ Ui for each agent i ∈ V .
In particular, since we aim to minimize the norms ‖xi(t)−
xi,des‖, as t→∞ subject to the state constraints imposed by
Problem 1, it is reasonable to seek a solution which is the
outcome of an optimization problem.

A. Error Dynamics and Constraints
Define the error vector ei : R≥0 → Rn by: ei(t) = xi(t)−

xi,des. Then, the error dynamics are given by:

ėi(t) = hi(ei(t), ui(t)), (2)

where the functions hi : Rn × Rm → Rn, gi : Rn × Rm →
Rn are defined by: hi(ei(t), ui(t)) , gi(ei(t), ui(t)) +
wi(ei(t)+xi,des, t), gi(ei(t), ui(t)) , fi(ei(t)+xi,des, ui(t)).
Define the set that captures all the state constraints on the
system (1), posed by Problem 1, by: Zi ,

{
xi ∈ Rn :

‖xi(t)− xj(t)‖ ≥ ri + rj + ε, ∀j ∈ Ri(t), ‖xi(t)− xj(t)‖
≤ di − ε, ∀j ∈ Ni, ‖xi(t) − xO`

‖ ≥ ri + rO`
+ ε,

∀` ∈ L, ‖xD − xi(t)‖ ≤ rD − ri − ε
}

, i ∈ V , where
ε ∈ R>0 is an arbitrary small constant. In order to trans-
late the constraints that are dictated for the state zi into
constraints regarding the error state ei, define the set Ei =
{ei ∈ Rn : ei ∈ Zi ⊕ (−xi,des)} , i ∈ V . Then, the following
equivalence holds: xi ∈ Zi ⇔ ei ∈ Ei, ∀i ∈ V .

Property 1. The nonlinear functions gi, i ∈ V are locally
Lipschitz continuous in Ei × Ui with Lipschitz constants
Lgi = Lfi . Thus, ‖gi(e, u) − gi(e′, u)‖ ≤ Lgi‖e − e′‖, ∀e,
e′ ∈ Ei, u ∈ Ui.
Proof. The proof can be found in [16, App. B, p. 21].

If the decentralized control laws ui ∈ Ui, i ∈ V , are
designed such that the error signal ei with dynamics given
in (2), constrained under ei ∈ Ei, satisfies lim

t→∞
‖ei(t)‖ → 0,

then Problem 1 will have been solved.

B. Decentralized Control Design

Due to the fact that we have to deal with the minimization
of norms ‖ei(t)‖, as t → ∞, subject to constraints ei ∈
Ei, we invoke here a class of Nonlinear Model Predictive
controllers. NMPC frameworks have been studied in [19]–
[25] and they have been proven to be powerful tools for
dealing with state and input constraints.

Consider a sequence of sampling times {tk}, k ∈ N, with
a constant sampling time h, 0 < h < Tp, where Tp is the
prediction horizon, such that tk+1 = tk+h, k ∈ N. Hereafter
we will denote by i the agent and by index k the sampling
instant. In sampled data NMPC, a Finite-Horizon Open-loop
Optimal Control Problem (FHOCP) is solved at the discrete
sampling time instants tk based on the current state error
measurement ei(tk). The solution is an optimal control signal
u?i (s), computed over s ∈ [tk, tk +Tp]. The open-loop input
signal applied in between the sampling instants is given by
the solution of the following FHOCP:

min
ui(·)

Ji(ei(tk), ui(·))

= min
ui(·)

{
Vi(ei(tk + Tp)) +

∫ tk+Tp

tk

[
Fi(ei(s), ui(s))

]
ds

}
(3a)

subject to:

ėi(s) = gi(ei(s), ui(s)), ei(tk) = ei(tk), (3b)
ei(s) ∈ Ei,s−tk , ui(s) ∈ Ui, s ∈ [tk, tk + Tp], (3c)
e(tk + Tp) ∈ Ωi. (3d)

At a generic time tk then, agent i ∈ V solves the aforemen-
tioned FHOCP. The notation · is used to distinguish predicted
states which are internal to the controller, corresponding to
the nominal system (3b) (i.e., the system (2) by substituting
w(·) = 0n×1). This means that ei(·) is the solution to (3b)
driven by the control input ui(·) : [tk, tk + Tp] → Ui with
initial condition ei(tk). Note that the predicted states are
not the same with the actual closed-loop values due to the
fact that the system is under the presence of disturbances
wi ∈ Wi. The functions Fi : Ei × Ui → R≥0, Vi : Ei →
R≥0 stand for the running costs and the terminal penalty
costs, respectively, and they are defined by: Fi

(
ei, ui

)
=

e>i Qiei + u>i Riui, Vi
(
ei
)

= e>i Piei; Ri ∈ Rm×m and Qi,
Pi ∈ Rn×n are symmetric and positive definite controller
gain matrices to be appropriately tuned; Qi ∈ Rn×n is a
symmetric and positive semi-definite controller gain matrix
to be appropriately tuned. The sets Ei,s−tk , Ωi will be
explained later. For the running costs Fi the following hold:

Lemma 1. There exist functions α1, α2 ∈ K∞ such that:
α1

(
‖ηi‖

)
≤ Fi

(
ei, ui

)
≤ α2

(
‖ηi‖

)
, i ∈ V, for every ηi ,[

e>i , u
>
i

]> ∈ Ei × Ui.
Proof. The proof can be found in [16, App. C, p. 22].

Lemma 2. The running costs Fi, i ∈ V are Lipschitz
continuous in Ei × Ui. Thus, it holds that:

∣∣Fi(e, u) −
Fi(e

′, u)
∣∣ ≤ LFi‖e − e′‖,∀e, e′ ∈ Ei, u ∈ Ui, where

LFi
, 2σmax(Qi) sup

ei∈Ei
‖ei‖.



Proof. The proof can be found in [16, App. D, p. 22].

The applied input signal is a portion of the optimal
solution to an optimization problem where information on
the states of the neighboring agents of agent i is taken into
account only in the constraints considered in the optimization
problem. These constraints pertain to the set of its neighbors
Ni and, in total, to the set of all agents within its sensing
range Ri. Regarding these, we make the following assump-
tion:

Assumption 4. When at time tk agent i solves a FHOCP, it
has access to the following measurements, across the entire
horizon s ∈ (tk, tk + Tp]: 1) Measurements of the states: i)
xj(tk) of all agents j ∈ Ri(tk) within its sensing range at
time tk; ii) xj′(tk) of all of its neighboring agents j′ ∈ Ni

at time tk; 2) The predicted states: i) xj(s) of all agents
j ∈ Ri(tk) within its sensing range; ii) xj′(s) of all of its
neighboring agents j′ ∈ Ni;

In other words, each time an agent solves its own indi-
vidual optimization problem, it knows the (open-loop) state
predictions that have been generated by the solution of the
optimization problem of all agents within its range at that
time, for the next Tp time units. This assumption is crucial
to satisfying the constraints regarding collision avoidance
and connectivity maintenance between neighboring agents.
We assume that the above pieces of information are always
available, accurate and can be exchanged without delay.

Remark 1. The designed procedure flow can be either
concurrent or sequential, meaning that agents can solve
their individual FHOCPs and apply the control inputs either
simultaneously, or one after the other. The conceptual design
itself is procedure-flow agnostic, and hence it can incorporate
both without loss of feasibility or successful stabilization.
The approach that we have adopted here is the sequential
one: each agent solves its own FHOCP and applies the
corresponding admissible control input in a round robin
way, considering the current and planned (open-loop state
predictions) configurations of all agents within its sensing
range.

The constraint sets Ei, i ∈ V involve the sets Ri(t) which
are updated at every sampling time in which agent i solves
his own optimization problem. Its predicted configuration at
time s ∈ [tk, tk + Tp] is constrained by the predicted con-
figuration of its neighboring and perceivable agents (agents
within its sensing range) at the same time instant s.

The solution to FHOCP (3a) - (3d) at time tk provides an
optimal control input, denoted by u?i (s; ei(tk)), s ∈ [tk, tk+
Tp]. This control input is then applied to the system until the
next sampling instant tk+1:

ui(s; ei(tk)) = u?i
(
s; ei(tk)

)
, s ∈ [tk, tk+1). (4)

At time tk+1 a new finite horizon optimal control problem
is solved in the same manner, leading to a receding horizon
approach. The control input ui(·) is of feedback form, since
it is recalculated at each sampling instant based on the then-
current state. The solution of (2) at time s, s ∈ [tk, tk +
Tp], starting at time tk, from an initial condition ei(tk) =

ei(tk), by application of the control input ui : [tk, s] → Ui
is denoted by ei

(
s; ui(·), ei(tk)

)
, s ∈ [tk, tk + Tp]. The

predicted state of the system (3b) at time s, s ∈ [tk, tk +Tp]
based on the measurement of the state at time tk, ei(tk),
by application of the control input ui

(
t; ei(tk)

)
as in 4, is

denoted by ei
(
s; ui(·), ei(tk)

)
, s ∈ [tk, tk + Tp].

The satisfaction of the constraints Ei on the state along
the prediction horizon depends on the future realization of
the uncertainties. On the assumption of additive uncertainty
and Lipschitz continuity of the nominal model, it is possible
to compute a bound on the future effect of the uncertainty
on the system. Then, by considering this effect on the
state constraint on the nominal prediction, it is possible to
guarantee that the evolution of the real state of the system
will be admissible all the time. In view of latter, the state
constraint set Ei of the standard NMPC formulation, is being
replaced by a restricted constrained set Es−tk ⊆ Ei in (3c).
This state constraint’s tightening for the nominal system (3b)
with additive disturbance wi ∈ Wi, is a key ingredient of
the proposed controller and guarantees that the evolution of
the evolution of the real system will be admissible for all
times. If the state constraint set was left unchanged during
the solution of the optimization problem, the applied input
to the plant, coupled with the uncertainty affecting the states
of the plant could force the states of the plant to escape their
intended bounds. The aforementioned tightening set strategy
is inspired by the works [26]–[28], which have considered
such a robust NMPC formulation.

Lemma 3. The difference between the actual measurement
ei
(
tk + s; ui(·), ei(tk)

)
at time tk + s, s ∈ (0, Tp],

and the predicted state ei
(
tk + s; ui(·), ei(tk)

)
at the

same time, under a control input ui(·) ∈ Ui, starting
at the same initial state ei(tk) is upper bounded by:∥∥ei(tk + s; ui(·), ei(tk)

)
− ei

(
tk + s; ui(·), ei(tk)

)∥∥ ≤
w̃i

Lgi

(eLgi
s−1), s ∈ (0, Tp], where e· denotes the exponential

function.

Proof. The proof can be found in [16, App. E, p. 23].

By taking into consideration the aforementioned Lemma,
the restricted constraints set are then defined by: Ei,s−tk =

Ei 	 Xi,s−tk , with Xi,s−tk =
{
ei ∈ Rn : ‖ei(s)‖ ≤

w̃i

Lgi

(
eLgi

(s−tk) − 1
)
, ∀s ∈ [tk, tk + Tp]

}
. This modification

guarantees that the state of the real system ei is always
satisfying the corresponding constraints Ei.

Assumption 5. The terminal set Ωi ⊆ Ψi is a subset of
an admissible and positively invariant set Ψi, where Ψi is
defined as Ψi ,

{
ei ∈ Ei : Vi(ei) ≤ εΨi

}
, εΨi

> 0.

Assumption 6. The set Ψi is interior to the set Φi, Ψi ⊆
Φi, which is the set of states within Ei,Tp−h for which
there exists an admissible control input which is of linear
feedback form with respect to the state κi : [0, h] → Ui:
Φi ,

{
ei ∈ Ei,Tp−h : κi(ei) ∈ Ui

}
, such that for all ei ∈ Ψi

and for all s ∈ [0, h] it holds that:
∂Vi
∂ei

gi(ei(s), κi(s)) +

Fi(ei(s), κi(s)) ≤ 0.



Remark 2. According to [29], [30], the existence of the
linear state-feedback control law κi is ensured if for every i ∈
V the following conditions hold: 1) fi is twice continuously
differentiable with fi(0n×1, 0m×1) = 0n×1; Assumption 1
holds; 3) the sets Ui are compact with 0m×1 ∈ Ui; and 4)
the linearization of system (2) is stabilizable.

Assumption 7. The admissible and positively invariant set
Ψi is such that ∀ei(t) ∈ Ψi ⇒ ei

(
t+ s; κi(ei(t)), ei(t)

)
∈

Ωi ⊆ Ψi, for some s ∈ [0, h].

The terminal sets Ωi are chosen as: Ωi ,
{
ei ∈ Ei : Vi(ei) ≤

εΩi

}
, where εΩi

∈ (0, εΨi
).

Lemma 4. For every ei ∈ Ψi there exist functions α1, α2 ∈
K∞ such that: α1

(
‖ei‖

)
≤ Vi(ei) ≤ α2

(
‖ei‖

)
, ∀i ∈ V .

Proof. The proof can be found in [16, App. G, p. 24].

Lemma 5. The terminal penalty functions Vi are Lipschitz
continuous in Ψi, thus it holds that:

∣∣Vi(e) − Vi(e
′)
∣∣ ≤

LVi
‖e−e′‖,∀e, e′ ∈ Ψi, where LVi

= 2σmax(Pi) sup
ei∈Ψi

‖ei‖.

Proof. The proof is similar to the proof of Lemma 2.

We can now give the definition of an admissible input for
the FHOCP (3a)-(3d).

Definition 5. A control input ui : [tk, tk + Tp] → Rm for
a state ei(tk) is called admissible for the FHOCP (3a)-(3d)
if the following hold: 1) ui(·) is piecewise continuous; 2)
ui(s) ∈ Ui, ∀s ∈ [tk, tk +Tp]; 3) ei

(
tk + s; ui(·), ei(tk)

)
∈

Ei 	Xi,s, ∀s ∈ [0, Tp]; 4) ei
(
tk + Tp; ui(·), ei(tk)

)
∈ Ωi;

Under these considerations, we can now state the theo-
rem that relates to the guaranteeing of the stability of the
compound system of agents i ∈ V , when each of them is
assigned a desired position.

Theorem 1. Suppose that for every i ∈ V: 1) assumptions
1-7 hold; 2) a solution to FHOCP (3a)-(3d) is feasible at
time t = 0 with feasible initial conditions, as defined in
Definition 4; 3) the upper bound of the disturbance wi

satisfies the following: w̃i ≤
εΨi
− εΩi

LVi

Lgi

(eLgi
h − 1)eLgi

(Tp−h)

.

Then, the closed loop trajectories of the system (2), under the
control input (4) which is the outcome of the FHOCP (3a)-
(3d), converge to the set Ωi, as t → ∞ and are ultimately
bounded there, for every i ∈ V .

Proof. The proof of the theorem consists of two parts: firstly,
recursive feasibility is established, that is, initial feasibility is
shown to imply subsequent feasibility; secondly, and based
on the first part, it is shown that the error state ei(t)
reaches the terminal set Ωi and it remains there for all
times. The feasibility analysis and the convergence analysis
can be found in [16, App. H, p. 25], [16, App. I, p. 30],
respectively.

Fig. 1: The trajectories of the three agents in the x − y plane. Agent 1 is
with blue, agent 2 with red and agent 3 with yellow. A faint green line
connects agents deemed neighbors. The obstacles are depicted with black
circles. The indicator “O” denotes the initial configurations. The indicator
“X” marks the desired configurations.
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Fig. 2: The evolution of the error signals of the three agents.

V. SIMULATION RESULTS

For a simulation scenario, consider N = 3 unicycle agents

with dynamics: ẋi(t) =

ẋi(t)ẏi(t)

θ̇i(t)

 =

vi(t) cos θi(t)
vi(t) sin θi(t)

ωi(t)

 +

wi(xi, t)I3×1, where: i ∈ V = {1, 2, 3}, xi = [xi, yi, θi]
>,

fi(zi, ui) = [vi cos θi, vi sin θi, ωi]
>, ui = [vi, ωi]

>, wi =
0.1 sin(2t). We set ũi = 15, ri = 0.5, di = 4ri = 2.0
and ε = 0.01. The neighboring sets are set to N1 = {2, 3},
N2 = N3 = {1}. The agents’ initial positions are x1 =
[−6, 3.5, 0]>, x2 = [−6, 2.3, 0]> and x3 = [−6, 4.7, 0]>.
Their desired configurations in steady-state are x1,des =
[6, 3.5, 0]>, x2,des = [6, 2.3, 0]> and x3,des = [6, 4.7, 0]>.
In the workspace, we place 2 obstacles with centers at
points [0, 2.0]> and [0, 5.5]>, respectively. The obstacles’
radii are rO`

= 1.0, ` ∈ L = {1, 2}. The matrices Qi,
Ri, Pi are set to Qi = 0.7(I3 + 0.5†3), Ri = 0.005I2 and
Pi = 0.5(I3 + 0.5†3), where †N is a N ×N matrix whose
elements are uniformly randomly chosen between the values
0.0 and 1.0. The sampling time is h = 0.1 sec, the time-
horizon is Tp = 0.6 sec, and the total execution time given is
10 sec. Furthermore, we set: Lfi = 10.7354, LVi

= 0.0471,
εΨi

= 0.0654 and εΩi
= 0.0035 for all i ∈ V .
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Fig. 3: The distance between the agents 1 − 2 and 1 − 3 over time. The
maximum and the minimum allowed distances are di − ε = 1.99 and
ri + rj + ε = 1.01, respectively for every i ∈ V , j ∈ Ni.
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Fig. 4: The distance between the agents and obstacle 1 over time. The
minimum allowed distance is ri + rO1 + ε = 1.51.
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Fig. 5: The distance between the agents and obstacle 2 over time. The
minimum allowed distance is ri + rO2

+ ε = 1.51.

The frames of the evolution of the trajectories of the three
agents in the x−y plane are depicted in Fig. 1; Fig. 2 depicts
the evolution of the error states of agents; Fig. 3 shows the
evolution of the distances between the neighboring agents;
Fig. 4 and Fig. 5 depict the distance between the agents
and the obstacle 1 and 2, respectively. Finally, Fig. 6 shows
the input signals directing the agents through time. It can be
observed that all agents reach their desired goal by satisfying
all the constraints imposed by Problem 1.
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