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Abstract— This paper studies the construction of symbolic
abstractions for periodic event-triggered systems. To construct
symbolic abstractions, the original event-triggered mechanism
is over- and under-approximated, and thus the abstract event-
triggered mechanisms are different from the original one, which
leads to the asynchronous phenomenon between the original
system and the constructed symbolic abstractions. To deal
with this issue, an interface is proposed to guarantee the syn-
chronization between the original and abstract event-triggering
mechanisms and the equivalence relations between the original
system and the constructed symbolic model. Furthermore, we
study the controller refinement based on these two constructed
symbolic models. Finally, the obtained results are illustrated
via a numerical example.

I. INTRODUCTION

The use of discrete abstractions [1], [2] has gradually
become a standard approach for the design of hybrid systems.
Because of discrete abstractions of continuous dynamics,
controller synthesis problems can be studied efficiently via
the techniques developed in the fields of supervisory control
or algorithmic game theory. With an inclusion or equivalence
relationship between the original system and the discrete
abstraction, the synthesized controller is guaranteed to be
correct by design, and the formal verification is either not
needed or can be reduced [3].

In the field of symbolic abstractions, there are two direc-
tions for further study. Since not all the dynamical systems
possess symbolic abstractions, the first direction is to identify
more classes of dynamical systems admitting symbolic mod-
els. In this direction, different types of dynamical systems
have been studied, such as switched control systems [4], [5],
time-delay control systems [1], event-triggered linear control
systems [6], and stochastic systems [7]. The commonly-
used approach is based on (bi)simulation relation and its
variants, which lead to equivalences of dynamic systems
in an exact or approximate setting; see e.g., [5], [8], [9].
Since the abstraction construction involves a huge compu-
tational complexity, the second direction is to reduce the
computational complexity in the construction of symbolic
abstractions. Along this direction, many researchers have
proposed different construction and refinement approaches,
such as the feedback refinement relation [10] and abstraction
refinements [11]–[13]. For instance, a coarse abstraction is
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proposed initially and then refined iteratively to ensure the
satisfaction of the desired specifications [11], [13].

In this paper, we follow the first direction and consider
the symbolic abstractions of periodic event-triggered control
(PETC) systems, which are a special class of event-triggered
systems [6], [14]–[16]. In our work, both the state and
input sets are approximated first, and thus the event-triggered
condition is approximated to the abstract version, which is
different from the original version. Then, an interface is pro-
posed to synchronize the original and abstract periodic event-
triggered mechanisms (PETMs). Using different approxi-
mation techniques, two symbolic models are constructed,
and both approximate input-output simulation relation and
feedback refinement relation are established. Due to the
differences between the original and abstract PETMs, we
further study the controller synthesis problem based on the
constructed symbolic models. Finally, a numerical example
is given to illustrate the obtained results.

The main contributions of this paper are two-fold. First,
different from [6], [17] where convex polyhedral cones and
quotient systems are applied to construct symbolic models
for linear event-triggered systems, a novel symbolic model
based on uniform quantization and transition systems is
proposed for PETC systems. In particular, the original PETM
is approximated via both over- or under-approximation tech-
niques, which leads to two abstract PETMs and thus two
symbolic models. Since the original and abstract PETMs are
different, a synchronous interface is proposed here for the
first time to ensure the equivalence relations between the
PETC system and its symbolic models. Second, due to the
difference between the original and abstract PETMs, it is
necessary to study the controller synthesis problem. We show
that the controller for the original system can be obtained by
refining the abstract controllers for the constructed symbolic
models. Because the over- and under-approximations of
the original PETM are considered, we can compare the
performances achieved by different PETMs.

The remainder of this paper is as follows. In Section
II, Notation and preliminary definitions are introduced.
Symbolic abstractions are constructed in Section III. The
controller synthesis problem is studied in Section IV. A
numerical example is given in Section V. Finally, conclusion
and future works are presented in Section VI.

II. PERIODIC EVENT-TRIGGERED CONTROL SYSTEMS

In this section, we start by introducing the notations, and
then present the class of PETC systems to be studied, and
finally recall the notion of approximate equivalence.



A. Notations

Denote R := (−∞,+∞); R+
0 := [0,+∞); R+ :=

(0,+∞); N := {0, 1, . . .}; N+ := {1, 2, . . .}. Given a, b ∈
R∪{±∞} with a ≤ b, we denote by [a, b] a closed interval.
Given a vector x ∈ Rn, denote by ‖x‖ the infinite norm
of x. The closed ball centered at x ∈ Rn with the radius
ε ∈ R+ is defined by B(x, ε) = {y ∈ Rn : ‖x−y‖ ≤ ε}. Id
denotes the identity function. Given a measurable function
f : R+

0 → Rn, the (essential) supremum (sup norm) of f
is denoted by ‖f‖∞; ‖f‖∞ := ess sup{‖f(t)‖ : t ∈ R+

0 };
f(t+) = lims↘t f(s); f+ = f(t+) when the time argument
is omitted. A function α : R+

0 → R+
0 is of class K if it

is continuous, zero at zero, and strictly increasing; α(t) is
of class K∞ if it is of class K and unbounded. A function
β : R+

0 × R+
0 → R+

0 is of class KL if β(s, t) is of class K
for each fixed t ∈ R+

0 and decreases to zero as t → ∞ for
each fixed s ∈ R+

0 . Given two sets A,B ⊂ Rn, a relation
R ⊂ A×B is the map R : A→ 2B defined by b ∈ R(a) if
and only if (a, b) ∈ R. R−1 denotes the inverse relation of
R, i.e., R−1 := {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Periodic Event-Triggered Control Systems

Consider the following linear system

ẋ(t) = Ax(t) +Bu(t), ∀t ∈ R+, (1)

where A ∈ Rn×n and B ∈ Rn×m are nonzero and constant
matrices, x ∈ Rn is the system state and u ∈ Rm is the
control input. For the system (1), the controller is given by

u(t) = Kx̄(tk), t ∈ (tk, tk+1], (2)

where K ∈ Rm×n is the controller gain, x̄ ∈ Rn is the most
recently transmitted state measurement to the controller at
the transmission time tk > 0. The initial value of x̄ can be
given a priori. A periodic sampling sequence is given by

Ts := {tk : tk := kτ, k ∈ N}, (3)

where τ > 0 is the sampling interval. A zero-order hold
mechanism is applied in the sampling intervals. At each
sampling time tk ∈ Ts, the state measurement x̄ ∈ Rn
applied to (2) is updated as follows: for all t ∈ (tk, tk+1],

x̄(t) =

{
x(tk), if ‖x(tk)− x̄(tk)‖ ≥ σ‖x(tk)‖,
x̄(tk), if ‖x(tk)− x̄(tk)‖ < σ‖x(tk)‖,

(4)

where σ > 0 is a given constant parameter. Therefore,
tk+1 − tk ≥ τ > 0, which implies that Zeno phenomena
are excluded. Following (3) and (4), we obtain the periodic
event-triggered mechanism (PETM):

tk+1 := min{t ∈ Ts : t > tk, ‖x(t)− x̄(t)‖ ≥ σ‖x(t)‖},
(5)

which implies that the event-triggered condition C(x, x̄) :=
‖x(t) − x̄(t)‖ − σ‖x(t)‖ ≥ 0 is verified periodically. The
PETM (5) has been applied in [14], [17].

Similarly to the general control system in [8], a curve ξ :
(a, b)→ X ⊆ Rn is said to be a trajectory of (1)-(2), if there
exists u ∈ U , where U ⊆ Rm is a subset of all piecewise

continuous functions of time from (a, b) ⊂ R to U with
a < 0 < b and which depends on the PETM (5), such that
ξ̇(t) = Aξ(t) + Bu(tk) holds for all t ∈ (a, b) ∩ [tk, tk+1).
We further define the trajectory x : [0, τ ] → X on a closed
interval [0, τ ] with τ ∈ R+ such that x = ξ|[0,τ ]. Denote
by x(t, x,u) the point reached at t ∈ (a, b) under u ∈ U
and the PETM (5) from x ∈ X . Such a point is uniquely
determined for linear systems; see [18]. A PETC system is
said to be forward complete, if every trajectory is defined on
an interval of the form (a,+∞).

Definition 1 ( [19]): The system (1) is incrementally
input-to-state stable (δ-ISS), if there exist β ∈ KL and
γ ∈ K∞ such that ‖x(t, x1,u1) − x(t, x2,u2)‖ ≤ β(‖x1 −
x2‖, t) + γ(‖u1 −u2‖∞) holds for all t ∈ R+

0 , x1, x2 ∈ Rn
and u1,u2 ∈ U .

Assumption 1: There exists a feedback law u = Kx such
that the system ẋ = (A+BK)x+BKe is δ-ISS with respect
to e = x− x̄.

Similar assumption can be found in [20, Section IV-C]. In
particular, for linear systems, δ-ISS equals to the classic ISS,
and thus Assumption 1 holds if the system (1) is stabilizable.

C. Approximate Equivalence Notions

Definition 2 ( [9]): A transition system is a sextuple T =
(X,X0, U,∆, Y,H) consisting of: (i) a set of states X; (ii)
a set of initial states X0 ⊆ X; (iii) a set of inputs U ; (iv) a
transition relation ∆ ⊆ X × U ×X; (v) a set of outputs Y ;
(vi) an output function H : X → Y . T is said to be metric if
the output set Y is equipped with a metric d : Y ×Y → R+

0 ,
and symbolic if the sets X and U are finite or countable.

The transition (x, u, x′) ∈ ∆ is denoted by x′ ∈ ∆(x, u),
which means that the system can evolve from a state x to a
state x′ under the input u. An input u ∈ U belongs to the
set of enabled inputs at the state x, denoted by enab(x), if
∆(x, u) 6= ∅. If enab(x) = ∅, then x is said to be blocking,
otherwise, it is said to be non-blocking. The transition system
T is said to be deterministic, if for all x ∈ X and all u ∈
enab(x), ∆(x, u) has exactly one element. In this case, we
write x′ = ∆(x, u) with a slight abuse of notation.

Definition 3 ( [21]): Let Ti = (Xi, X
0
i , Ui,∆i, Y,Hi),

i = 1, 2, be two transition systems with the same output set
Y and the metric d. Let ε1, ε2 ∈ R+

0 , a relation R := RX ×
RU ⊆ X1×X2×U1×U2 is said to be a (ε1, ε2)-approximate
input-output simulation relation ((ε1, ε2)-aIOSR) from T1 to
T2, if for all (x1, x2, u1, u2) ∈ R,

(i) d(H1(x1), H2(x2)) ≤ ε1 and d(u1, u2) ≤ ε2;
(ii) for all (x1, x2) ∈ RX and u1 ∈ U1(x1), there exists

u2 ∈ U2(x2) such that: (x1, x2, u1, u2) ∈ R; and for
each x′1 ∈ ∆1(x1, u1), there exists x′2 ∈ ∆2(x2, u2)
such that (x′1, x

′
2) ∈ RX .

If H1 = Id and H2 = Id, then R ⊆ X1 × X2 × U1 × U2

is said to be a (ε1, ε2)-approximate input-state simulation
relation ((ε1, ε2)-aISSR) from T1 to T2.

Definition 4 ( [22]): Let T1 and T2 be two transition sys-
tems with Ti = (Xi, X

0
i , Ui,∆i, Yi, Hi) for i ∈ {1, 2}, and

assume that U2 ⊆ U1. A relation F ⊆ X1×X2 is a feedback
refinement relation from T1 to T2, if for all (x1, x2) ∈ F ,



(i) U2(x2) ⊆ U1(x1); (ii) u ∈ U2(x2) ⇒ F(∆1(x1, u)) ⊆
∆2(x2, u), where Ui(x) := {u ∈ Ui : enab(x) 6= ∅}.

Our goal is to construct symbolic models for PETC
systems such that the approximate input-output simulation
relation and feedback refinement relation are satisfied.

III. CONSTRUCTION OF SYMBOLIC MODELS

In this section, we first introduce the time discretization
of PETC systems, then approximate the state and input sets,
and finally propose an interface to develop symbolic models.

A. Time Discretization of PETC Systems

To develop the symbolic abstraction, we work with the
time-discretization of the PETC system Σ. The sampling
period τ > 0 is the same as the one in (3). The time
discretization of the PETC system Σ is represented as the
transition system Tτ (Σ) := (X1,X

0
1, U1,∆1, Y1, H1), where,

• the state set is X1 := X1 × Rm, where X1 = Rn;
• the set of the initial states is X0

1 := Rn × Rm;
• the input set is U1 := {u ∈ U : x(τ, x, u) is defined for

all x ∈ X under C(x, x̄) ≥ 0} with x̄ defined in (4);
• the transition relation is given as follows: for any

(x, u) ∈ X1 and u ∈ enab(x), (x′, u′) = ∆1(x, u)
if and only if x′ = x(τ, x, u) and

u′ =

{
u, if C1(x′, x̄) < 0,

Kx′, if C1(x′, x̄) ≥ 0,

where C1(x, x̄) = C(x, x̄) = ‖x(t) − x̄(t)‖ − σ‖x(t)‖
is given in (5), and x̄ is defined in (4);

• the output set is Y1 := X1;
• the output map is defined as H1((x, u)) = x.
The transition system Tτ (Σ) is non-blocking and deter-

ministic. Tτ (Σ) is metric if the output set Y1 is equipped
with the metric d(y, ȳ) = ‖y − ȳ‖ for all y, ȳ ∈ Y1. In
Tτ (Σ), the state is augmented to include the original state
x ∈ Rn and the control input u ∈ Rm. The event-triggered
condition C1(x, x̄) = C(x, x̄) is included in the transition
relation. The transition system Tτ (Σ) is similar to the time-
discretization of switched systems in [5], and the control
input here plays a similar role as the switching mode in
[5]. However, the switching mode in [5] does not depend
on the system state x ∈ Rn and is chosen by the self-
triggered controller, whereas the event-triggered controller
(2) is applied here and thus depends on the system state.

B. Approximation of State and Input Sets

We first approximate the set Rn by the sequence of the
embedded lattices [Rn]η , where [Rn]η := {q ∈ Rn : qi =
kiη, ki ∈ Z, i ∈ {1, . . . , n}}, where η ∈ R+ is the state
space sampling parameter. We further associate a quantizer
Qη : Rn → [Rn]η such that Qη(x) = q if and only if
xi ∈ [qi − η/2, qi + η/2] for x = (x1, . . . , xn) ∈ Rn and
i ∈ {1, . . . , n}. Therefore, ‖x − Qη(x)‖ ≤ η/2 holds from
geometrical considerations.

Given a q ∈ [Rn]η , define the reachable set R(τ, q) :=
{x′ ∈ Rn : x(τ, q, u) = x′, u ∈ U1}, which is well defined

due to the input set U1 and the PETM (5). The reachable
set R(τ, q) is approximated below. Given any µ ∈ R+,
consider the auxiliary set Zµ(τ, q) := {z ∈ [Rn]µ : ∃p ∈
R(τ, q) such that ‖z − p‖ ≤ µ/2}. Here, the choice of µ
is not related to η, and limited by the desired precision;
see Subsection III-C. We further define the function ψ :
Zµ(τ, q) → U1 such that for any z ∈ Zµ(τ, q), there exists
an input u = ψ(z) ∈ U1 such that ‖z − x(τ, q, u)‖ ≤ µ/2.
Hence, we define the set U2(q) := ψ(Zµ(τ, q)), which
captures the set of the inputs applied at the state q ∈ [Si]µi ,
and thus the approximation of U1 is

U2 :=
⋃

q∈[Rn]η

U2(q). (6)

That is, the set U1 is approximated in the following way:
given any q ∈ [Rn]η , for any u1 ∈ U1, there exists u2 ∈
U2(q) such that ‖x(τ, q, u1)− x(τ, q, u2)‖ ≤ µ.

With the approximation of the sets Rn and Rm, we can
approximate the state set X1 and the input set U1 in the
transition system Tτ (Σ).

C. Symbolic Model

With the approximation of the state and input sets, we
construct the symbolic abstraction of Tτ (Σ) as a transition
system Tτ,η,µ(Σ) = (X2,X

0
2, U2,∆2, Y2, H2), where,

• the state set is X2 := X2 × U2 with X2 := [Rn]η and
U2 defined in (6);

• the set of the initial states is X0
2 := X2 × U2;

• the input set is U2 defined in (6);
• the transition relation is given as follows: for any

(q, v) ∈ X2 and v ∈ enab(q), (q′, v′) = ∆2(q, v) if
and only if q′ = Qη(x(τ, q, v)) and

v′ =

{
v, if C2(q′, q̄) < 0,

Qµ(Kq′), if C2(q′, q̄) ≥ 0;

where C2 : X2×X2 → R is the abstract event-triggered
condition and will be discussed later;

• the output set is Y2 := Rn;
• the output map is defined as H2((q, v)) = q.

The system Tτ,η,µ(Σ) is non-blocking and deterministic.
Tτ,η,µ(Σ) is metric if the output set Y2 is equipped with
the metric d(y, ȳ) = ‖y − ȳ‖ for all y, ȳ ∈ Y2.

In the system Tτ,η,µ(Σ), the abstract event-triggered con-
dition C2 : X2 × X2 → R depends on the abstract
state set X2, and thus is different from the original one.
The measurement q̄ ∈ X2 is initialized as the quantized
measurement of the initial value of x̄, and is updated as
follows: for all t ∈ (tk, tk+1],

q̄(t) =

{
q(tk), if C2(q(tk), q̄(tk)) ≥ 0,

q̄(tk), if C2(q(tk), q̄(tk)) < 0.

On the other hand, due to the difference between the original
and abstract states, a possible scenario is that C1(x, x̄) ≥ 0
does not necessarily imply C2(q, q̄) ≥ 0, and vice versa.
As a result, it is hard to construct an abstract PETM such
that it possesses the synchronous triggering mechanism as
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Fig. 1. The synchronization between the original PETM and the APETM.

the original PETM. In addition, different constructions of the
abstract event-triggered conditions lead to different symbolic
models, which further affects the relation between Tτ (Σ)
and Tτ,η,µ(Σ). Here, we present two abstract event-triggered
conditions using the approximation techniques. Given the
original event-triggered condition C1(x, x̄) ≥ 0 as in (5)
and a desired precision ε ∈ R+, the abstract event-triggered
condition can be constructed as

Ca2(q, q̄) := ‖q − q̄‖ − σ‖q‖+ (2 + σ)ε ≥ 0; (7)

Cb2(q, q̄) := ‖q − q̄‖ − σ‖q‖ − (2 + σ)ε ≥ 0. (8)

Hence, we derive the abstract PETMs (APETMs) and two
symbolic abstractions, denoted by T aτ,η,µ(Σ) and T bτ,η,µ(Σ),
respectively. The abstract event-triggered conditions (7) and
(8) will be discussed after Theorem 1 in the next subsection.

D. Interface between PETM and APETM

After constructing the APETMs, we next need to deal
with the asynchronization between the original PETM and
the APETM. To this end, an interface is introduced between
the original system and its symbolic model to coordinate
the original PETM and the APETM; see Fig. 1. A similar
technique has been applied for the controller design in [23],
whereas the interface here just performs a logic operation
and does not need to have an explicit form.

The implementation of the interface is presented below. If
the original and abstract PETMs are asynchronous, then the
interface leads to the synchronization between them based
on the APETM. To be specific, if the APETM is triggered
whereas the original PETM is not, then the interface leads to
the triggering of the original PETM. If the original PETM is
triggered whereas the APETM is not, then the interface does
not lead to the triggering of the original PETM. The effects
of this interface on the controller design will be studied in
Section IV. Under the synchronous interface, the following
theorem is established to ensure the equivalence relations.

Theorem 1: Consider the PETC system Σ and given any
desired precision (ε1, ε2) ∈ R2. Let Assumption 1 hold and
the synchronous interface be implemented. Let the time and
space sampling parameters be τ, η, µ ∈ R+, and σ ∈ R+ is
a design parameter. If the following holds:

‖eA1τ‖ε1 +

∥∥∥∥∫ τ

0

eA1sBds

∥∥∥∥ ε2 + η/2 < ε1, (9)

‖K‖ε1 + µ/2 < ε2, (10)

where A1 := A+BK, then there exist a feedback refinement
relation Ra from Tτ (Σ) to T aτ,η,µ(Σ), and a (ε1, ε2)-aIOSR
Rb from T bτ,η,µ(Σ) to Tτ (Σ).

The proof of Theorem 1 is omitted here due to the space
limitation. Under the desired precision, C1(x, x̄) ≥ 0 implies
Ca2(q, q̄) ≥ 0 from (7), which shows that Ca2(q, q̄) ≥ 0
is an under-approximation of C1(x, x̄) ≥ 0. In addition,
Cb2(q, q̄) ≥ 0 implies C1(x, x̄) ≥ 0 from (8), and thus
Cb2(q, q̄) ≥ 0 is an over-approximation of C1(x, x̄) ≥ 0. On
the other hand, from the abstract event-triggered conditions
(7)-(8), the synchronous interface may impose additional
events for the original system due to the under-approximation
(7), or forbid some events for the original system due to
the over-approximation (8); see Section V. That is, the
synchronous interface imposes the event-trigging behaviour
of the symbolic model on the original system.

Remark 1: Comparing with [6], where a power quotient
system was constructed as the symbolic model of ETC
systems, we propose a novel construction approach for sym-
bolic models for PETC systems. In terms of system models,
we focus on PETC systems here instead of linear ETC
systems as in [6]. In terms of the abstraction construction, the
symbolic model in [6] is of the power quotient system form,
and thus the lower and upper bounds are determined for the
event-triggering time intervals. However, the symbolic model
here is of the transition system form, and the lower and upper
bounds are established for the event-triggered condition. �

IV. CONTROLLER DESIGN

Since the event-triggered condition is approximated and
the existing results in [6], [17] on the controller design cannot
be applied here directly, we need to reconsider the controller
design problem, which is the topic of this section.

We first recall some formal language concepts. Given a set
X , X∗ denotes the set of all finite strings by concatenating
elements in X . An element s of X∗ is defined as s =
s1 . . . sn with si ∈ X and i ∈ {1, . . . , n}. The empty string
ε ∈ X∗ is a string satisfying sε = εs = s for any s ∈ S.
Given a string s ∈ X∗, s(i) denotes the i-th element of s.
The length of a string s is denoted by |s|, and a subset of
X∗ is called a language.

Definition 5 ( [24]): A run of a transition system T =
(X,X0, U,∆, Y,H) is a string r ∈ X∗, if there exists u ∈ U
satisfying r(i+ 1) = ∆(r(i), u) for all i ∈ {1, . . . , |r| − 1}.
The language of the system T , denoted by L(T ), is the set
of all the output runs of the system T .

Definition 6 ( [24]): Given two transition systems Ti =
(Xi, X

0
i , Ui,∆i, Y,Hi), i = 1, 2, with the same output set

Y and the metric d. The ε-approximate parallel composition
of T1 and T2, denoted by T1‖εT2, is a transition system
T = (X,X0, U,∆, Y,H), with
• the state set X = {(x1, x2) ∈ X1 × X2 : d(y1, y2) ≤
ε};

• the set of initial states X0 = (X0
1 ×X0

2 ) ∩X;
• the input set U = U1 × U2;
• the transition relation given by: for any x = (x1, x2) ∈
X and u = (u1, u2) ∈ enab(x), (x′1, x

′
2) = ∆(x, u) if



Fig. 2. State responses of the symbolic model Ta
0.5,0.1,0.2(Σ) under the

abstract event-triggered condition (13) and the system T0.5(Σ) under the
designed event-triggered condition (15).

and only if x′1 = ∆1(x1, u1) and x′2 = ∆2(x2, u2);
• the output set Y = X1;
• the output function H : X → X1.
The following proposition shows the controller design

based on the symbolic model T bτ,η,µ(Σ), and is an extension
of Theorem 5.1 in [24] to the case of PETC systems.

Proposition 1: Consider the PETC system Σ, and assume
there exists a (ε1, ε2)-aIOSR from T bτ,η,µ(Σ) to Tτ (Σ). If
there exists a controller Cb such that L(T bτ,η,µ(Σ)‖0Cb) ⊂
S for some specification S, then the controller designed as
C := T bτ,η,µ(Σ)‖0Cb is such that L(Tτ (Σ)‖ε1C) ⊂ Bε1(S).

If the abstract controller for T bτ,η,µ(Σ) does not exist, then
we can refine the abstract controller for T aτ,η,µ(Σ) based on
the feedback refinement relation in [22].

Proposition 2: Consider the PETC system Σ, and assume
there exists a feedback refinement relation from Tτ (Σ) to
T bτ,η,µ(Σ). If there exists a controller Ca for T aτ,η,µ(Σ)
such that the specification S is satisfied, then there exists
a controller C(x) := Ca(F(x)) for Tτ (Σ) such that the
specification Bε1(S) is satisfied.

From Propositions 1 and 2, the abstract controller can be
refined as the controller for the original system. However,
two controller refinement techniques have different effects
on the satisfaction of the specification. According to the
APETM based on the over-approximation in (8), the number
of the event-triggering times is reduced to guarantee the
satisfaction of the specification. For the APETM based on
the under-approximation in (7), the number of the event-
triggering times is increased to guarantee the satisfaction of
the specification. Therefore, the existence of the controller
can be deduced from the symbolic models. If the abstract
controllers Ca and Cb do not exist, then the controller for
the original system does not exist. If Cb exists, then a coarser
PETM can be designed such that the specification is satisfied.
If Ca exists, then a finer PETM guarantees the satisfaction
of the specification whereas the coarse PETM cannot.

V. NUMERICAL EXAMPLE

In this section, we borrow the example in [14] to show
the obtained results. Consider the following plant

ẋ =

[
0 1

−2 −3

]
x+

[
0

0.2

]
u, (11)

Fig. 3. State responses of the symbolic model T b
0.5,0.1,0.2(Σ) under the

abstract event-triggered condition (14) and the system T0.5(Σ) under the
designed event-triggered condition (16).

and the state-feedback controller of the form (2) with K =[
1 2

]
. The event-triggering condition is given by

C(x, x̄) := ‖x− x̄‖ − σ‖x‖ ≥ 0, (12)

which is verified periodically. Assume that the period is τ .
In addition, the state set is [−1, 2]× [−1, 3.5], and thus the
input set is [−3, 9]. For the PETC system (11)-(12), we first
construct the symbolic models, and then study the controller
design for the consensus problem.

Given (ε1, ε2) = (0.4, 0.2), let τ = 0.5, η = 0.1, and
µ = 0.2. The resulting transition system T0.5,0.1,0.2(Σ) =
(X2,X

0
2, U2,∆2, Y2, H2) is given by:

• X2 = [R2]0.1 ×
⋃
q∈[R2]0.1

U2(q) and X0
2 = X2;

• U2 =
⋃
q∈[R2]0.1

U2(q);
• ∆2 is obtained below: for any (q, v) ∈ X2 and v ∈

enab(q), (q′, v′) = ∆2(q, v) if and only if q′ =
Qη(x(τ, q, v)) and

v′ =

{
v, C2(q′, q̄) < 0,

Qµ(Kq′) C2(q′, q̄) ≥ 0;

• Y2 = R2 and H2 : X2 → R2.
In the above symbolic model, there are 1426 abstract states,
61 abstract inputs, and 2397666 transitions (using MATLAB
on a laptop with 16 GB of RAM and a 1.9 GHz Intel Core
i7 processor). The computation time is 128.477 seconds.

We consider the symbolic model T b0.5,0.1,0.2(Σ), where

Cb2(q, q̄) := ‖q − q̄‖ − σ‖q‖ − (2 + σ)ε ≥ 0, (13)

and the symbolic model T a0.5,0.1,0.2(Σ) with

Ca2(q, q̄) := ‖q − q̄‖ − σ‖q‖+ (2 + σ)ε ≥ 0, (14)

By Theorem 1, we can establish the (0.4, 0.2)-aIOSR from
T b0.5,0.1,0.2(Σ) to T0.5(Σ), and the feedback refinement rela-
tion from T0.5(Σ) to T a0.5,0.1,0.2(Σ).

Next, assume that the specification is S = {x ∈ R2 :
‖x‖ ≤ 0.1} (see the dashed black line), and then Bε1(S) =
{x ∈ R2 : ‖x‖ ≤ 0.5}. From (13), we design the following
event-triggered condition

Cb1(x, x̄) := ‖R−bX (x)−R−bX (x̄)‖ − σ‖R−bX (x)‖
− 0.05(2 + σ)ε ≥ 0, (15)



TABLE I
COMPARISON OF THE NUMBERS OF EVENT-TRIGGERING TIMES

FOR DIFFERENT PETMS

PETMs (12) (13) (15) (14) (16)
The event-triggering times 26 2 7 40 37

where the constant σ is set as 0.2. Under the event-triggered
conditions (13) and (15), the state response is given in Fig.
3. For (14), the event-triggered condition is designed as

Ca1(x, x̄) := ‖RaX(x)−RaX(x̄)‖ − 0.26‖RaX(x)‖ ≥ 0.
(16)

Under the event-triggered conditions (14) and (16), the
response of the system state is given in Fig. 2.

According to different PETMs, the numbers of the event-
triggering times in 20 seconds are presented in Table I.
Since the APETMs are the under-approximation and over-
approximation of the original PETM, we have from Ta-
ble I that, the number of the event-triggering times for
T b0.5,0.1,0.2(Σ) is smaller than 26, which is obtained from
the continuous-time PETM with (12), whereas the number
of the event-triggering times for T a0.5,0.1,0.2(Σ) is larger than
the one from (12).

Observe from Figs. 3-2 that the specification S is satisfied
by the symbolic models, and the specification Bε1(S) is
satisfied by the original system. On the one hand, from Figs.
3-2, different approximations lead to different satisfaction
times for Bε1(S). In this example, the smaller the number
of the event-triggering times is, the shorter the satisfaction
time is. On the other hand, different refinement techniques
have different effects on the satisfaction of the specification.
The APETM with (13) is refined as the PETM with (15)
by reducing the last item; whereas the APETM with (14) is
refined as the PETM with (16) by increasing the parameter
σ. Both refinement techniques lead to the satisfaction of the
desired specification.

VI. CONCLUSIONS

In this paper, we constructed symbolic models for periodic
event-triggered control systems. Since the event-triggered
mechanism is related to the state, we proposed two abstract
event-triggered mechanisms, developed two symbolic mod-
els, and established the equivalence relations. Furthermore,
we discussed the controller design based on the constructed
symbolic models, and a numerical example was given to
compare the controllers designed from the symbolic models.
Future work will focus on symbolic abstractions of dis-
tributed event-triggered control systems.
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