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Abstract— In this work, we investigate the partitioning and
control problems on the 2−sphere, the set of all unit vectors
in R3. Specifically, we present a spherical-polytope-based parti-
tioning for the 2−sphere and then propose a novel approach to
construct a feedback control law over a given set of spherical
polytopes. Instead of designing the control law directly on
the sphere, we propose a smooth atlas on it based on the
gnomonic projection. We further show that the gnomonic
map projects the spherical polytopes to Euclidean polytopes.
Moreover, the kinematics evolving on a spherical polytope can
be transformed via feedback into a single integrator in the
Euclidean space. Thanks to these properties, control algorithms
that were originally developed for polytopes in Euclidean spaces
can now be applied to spherical polytopes on the 2−sphere. We
conclude this paper by showing a control construction on the
sphere with cluttered obstacles.

I. INTRODUCTION

The motivation for studying the dynamical systems evolv-
ing on a 2−sphere, the set of all unit vectors in R3, comes
from two aspects: on the one hand, many practical systems
contain state components that are constrained to evolve on
the sphere. The rigid-body reduced attitude model is an
important example, where only two (instead of three axis)
rotational movement are of interest [1]. This model has
broad applications in aerospace and robotics, for example,
a spacecraft with one axis actuation failure [2]. In these
cases, the controlled two degrees of freedom are naturally
identified as the 2−sphere. Other applications include the
spherical pendulum [3] and the visual tracking task [4].

On the other hand, the underlying configuration space is
not diffeomorphic to any Euclidean space, and this nontrivial
topology results in interesting and complicated nonlinear
dynamics. One well-known theoretical result in this field
is that there exists no time-invariant continuous control
law that can globally stabilize a state on the sphere [5].
Many control strategies [1], [4], [6] are proposed in the
literature by inherently considering the nonlinear manifold
characteristics to avoid singluaries and ambiguities of other
representations, and almost globally asymptotic stability is
generally achieved.

One more challenging problem is to control dynamical
systems that the states are constrained to ‘local’ regions of
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the 2−sphere. This is motivated by applications where the
state can only evolve on a subset of the sphere due to safety
reasons. For example, the attitude maneuvering of a space
telescope observing galaxies requires to actively avoid the di-
rect exposure to sun [7]. The constrained attitude problem is
generally solved by considering the full attitude model (i.e.,
rotational space SO(3), quaternion representation, etc) [8]–
[10]. However, in an under-actuated scenario, solutions for
a full attitude is not applicable to a reduced attitude model.
There exist very few results that deal with the constrained
control problem on the 2−sphere. [11] solves the problem
by extending a barrier-function based method on manifolds
where an online state-dependent quadratic programming is
incorporated. [12] uses a stereographic projection strategy
that transforms conic constraints on the n−spheres to spheri-
cal obstacles in Euclidean spaces, where we study a spherical
polytope shape of constraints on the sphere here.

In this work, we consider the constrained control problem
on the 2−sphere within the framework of partitioning, plan-
ning and control modules [10]. More specifically, we propose
a spherical polytope decomposition of the feasible region
and develop control laws over these spherical polytopes. The
spherical-polytope based partitioning is directly performed
on the 2−sphere without resorting to any local parameteri-
zations. Compared to [11], [12], our method can be applied to
general shapes of feasible regions. We further present a novel
approach to construct a feedback control law that enables
two state behaviors over a set of spherical polytopes: the
transition between two adjacent spherical polytopes and the
convergence to a goal state. The control construction relies
on the gnomonic projection that maps spherical polytopes
into polytopes in R2 and, more importantly, the transformed
dynamics can be linearized to a single integrator via feed-
back. Thanks to these nice properties, control algorithms
[13], [14] that were originally designed for Euclidean poly-
tope navigation can now be utilized for spherical polytopes.
We conclude this paper with two numerical examples.

II. NOTATIONS AND SPHERICAL POLYTOPE
PARTITIONING

The set of real, non-negative real, and positive integer
numbers are denoted as R,R≥,N, respectively. Rn denotes
the n-dimensional Euclidean space. For any vectors x,y ∈
Rn, their inner product is defined as x · y :=

√
x>y. The

2-norm of a vector x is ‖x‖2 :=
√
x>x. In, n ∈ N is the n-

dimensional identity matrix; 0n×1 is a n-dimensional vector
with all entries zero, and e3 = (0, 0, 1) is a vector in R3.
The map [(·)]× : R3 → R3×3 for any x = (x1, x2, x3) is



explicitly defined as [x]× =
( 0 −x3 x2

x3 0 −x1
−x2 x1 0

)
.

Let S2 denote the unit sphere S2 := {x ∈ R3 : ‖x‖2 = 1}.
The tangent space to S2 at a given point x is given by
TxS2 = {y ∈ R3 : y>x = 0}. Let x,y ∈ S2. The
spherical distance is defined as dS(x,y) := arccos(x>y),
denoting the length of the shortest curve, i.e., geodesics, on
S2 between x and y. A pair of points x,y of S2 is said
to be proper if and only if x 6= y,x 6= −y. If the pair
x,y is proper, then there exists a unique shortest curve,
i.e., geodesic segment, in S2 joining x to y, denoted by
seg(x,y). An interesting property is that a geodesic segment
of S2 is an arc of a great circle [15]. Here a great circle of
S2 is the intersection of S2 with a plane passing through
the center of the sphere. A subset C of S2 is convex if and
only if for each pair of proper points x,y in C, the geodesic
segment seg(x,y) is contained in C. The convex hull of a
subset S of X , where X is a metric space, is the intersection
of all the convex subsets of X containing S. A set S is called
connected if for every pair of points p, q ∈ S, there exists a
continuous map f : [0, 1]→ S such that f(0) = p, f(1) = q.

A spherical polytope P in S2 is a convex subset of S2
such that P has only finitely many vertices; P is the convex
hull of its vertices; and any pair of distinct points in P is
proper [15]. Given a finite set of points {xi} that lie in a
hemisphere Ua := {x ∈ S2 : a>x > 0} for some vector
a ∈ S2, the spherical polytope is then Conv({xi}), where
Conv(·) is a function that gives the convex hull of all its
elements. Every spherical polytope P can be written as P =
{x ∈ S2 : ki

>x ≥ 0}, where ki ∈ S2, i = 1, 2, · · · , n.
A finite collection of spherical polytopes P = {Pi} is

called a spherical polytope partitioning on S2 if 1) the
interiors of any spherical polytopes Pi, Pj ∈ P are mutually
disjoint; 2) the union of the spherical polytopes in P is S2.
One common example of a spherical polytope partitioning
is the soccer ball, where each spherical polytope is bounded
by 5 or 6 geodesic segments.

III. CONTROL PROBLEM FORMULATION

In this work, we consider a dynamical system whose state
evolves on the 2-sphere S2

ẋ = Π(x)u (1)

where x ∈ S2 is the state, u ∈ Rm is the control input,
Π : S2 → R3×m is a smooth matrix-valued function that
projects u onto the tangent space TxS2. We assume that the
system (1) is fully-actuated. That is,

Assumption 1. For all x ∈ S2, Im(Π(x)) = TxS2.

Since dim(TxS2) = 2, Assumption 1 implies m ≥ 2.
One well-known example of (1) is the reduced attitude

kinematic model ẋ = [x]×u [1], where x denotes a fixed
unit vector in the inertia frame resolved in the body frame,
and u ∈ R3 is the angular velocity expressed in the body
frame.

Many applications need the states to evolve only in a
subset of the 2−sphere due to safety reasons. For example,
the attitude maneuvering for a space telescope may be

required to perform in a small feasible region. In general,
with a spherical polytope partitioning P , the feasible region
can be approximated by a subset of P . In this case, we need
to constrain the state behavior on a given set of spherical
polytopes. This constrained control problem on the 2−sphere
is described in Problem 1.

Problem 1. (Control over spherical polytopes) Given a
spherical polytope partitioning P . Let P ′ be a subset of P ,
M := ∪iPi,∀Pi ∈ P ′, and xg ∈ M . Assume that M is
connected. Construct a feedback control input u such that

1) all integral curves starting in M and under the control
input u are smooth.

2) for all initial states x(0) ∈M , x(t) ∈M for all t ≥ 0
and x(t) reaches xg asymptotically.

In what follows, we call Pi an intermediate spherical
polytope if Pi ∈ P ′,xg /∈ Pi; and Pi is the goal spherical
polytope when xg ∈ Pi.
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Fig. 1. (a) A subset of S2 decomposed into spherical polytopes. The
black regions are the obstacles in the environment. (b) The corresponding
connectivity graph, which is constructed with spherical polytopes to be the
nodes and the adjacency relations to be the edges. (c) A path over all the
spherical polytopes that ultimately leads to the goal one.

We solve Problem 1 in two steps: 1) find a path over
spherical polytopes that leads to the goal spherical polytope,
2) construct a feedback control law that enables every
transition in the path. In the first step, given spherical
polytopes {Pi} and the goal state xg as shown in Fig.
1(a), a search algorithm could be utilized to find a sequence
of adjacent spherical polytopes that leads to the spherical
polytope containing xg , see Fig. 1(b)(c). Note that a path
with minimal hops to the goal polytope is chosen here.
Further modifications could be done in this step by taking the
size or the traveling time into account. The second step is to
construct a feedback control law for each spherical polytope
(Problem 2) with a smooth blending between successive
spherical polytopes (Problem 3).

Problem 2. (control over one spherical polytope) Given
a spherical polytope P . Construct a feedback control input
u such that

1) all integral curves starting in P and under the control
input u are smooth in P .



2) if P is an intermediate spherical polytope, then all
integral curves starting in P stay in P until they reach
the exit face segex in finite time;

3) if P is the goal spherical polytope, then all integral
curves starting in P stay in P and asymptotically
converge to the goal point xg .

Problem 3. (smooth blending condition) For any two
successive spherical polytopes P, P ′ ∈ P , the feedback
control input u(x) should be smooth for x ∈ seg, where
seg is the shared boundary of P, P ′.

In the following sections, we discuss some properties
of gnomonic projection that will facilitate the construction
of feedback control laws on spherical polytopes and then
proceed to solving Problems 2∼3.

IV. PROPERTIES OF GNOMONIC PROJECTION

A. Gnomonic projection

For a point a ∈ S2, the gnomonic projection projects a
point x on the hemisphere Ua := {x ∈ S2 : a>x > 0}
from the center of the sphere o to the unique point x′ on
the plane Sa = {x ∈ R3 : a>x = 1} that is tangent to S2
at a [16]. An illustration of the gnomonic projection when
a = e3 is shown in Fig. 2.
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Fig. 2. Gnomonic projection of a point/geodesic segment on a hemisphere
onto a plane tangent to S2.

For any point x ∈ Ua, the corresponding point x′ under
the gnomonic projection lies both on the radial line ox and
the plane Sa. Thus, x′ = x

a>x
. We define the gnomonic

projection mapping for a ∈ S2 to be φa : x ∈ Ua 7→ ξ ∈ R2

φa(x) := J2Ra
x

a>x
, (2)

where J2 := [I2 02×1], Ra is a matrix that provides a
rotation along axis [a]×e3 with angle dS(a, e3), and is
explicitly given by Ra = I3 + sin(dS(a, e3))[[a]×e3]× +
(1 − cos(dS(a, e3)))[[a]×e3]2×. For any given a ∈ S2, Ra
is a constant orthogonal matrix. Geometrically speaking, Ra
rotates x′ = x

a>x
from the plane Sa to the point Ra x

a>x
on

the plane Se3 . Thus, the third entry of the point Ra x
a>x

is
1. Note that φa(·) is well-defined on Ua thanks to the fact
that for any x ∈ Ua, a>x > 0.

It can be verified that the inverse map φ−1a : ξ ∈ R2 7→
x ∈ Ua is

φ−1a (ξ) :=
R>a (J>2 ξ + e3)√

ξ>ξ + 1
(3)

From (2) and (3), φa and φ−1a are continuous, and then φa
is a homeomorphism. Thus, (Ua, φa) is a chart for S2.

Proposition 1. A collection of charts A = {(Ua, φa)}a∈S2
is a smooth atlas for S2.

Proof. See Appendix.

B. The gnomonic projection of spherical polytopes

In addition to providing a smooth atlas for S2, the
gnomonic projection projects spherical polytopes from S2
to Euclidean polytopes in R2 as shown in this subsection.

Since any spherical polytope is contained in a hemisphere
[15], without loss of generality, we consider a spherical poly-
tope P that is contained in Ue3 = {x ∈ S2 : e3

>x > 0}.
Consider also the gnomonic projection mapping φe3(x) =

J2
x

e3>x
with the inverse map φ−1e3 (ξ) =

J>
2 ξ+e3√
1+ξ>ξ

. Here

φe3(·) is well-defined on Ue3 as discussed (as a special case
a = e3). This scenario is illustrated in Fig. 2.

Proposition 2. For any proper pair x1,x2 ∈ Ue3 , the
gnomonic projection of seg(x1,x2) forms a line in R2.

Proof. Let x3 be a unit vector that is orthogonal to x1,x2,
and x′ ∈ R3 be the mapped point of x ∈ seg(x1,x2). As the
geodesics on S2 are great circles, for any x ∈ seg(x1,x2),
we have x1,x2,o,x are on the same plane Sx1ox2 := {y ∈
R3 : x3

>y = 0}. In view of x′ = x
e3>x

, we have x3
>x′ =

0, i.e., x′ also lies on the plane Sx1ox2 . Recall that x′ lies
on the plane Se3 = {y ∈ R3 : e3

>y = 1}. Note again that
e3 ∦ x3 (otherwise, we derive e3>x1 = 0, which violates
the fact that x1 ∈ Ue3 ), and x′ thus lies in the intersection
of two nonparallel planes, i.e., a line.

Proposition 3. Given a spherical polytope P ⊂ Ue3 , the
gnomonic projection of the spherical polytope is a Euclidean
polytope in R2.

Proof. Let the spherical polytope P bounded by m geodesic
segments, denoted as P = {x ∈ S2 : ki

>x ≥ 0 for i =
1, 2, · · · ,m}. Correspondingly, for any point x ∈ P ⊂
Ue3 , we have e3>x > 0, which leads to ki> x

e3>x
≥ 0

for all i = 1, 2, · · · ,m. By applying the identity I3 =
J>2 J2 + e3e3

> and the projected point ξ = J2
x

e3>x
, we

have ki> x
e3>x

≥ 0 ⇔ ki
>(J>2 J2 + e3e3

>) x
e3>x

≥ 0 ⇔
(J2ki)

>J2
x

e3>x
+e3

>ki
e3

>x
e3>x

≥ 0⇔ (J2ki)
>ξ+e3

>ki ≥
0 for i = 1, 2, · · · ,m. This forms m linear inequality
constraints on ξ ∈ R2. Thus, the region subject to these
constraints forms a convex polytope in R2.

Consider a spherical polytope P = Conv({xi}) in S2,
where the vertices xi are contained in Ua,a ∈ S2. With the
projected points ξi = φa(xi), the corresponding projection
is Q = Conv({ξi}) in R2 with vertices {ξi}.

C. Mapping of the dynamics and feedback linearization

In this subsection we investigate the projected dynamics
in the Euclidean space. To do so, we consider the change
of state variable ξ = φa(x),x ∈ Ua. In view of (1), the
derivative of ξ with respect to time is given by

ξ̇ = ∇φa(x)ẋ = ∇φa(x)Π(x)u := Θa(x)u (4)



where ∇φa(x) denotes the Jacobian matrix of φa(·). From
(2), the Jacobian matrix is given by

∇φa(x) =
J2Ra(a>xI3 − xa>)

(a>x)2
(5)

Lemma 1. If Assumption 1 holds, then Θa(x) ∈ R2×m has
full row rank for all x ∈ Ua and all a ∈ S2.

Proof. Note that since φa(·) is a diffeomorphism, its Jaco-
bian matrix is full rank and therefore rank(∇φa(x)) = 2 for
all x ∈ Ua. Specifically, By the rank-nullity theorem, we
have dim(ker(∇φ(x))) = 1. Observe that

∇φa(x)x =
J2Ra(a>xI3 − xa>)

(a>x)2
x

=
J2Ra(a>xI3x− xa>x)

(a>x)2

= 0

(6)

Thus ker(∇φa(x)) = {αx : α ∈ R}.
Moreover, under Assumption 1, we have rank(Π(x)) = 2

and therefore by applying Fact 2.10.14 in [17], one obtains

rank(Θa(x)) = rank(∇φaΠ(x))

= rank(Π(x))− dim(ker(∇φa) ∩ Im(Π(x)))

= 2− dim(ker(∇φa) ∩ TxS2)

With the fact that TxS2 = {y ∈ R3 : x>y = 0}, we
know ker(∇φa) ⊥ TxS2, thus dim(ker(∇φa)∩TxS2) = 0.
Therefore, rank(Θa(x)) = 2 for all x ∈ Ua.

Since Θa(x) is full row rank, its Moore-Penrose pseudo-
inverse can be explicitly calculated as

(Θa(x))† = Θa(x)>
(
Θa(x)Θa(x)>

)−1
. (7)

Therefore, we can apply a feedback control law to render the
dynamics in (4) to a single integrator, summarized below.

Proposition 4. Consider the kinematic model (1) evolving
on the 2-dimensional hemisphere Ua under the following
feedback control law

u = (Θa(x))†v (8)

where v ∈ R2 is a virtual control input. Then, the dynamics
of the new variable ξ = φa(x), evolving in the Euclidean
space R2, is

ξ̇ = v. (9)

Proof. This is a straightforward conclusion by substituting
(8) into (4) and noticing that Θa(x)(Θa(x))† = I2.

To sum up, we have shown that 1) the gnomonic projection
defines a smooth altas on the 2−sphere; 2) the spherical
polytopes are projected to Euclidean polytopes in R2 by
the gnomonic projection mapping; and 3) the first-order
dynamics on the 2−sphere can be locally mapped into a
single integrator in R2. Propositions 2∼4 provide us an
explicit way to change the state coordinates and map the
dynamical system constrained in spherical polytopes to a
single integrator system constrained in Euclidean polytopes.
Proposition 1 further provides a theoretical foundation that
the feedback control laws obtained from different charts can
be blended together without loss of smoothness.

V. FEEDBACK LAW CONSTRUCTION OVER SPHERICAL
POLYTOPES

In this section, we present how the gnomonic projection
tool is integrated with the existing reach control algorithms.
We use the algorithm in [14] as a guiding example. First
recall the following results from [14].

A. Previous results on vector field construction over Eu-
clidean polytopes

Consider a convex polytope decomposition {Qi} of some
connected region in R2 with goal state ξg ∈ ∪iQi. The goal
polytope is the polytope that contains ξg and the intermediate
polytopes are the polytopes equipped with exit face fex. The
generalized Voronoi diagram (GVD) of a convex polytope is
explained in Fig. 3(a).

fi
(a)

fex
p

(b)

(c)

fex

(d)

fi

ξg

b = 0

b = 1

Fig. 3. (a) The generalized Voronoi diagram (GVD) of a convex polytope
Q. GVD is formed by partitioning Q into Voronoi regions, which is defined
for each face to be the set of points inside the polytope that are closer to that
face than to any other face. The GVD surface is the set of points which are
equidistant from two or more faces of the polytope. The dash lines are the
GVD surfaces, and the shaded region is the (Voronoi) region of the influence
of face fi. (b) An illustration of the cell vector field Vc(ξ) = unit(p− ξ)
by choosing a fixed p ∈ Q̄ \ Q, where Q̄ is the (possibly unbounded)
cell resulting from removal of fex from Q. (c) An illustration of the face
vector field by simply choosing each face vector field perpendicular to its
face. (d) The goal polytope. The dash lines are the surfaces of the region
partitioning, and the shaded represents the region of influence of face fi.
The interpolating function b(ξ) goes from zero on that face to one on the
surfaces of the region partitioning. The cell vector field Vc is constructed
as Vc(ξ) = b(‖ξg−ξ‖)unit(ξg−ξ), and Vfi is a smooth unit vector field
such that, Vfi (ξ) points inwards for every ξ ∈ fi, and Vfi (ξ)·(ξg−ξ) > 0
for every ξ in the region of influence of fi.

For an intermediate polytope Q, a vector field V over Q
is constructed by smoothly blending a cell vector field Vc
and a face vector field Vfi , i.e.,

V (ξ) = unit(b(ξ)Vc(ξ) + (1− b(ξ))Vfi(ξ)) (10)

for any point ξ in the region of influence of face fi, where
unit(·) is a normalization function, ensuring that V is a unit
vector field. The interpolating function b(ξ) is constructed
such that b(ξ) = 0 when ξ is on the boundary of Q and
b(ξ) = 1 when ξ is on the GVD surface. b(ξ) has the
property that all derivatives equal zero for {ξ : b(ξ) = 0}
and {ξ : b(ξ) = 1}. In [14], the authors gave several
requirements for constructing the cell vector field Vc and
the face vector field Vfi . One simple and efficient way to
construct Vc and Vfi is shown in Fig. 3 (b,c).

If Q is the goal polytope, i.e., ξg ∈ Q, then the region of
influence of a face is shown in Fig. 3 (d). The vector field



on the goal polytope is

V (ξ) = b(ξ)Vc(ξ) + (1− b(ξ))Vfi(ξ) (11)

for any point ξ in the region of influence of face fi. The
region of influence of face fi, the face vector field and cell
vector field are explained in Fig.3(d).

Fact 1. Consider the single integrator kinematics ξ̇ = v for
ξ ∈ R2. Given a collection of polytopes {Qi} with Qi ⊂ R2

being connected, and a goal state ξg ∈ ∪iQi. With the vector
field V in (10)∼(11) applied as the control input, the closed-
loop system trajectories have the following properties:

1) if Qi is assigned with fex,i, then all integral curves
starting in Qi reach the exit face fex,i in finite time;

2) if Qi is assigned with the goal point ξg , then all
integral curves starting in Qi stay in Qi and asymp-
totically converge to ξg;

3) all integral curves starting in ∪iQi are smooth, stay
inside ∪iQi, and asympotically converge to the goal
point ξg .

Here we note that the constructed vector field in R2 is
smooth almost everywhere. More precisely, the constructed
vector field is smooth on ∪iQi except for the polytope
vertices. Please refer to [14] for more details on the vector
field construction in R2.

B. Feedback law construction on spherical polytopes

Consider spherical polytopes {Pi} that are connected and
jointly lie on one hemisphere Ua (thus all Pis can be mapped
onto R2 with one gnomonic projection mapping φa(·) in (2)).
Let P ∈ {Pi}, segex be the exit geodesic segment if P is
an intermediate spherical polytope, and xg be the goal state.
A straightforward construction of the feedback control law
u(x) for x ∈ P is stated in Algorithm 1.

Algorithm 1 A feedback law construction over spherical
polytopes {Pi} given ∪iPi ⊂ Ua .
Input: x, P , segex/xg , φa(·), Π(·)

1: compute ξ, Q, fex/ξg from x, P , segex/xg by φa(·) in
(2)

2: compute v from ξ, Q, fex/ξg by (10)∼(11)
3: return u← Θa(x)†v where Θa(x) = ∇φaΠ(x)

Let {Qi} be the projected polytopes of {Pi} under the
mapping φa. From Fact 1, we know that for single integrator
dynamics, with the vector field from [14] applied, any
integral curve s : R≥ → R2 starting from s(0) ∈ ∪iQi is
smooth, contained in ∪iQi, and s(t) converges to ξg asymp-
totically. Correspondingly, the integral curve on 2−sphere
is φ−1a ◦ s : R≥ → S2. As φ−1a (·) is a smooth function
in the domain of ∪iQi (since ∪iQi ⊂ Ua), any integral
curve starting from φ−1a (s(0)) ∈ ∪iPi is smooth, contained
in ∪iPi, and φ−1a ◦ s(t) converges to xg asymptotically.

However, the constructed control law from Algorithm 1
may lead to a slow motion in the spherical regions that
are away from the projection axis a. This is a result of

the length distortion of the gnomonic mapping. One remedy
would be to extend the Algorithm 1 with one more step
u ← u/‖Π(x)u‖. As ẋ = Π(x)u, one obtains ‖ẋ‖ = 1
when the extend step is applied, i.e., it generates a unit vector
field on ∪iPi.

Note that the denominator ‖Π(x)u‖ =
‖Π(x)(Θa(x))†v‖ > 0 for any unit norm vector v.
This property is due to the fact that ΠΘ†a ∈ R3×2 has full
column rank (equivalently, ker(ΠΘ†a) = ∅ )

rank(ΠΘ†a) = rank(ΠΘ>a (ΘaΘ>a )−1) = rank(ΠΘ>a )

= rank(ΠΠ>∇φ>a ) = rank(∇φaΠΠ>)

= rank(ΠΠ>)− dim(ker(∇φa) ∩ Im(ΠΠ>))

= 2− dim(ker(∇φa) ∩ TxSn) = 2.

by applying Fact 2.10.14 in [17] again.
One numerical example for the scenario in Fig. 1 is shown

in Fig.4. For illustrative purposes, the vector field ẋ instead
of the feedback law u(x) is shown. This and the following
numerical example are performed with a reduced attitude
model. Due to space limits, further simulation details are
omitted here and can be found online 1 along with the
implementation code.

(a) (b)

Fig. 4. (a) This plot shows several system trajectories on the 2−sphere
under the constructed feedback control laws. The starting states are denoted
as circles and the goal state xg as the star. (b) This plot illustrates the
constructed vector field on the given spherical polytopes.

(a) (b)

Fig. 5. The two plots illustrate the constructed vector field on an obstacle-
cluttered spherical region from two viewpoints. The shared geodesic seg-
ment seg is in blue, and the goal state in red. The right part of spherical
polytopes of seg remains the same as in Fig. 4, while the left half are the
extended ones that lie in another chart domain.

A chart transition is needed when constructing a feed-
back law for spherical polytopes across different charts. As

1https://github.com/xiaotanKTH/control_2sphere



analyzed in Section IV, for a proper pair a, b ∈ S2, if
the integral curve s : R≥ → φa(Ua ∩ Ub) is smooth, the
corresponding integral curve φab ◦s : R≥ → φb(Ua∩Ub) is
also smooth. Moreover, for any vector field V a that is defined
to map an element from (a subset of) φa(Ua ∩ Ub) to R2,
the corresponding feedback control law on the 2−sphere is
Θ†aV

a in view of (8), and the vector field on φb(Ua∩Ub) is
ΘbΘ

†
aV

a in view of (4). Since Θb,Θ
†
a are smooth matrix-

valued functions, if V a is smooth at ξ ∈ φa(Ua ∩ Ub),
then Θ†aV

a and ΘbΘ
†
aV

a are smooth at φ−1a (ξ) and φab(ξ),
respectively.

Here we present one example of constructing smooth feed-
back laws for spherical polytopes in different chart domains.
Without loss of generality, let the spherical polytope P1(P2)
be in Ua(Ub), P1 successive to P2 in the sense of the discrete
plan (see Fig.1(c)). seg is the shared boundary of P1 and P2.
Q1/Q2, fa/fb are the projections of P1/P2, seg under the
mappings φa/φb, respectively. The control law construction
over P1 ∪ P2 is stated as follows: 1) for x ∈ P1 ∪ P2

and x is not in the region of influence of fa in P1, the
control law is constructed following Algorithm 1; 2) for x
in the region of influence of fa in P1, the control input
v at ξ = φa(x) is constructed as v = b(ξ)Vc(ξ) + (1 −
b(ξ))ΘaΘ†bV

2
fb(ξ), where V 2

fb denotes the face vector field
of fb in Q2, b(ξ), Vc(ξ), V 2

fb(ξ) are calculated as before. The
control input u = Θa(x)†v where Θa(x) = ∇φaΠ(x).
Another numerical example is shown in Fig. 5, where the
spherical polytopes are across two chart domains and the
vector fields are smoothly blended together.

VI. CONCLUSION

This work presents a spherical-polytope-based pratitioning
on the 2−sphere and a novel control strategy that regulates
the states evolving on a given set of spherical polytopes. The
constructed control method relies on the gnomonic projec-
tion, for which it is proven that several favorable properties
hold: 1) the gnomonic projection defines a smooth altas on
the 2−sphere; 2) the spherical polytopes are projected to
Euclidean polytopes in R2 ; and 3) the first-order dynamics
on 2−sphere can be locally mapped into a single integrator
in R2 via feedback linearization. Thanks to these properties,
algorithms that were originally designed for polytopes in the
Euclidean space can be used to construct the feedback laws
over the spherical polytopes. Two numerical examples are
illustrated utilizing the feedback control algorithm from [14].

The future work involves applying the spherical-polytope
partitioning and gnomonic projection tools to under-actuated
second-order dynamical systems evolving on higher dimen-
sional spheres. Another direction would be to explore more
complex behavior specifications, e.g., attitude maneuvers
with temporal logic tasks.

APPENDIX

Proof of Proposition 1. Firstly, ∪a∈S2Ua = S2 is trivial
since for any point p ∈ S2, p must lies in Up. Consider
a proper pair of points a, b ∈ S2 (thus Ua ∩ Ub 6= ∅
from definition). The overlap map φab := φb ◦ φ−1a from

φa(Ua ∩Ub) to φb(Ua ∩Ub) can be explicitly calculated as

φab(ξ) = φb ◦ φ−1a (ξ) = J2Rb
R>

a (J>
2 ξ+e3)/

√
ξ>ξ+1

b>R>
a (J>

2 ξ+e3)/
√
ξ>ξ+1

=

J2RbR
>
a

J>
2 ξ+e3

b>R>
a (J>

2 ξ+e3)
. For all ξ ∈ φa(Ua ∩ Ub),

R>a (J>2 ξ + e3) is parallel to φ−1a (ξ) in view of (3).
Note that φ−1a (ξ) lies in Ua ∩ Ub, thus b>φ−1a (ξ) > 0,
which further implies that b>R>a (J>2 ξ + e3) > 0. Thus
φab(ξ) is well-defined. To show the smoothness of φab,
re-denote φab(ξ) := C>ξ+d

f>ξ+g
with the constant parameters

C := J2RbR
>
a J
>
2 ,d := J2RbR

>
a e3,f := b>R>a J

>
2 , g :=

b>R>a e3. The nominator and the denominator are thus
smooth functions of ξ. Further noticing that the denominator
of the n−th derivative (f>ξ + g)n+1 > 0, n ∈ N (due
to the fact that f>ξ + g > 0), we have φab(·) is a
smooth diffeomorphism. Thus a collection of charts A =
{(Ua, φa)}a∈S2 is a smooth atlas for S2.
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