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Abstract— In this work a continuous-time MPC scheme is
presented for linear systems under Signal Temporal Logic
(STL) specifications and input constraints. The satisfaction
of the STL specifications is encoded by time-varying barrier
functions and a least-violating control law is designed for
cases when the satisfaction of the task with a given robustness
value is not achieved, e.g., due to actuation limitations. The
recursive feasibility of the proposed scheme is guaranteed
when a time-varying terminal constraint is introduced. This
constraint ensures a desired behavior for the system that
guarantees the satisfaction of the task with pre-determined
robustness.

I. INTRODUCTION

Nowadays, an increasing interest has been shown in
robotic-aided applications examples of which are coverage
[1] and search and rescue missions [2]. These applications
underline the need of autonomous systems capable of per-
forming a variety of complex, time-constrained tasks in
uncertain and dynamic environments. An important question
arising in this context is how to efficiently encode such
specifications for control. Signal Temporal Logic (STL)
[3] has been proven an expressive language for describing
complex tasks under strict deadlines. Contrary to Linear
Temporal Logic (LTL), it offers robust semantics [4], [5]
that allow the evaluation of the satisfaction of the task over
a continuous-time signal. Hence, abstractions of the system
dynamics, usually considered in LTL-planning [6]–[8] are
avoided.

Existing methods for planning under STL specifications
consider discrete-time systems and find plans as solutions
to computationally demanding MILP problems [9]–[12].
Although suggestions towards reducing the computational
load have been made [13], the complexity of the problem
remains. This is partially related to the choice of the opti-
mization horizon length which is often considered at least
as large as the duration of the task [9], [11]. In addition
to the computational complexity, [9]–[12] lack of feasibility
guarantees. Authors in [9] ensure feasibility on a subset of
the horizon by making use of past solutions while least
violating solutions are proposed in [11] as a remedy when a
feasible control law guaranteeing the satisfaction of the STL
formula does not exist.
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Another important limitation of the aforementioned meth-
ods is the lack of guarantees for the satisfaction of the
task in continuous time. A solution to this problem is given
in [12] with the design of a possibly non-convex problem.
A different approach to STL planning is presented in [14]
where the STL specifications are encoded using time-varying
barrier functions and feedback control laws are designed
for continuous-time, input-affine systems. Although compu-
tationally efficient, this method does not consider actuation
limitations found for example, in every real mechanical
system.

Aiming at overcoming the limitations of the aforemen-
tioned methods, we propose a continuous-time model pre-
dictive control scheme (MPC) for the satisfaction of a set of
STL tasks by a linear system subject to state and input con-
straints. Although originally designed for linear systems, the
proposed framework can also be applied to nonlinear, input-
affine systems under some extra controllability assumptions.
Motivated by [14], we encode the STL specifications using
a time-varying barrier function and design a least-violating
control law for the cases when the satisfaction of a task
with a pre-determined robustness rH is not possible due to
input limitations. The recursive feasibility of the proposed
scheme is guaranteed by a time-varying terminal constraint
the satisfaction of which ensures the satisfaction of the task
with a pre-determined robustness rF ≤ rH . Contrary to
existing approaches [9], [11] here the optimization horizon
length can be chosen arbitrarily small and independent of the
STL formula provided that the problem is initially feasible.

The remainder of the paper is as follows: Section II
includes the preliminaries and problem formulation. Section
III introduces the time-varying barrier functions and Section
IV the proposed MPC scheme. Simulations are shown in
Section V and conclusions are summarized in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

True and false are denoted by >,⊥ respectively. Scalars
and vectors are denoted by non-bold and bold letters respec-
tively. The partial derivative of a function b(x, t) evaluated at
(x′, t′) with respect to t and x is abbreviated by ∂b(x′,t′)

∂t =
∂b(x,t)
∂t

∣∣
x=x′

t=t′
and ∂b(x′,t′)

∂x = ∂b(x,t)
∂x

∣∣
x=x′

t=t′
respectively. The

latter is considered to be a row vector. An extended class
K function α : R → R≥0 is a locally Lipschitz continuous
and strictly increasing function with α(0) = 0. The function
u : [t1, t2] → Rm has a property a.e. (almost everywhere)
if the property holds everywhere in [t1, t2] except from a
set of points of measure zero. The weighted Euclidean norm



of a vector ζ ∈ Rn is given by ‖ζ‖Q =
√

ζTQζ where
Q is a positive definite matrix of appropriate dimensions.
The induced 2-norm of a rectangular matrix C is defined as:
‖C‖ = σmax(C), where σmax(C) is the maximum singular
value of C. Given a, b ∈ R, a divides b, denoted by a|b if
there exists an integer k 6= 0 such that b = ka.

Signal Temporal Logic (STL) determines whether a pred-
icate µ is true or false by evaluating a continuously differ-
entiable function h : Rn → R as follows:

µ =

{
>, h(x) ≥ 0

⊥, h(x) < 0

for x ∈ Rn. The basic STL formulas are given by the
grammar:

φ := > | µ | ¬φ | φ1 ∧ φ2 | G[a,b]φ | F[a,b]φ | φ1 U[a,b] φ2

where φ1, φ2 are STL formulas and G[a,b], F[a,b], U[a,b] are
the always, eventually and until operators defined over the
interval [a, b] with 0 ≤ a ≤ b < ∞. Let x |= φ denote the
satisfaction of the formula φ by a signal x : R≥0 → Rn.
The formula φ is satisfiable if ∃ x′ : R≥0 → Rn such
that x′ |= φ. The STL semantics are defined in [3]. STL
is equipped with robustness metrics determining how
robustly an STL formula φ is satisfied at time t by a
signal x. These semantics are defined as follows [4], [5]:
ρµ(x, t) = h(x(t)), ρ¬φ(x, t) = −ρφ(x, t), ρφ1∧φ2(x, t) =
min(ρφ1(x, t), ρφ2(x, t)), ρφ1 U[a,b] φ2(x, t) =
maxt1∈[t+a,t+b] min(ρφ2(x, t1),mint2∈[t,t1] ρ

φ1(x, t2)),
ρF[a,b]φ(x, t) = maxt1∈[t+a,t+b] ρ

φ(x, t1), ρG[a,b]φ(x, t) =
mint1∈[t+a,t+b] ρ

φ(x, t1). Finally, it should be noted that
x |= φ if ρφ(x, 0) > 0.

Consider the dynamical system:

ẋ = Ax +Bu (1)

where x ∈ Rn, u ∈ Rm are the state and input vectors of the
system respectively, A ∈ Mn(R), B ∈ Mn×m(R). Given a
control signal u : [t1, t2] → U a solution x : [t1, t2] → X
of (1) with x(t1) = x1 is an absolutely continuous function
such that: x(t) = x1 +

∫ t
t1

(Ax(τ) +Bu(τ))dτ holds a.e. in
[t1, t2].

Assumption 1. The matrix B has full row rank (n ≤ m).

In this work the state and input of the system are con-
strained, i.e., x ∈ X, u ∈ U where:

X = {x ∈ Rn : ‖x‖ ≤ dx} ⊂ Ω (2a)
U = {u ∈ Rm : ‖u‖ ≤ du} (2b)

with dx, du > 0 and Ω ⊆ Rn is an open, connected set.

Assumption 2. Consider the dynamical system (1) subject
to state and input constraints of the form x ∈ X, u ∈ U
where X,U are defined as in (2a)-(2b). Then, it holds:
duσmin(B) > σmax(A)dx, where σmin(B), σmax(A) is the
minimum and maximum singular value of B,A respectively.

Assumption 2 ensures that the allowable control input is
high enough to account for the worst case scenario, i.e., when

the state of the system is about to leave the environment. This
Assumption is necessary for guaranteeing the existence of a
terminal controller as will be seen in Section IV.

A. Problem Formulation

In this work we consider an expressive fragment of STL
defined as follows:

ψ := > | µ | ¬µ (3a)
ϕ := G[a,b]ψ | F[a,b]ψ | ψ1 U[a,b] ψ2 (3b)

φ′′ :=

nφ∧
l=1

ϕl (3c)

where ψ1, ψ2 are STL formulas of the form (3a), ϕl, l =
1, . . . , nφ are STL formulas of the form (3b), nφ ≥ 1 and
0 ≤ a ≤ b < ∞. Let [al, bl] be the time interval of the
temporal operator of ϕl, l ∈ {1, . . . , nφ} in (3c). Consider
the finite set of time instants {τj}Jj=0 with τ0 = 0, τj =
j∆τ, j = 1, . . . , J where τJ = maxl bl and ∆τ > 0 is a
given constant. Observe that by definition of τJ it holds that
∆τ |maxl bl with J = maxl bl

∆τ . Based on the above we may
define the Problem considered in this paper as:

Problem 1. Consider the dynamical system (1) subject to
state and input constraints x ∈ X, u ∈ U with X,U defined
by (2a)-(2b). Given an STL formula φ′′ as in (3c), a positive
prediction horizon length N and a sampling rate ∆τ with
∆τ |maxl bl, design a control input u such that any solution
x : [0, τJ ]→ X of (1) with initial condition x(0) guarantees
ρφ
′′
(x, 0) ≥ ρ̄ where ρ̄ is maximized with respect to u.

III. BARRIER FUNCTIONS FOR TASK SATISFACTION

In this Section we introduce the control barrier functions
(CBFs) the value of which determines the satisfaction or
violation of a given STL formula. Here, we consider the
formula G[a,b] ψ1∧F[b,b] ψ2 the satisfaction of which implies
the satisfaction of the until formula ψ1 U[a,b] ψ2 of (3b).
Based on that, we design a CBF function evaluating the
satisfaction of φ which is defined as follows:

φ =

p∧
i=1

ϕ̃i (4)

where p = nφ + nu, nφ is the total number of STL
tasks in (3c) and nu the number of until operators in
(3c). The STL formula ϕ̃i has one of the following forms:
G[ai,bi]ψ, F[ai,bi]ψ, G[ai,bi]ψ1,z, F[bi,bi]ψ2,z . The first two
expressions account for the always and eventually formulas
existing in (3c) while the last two are considered since the
satisfaction of their conjunction implies the satisfaction of
the z-th until formula of (3c). We denote the time interval
associated with the temporal operator of ϕ̃i as [ãi, b̃i].
For simplicity we will call [ãi, b̃i] as the time interval of
satisfaction of ϕ̃i.

Let bw(x, t) with bw : Ω × [0,∞) → R, w ∈ {H,F}
be two differentiable functions on Ω × (σkw, σ

k+1
w ) where

{σkw}
p̃w
k=0 is a finite set of points at which discontinuities with

respect to t may occur. The set of points {σkw} is chosen such



that σ0
w = 0, σp̃ww = ∞ and σkw ≤ σk+1

w , k = 0 . . . , p̃w − 2
where p̃H ≤ p + 1 + |IGH |, p̃F ≤ p̃H + 2, IGH = {i ∈
{1, . . . , p} : ϕ̃i = G[ãi,b̃i]

ψi} is the set of indices of the
always formulas in (4) and |IGH | its cardinality. Based on
bw, w ∈ {H,F} we may define the level set of bw(x, t) as:

Cw(t) = {x ∈ X| bw(x, t) ≥ 0} (5)

Let N > 0 be the prediction horizon length.The function
bH(x, t) is evaluated at each t ∈ [τj , τj + N ] for planning
the agents’ future actions towards the satisfaction of φ. The
barrier function bF (x, t), called the terminal barrier function
is designed for guaranteeing the recursive feasibility of the
MPC scheme. This is achieved by introducing the constraint
x(τj +N) ∈ CF (τj +N) in the MPC problem. In that way,
we can ensure the satisfaction of φ′ = φ ∧ ϕ̃p+1 over time
where:

ϕ̃p+1 = G[0,b̃p+1]ψp+1 (6a)

ψp+1 =

{
>, hp+1(x) ≥ 0

⊥, hp+1(x) < 0
(6b)

b̃p+1 = τJ+N and hp+1(x) = d2
x−‖x‖2. The task expressed

by (6a)-(6b) is introduced for guaranteeing the satisfaction
of the state constraints x ∈ X.

Let IH = {1, . . . , p}, IF = IH ∪ {p + 1} be the
set of indices of the formulas associated with the de-
sign of bH(x, t), bF (x, t) respectively. The barrier functions
bw(x, t), w ∈ {H,F} are defined in two steps. In step A and
for every i ∈ Iw, w ∈ {H,F} a desired, temporal behavior
is introduced for the system guaranteeing the satisfaction of
ϕ̃i. Then, a barrier function biw(x, t) is defined as the error
between the actual and desired temporal behavior of the sys-
tem for every ϕ̃i. At step B, the CBF bw(x, t), w ∈ {H,F}
is defined as a function of the different biw(x, t), i ∈ Iw.
By construction, a non-negative value of bw(x, t) at a time
instant t implies biw(x, t) ≥ 0 for any i ∈ Iw contributing to
bw(x, t). Hence, guaranteeing bw(x, t) ≥ 0 for every t ≥ 0
ensures the satisfaction of φ, φ′ for w = H,F respectively.
Based on that, we may describe the two step procedure as
follows:

a) Step A: The barrier function biw : Ω × [0,∞) → R
corresponding to the STL formula ϕ̃i, i ∈ Iw, w ∈ {H,F}
defined as:

biw(x, t) = −γiw(t) + hi(x) (7)

where hi : Ω → R is the predicate function of the
predicate ψi associated with the temporal formula ϕ̃i and
γiw(t), w ∈ {H,F} a designer-defined function describing
a desired temporal behavior for the system. This behavior
ensures the satisfaction of ϕ̃i with a maximum robustness
rw at a desired time instant, denoted by t∗iw . The functions
hi(x) are assumed to be continuously differentiable in Ω.
Since X ⊂ Ω is compact the restriction of hi on X admits a
maximum value. Let hmax

i = maxx∈X hi(x). As in [15], we

consider γiw(t) functions of the form:

γiw(t) =


γiw,∞−γ

i
w,0

t∗iw
t+ γiw,0, if t < t∗iw

γiw,∞, if t ≥ t∗iw
(8)

where γiw,0, γ
i
w,∞ are parameters depending on the robust-

ness value rw and the time instant t∗iw and satisfy:

γiw,0 ∈ (−∞, hi(x(0))) (9a)

γiw,∞ ∈ (max(rw, γ
i
w,0), hmax

i ) (9b)

t∗iw =

{
b̃i, if ϕ̃i = F[ãi,b̃i]

ψi

ãi, if ϕ̃i = G[ãi,b̃i]
ψi

(9c)

rw ∈

{
(0, hi(x(0))), if t∗iw = 0

(0, hmax
i ), if t∗iw > 0

(9d)

From (9a) γiw,0 is chosen such that biw(x(0), 0) > 0 for
every w ∈ {H,F}. In addition, due to (9b), for every time
instant t ≥ t∗iw we have that biw(x, t) ≤ −rw + hi(x). Thus,
biw(x, t) ≥ 0 implies hi(x) ≥ rw for all t ≥ t∗iw . Note that for
every i ∈ Iw the function γiw(t) is piecewise differentiable.

b) Step B: The barrier functions biw(x, t), i ∈ Iw, w ∈
{H,F} introduced above ensure the satisfaction of ϕ̃i when
their value is non-negative for every t ≥ 0. However, satis-
fying each ϕ̃i separately does not imply the satisfaction of φ
or φ′. This motivates the design of a single barrier function
bw(x, t), w ∈ {H,F} the value of which may determine
whether φ, φ′ is satisfied when w = H,F respectively. This
function is formally introduced for any t ≥ 0 as follows:

bw(x, t) = − ln

( ∑
i∈Iw

exp (−biw(x, t))

)
(10)

For this particular choice of bw(x, t) it is known [15, Eq.
2] that bw(x, t) ≤ mini∈Iw biw(x, t) for any w ∈ {H,F}.
Therefore, bw(x, t) ≥ 0 ⇒ biw(x, t) ≥ 0 is always true
for all i ∈ Iw, w ∈ {H,F} and t ≥ 0. In this paper the
barrier functions bw(x, t) are designed such that rH ≥ rF is
true. To reduce conservatism when a large number of tasks
is considered, authors in [14] propose removing biw(x, t)
from bw(x, t), w ∈ {H,F} when the corresponding task is
satisfied, i.e., at t = b̃i. Additionally, based on [15] for any
i ∈ IGw the function biw(x, t) is also deactivated at t = ãi,
where IGF = IGH ∪{p+1}. Let Ti denote the time interval at
which biw(x, t) contributes to bw(x, t), w ∈ {H,F}. Based
on the above, Ti = [0, b̃i) if ϕ̃i = F[ãi,b̃i]

ψi, Ti = (0, b̃i) if
ϕ̃i = G[0,b̃i]

ψi or Ti = [0, ãi) ∪ (ãi, b̃i) if ϕ̃i = G[ãi,b̃i]
ψi.

Furthermore, i′w = arg maxi∈Iw b̃i for any w ∈ {H,F}. The
deactivation may be considered by making use of the integer
functions oiw(t) ∈ {0, 1} defined as:

oiw(t) =

{
1, t ∈ Ti
0, t /∈ Ti

(11)

for any t ≥ 0 and i 6= i′w. When i = i′w we set oi
′
w
w (t) = 1.

The latter rule is introduced to avoid cases when the barrier
function bw(x, t) becomes undefined, i.e., when oiw(t) =



0,∀i ∈ Iw. Based on the above, the modified barrier function
bw(x, t), t ≥ 0, w ∈ {H,F} can be written as:

bw(x, t) = − ln

( ∑
i∈Iw

oiw(t) exp (−biw(x, t))

)
(12)

IV. CONTROL APPROACH

In this section we present a novel MPC scheme for the
satisfaction of the STL formula φ under actuation and state
constraints. Here, the optimization horizon can be chosen
arbitrarily small as long as initial feasibility, a common
assumption in MPC literature is assumed. The recursive
feasibility of the proposed scheme is guaranteed by the
satisfaction of a time-varying terminal constraint x(τj+N) ∈
CF (τj + N) where CF (τj + N) is defined by (5) with
respect to the terminal barrier function bF (x, t). Motivated
by the work in [14], a terminal controller is also designed
guaranteeing that x(t) ∈ CF (t) for any t > τj + N if
x(τj +N) ∈ CF (τj +N) holds.

Definition 1. The function bF (x, t) is a valid control barrier
function (vCBF) within each time interval (σkF , σ

k+1
F ), k =

0, . . . , p̃F − 1, if there exists an extended class K function
αF such that for all (x, t) ∈ CF (t) × (σkF , σ

k+1
F ), k =

0, . . . , p̃F − 1 it holds:

sup
u∈U

{∂bF (x, t)

∂x
(Ax +Bu) +

∂bF (x, t)

∂t

+ αF (bF (x, t))
}
≥ 0

(13)

Assumption 3. Consider the differentiable function bF (x, t)
on X × (σkF , σ

k+1
F ), k = 0, . . . , p̃F − 1 and let Assumption

2 hold. Consider further an extended class K function
αF and a given, positive constant δ1 satisfying δ1 >

Lt+|αF (χ)|
duσmin(B)−σmax(A)dx

, where Lt = maxi∈IF
dγiF
dt |t=0 and

χ < inf(x,t)∈X×[0,τJ+N ] bF (x, t). Then, for any (x, t) ∈
X×

(
[0, τJ +N ]\{σkF }

p̃F−1
k=0

)
with

∥∥∂bF (x,t)
∂x

∥∥ ≤ δ1 it holds
that: ∂bF (x,t)

∂x Ax + ∂bF (x,t)
∂t + αF (bF (x, t)) > 0.

Assumption 3 ensures that bF (x, t) is non-negative when
the control input u = 0 is applied to (1) for any (x, t) ∈
X×

(
[0, τJ +N ]\{σkF }

p̃F−1
k=0

)
with

∥∥∂bF (x,t)
∂x

∥∥ ≤ δ1. Notice
that the value of δ1 depends on the actuation capabilities of
the system and the minimum STL performance requirements.
A high value of δ1 may induce conservatism on the design of
bF (x, t) when compared to, e.g., [15] not surprisingly given
the input constraints present here.

Theorem 1. Consider the system dynamics (1) subject to
input constraints u ∈ U with U defined as in (2b) and the
STL formula φ′ = φ∧ ϕ̃p+1 with φ, ϕ̃p+1 defined by (4) and
(6a)-(6b) respectively. Let Assumptions 1-3 hold. Consider an
extended class K function αF and a control law ū(x, t) := ū
with ū given by:

ū = arg min
u∈U

uTu (14)

subject to:

∂bF (x, t)

∂x
(Ax +Bu) +

∂bF (x, t)

∂t
≥ −αF (bF (x, t))

(14a)

Then, the function x : [0, τJ + N ] → X satisfying (1) for ū
a.e. guarantees ρφ

′
(x, 0) ≥ rF > 0 provided that x(0) ∈

CF (0).

Proof. We provide only a sketch of the proof here due to
space limitations. The full proof will be presented in an
upcoming journal submission. For (x, t) ∈ X ×

(
[0, τJ +

N ]\{σkF }
p̃F−1
k=0

)
with

∥∥∂bF (x,t)
∂x

∥∥ > δ1 it can be shown that
ufeas = B†(−Ax + vfeas) is a feasible solution of (14)
where B† is the Moore-Penrose matrix of B and vfeas =

(Lt−αF (χ))‖∂bF (x,t)
∂x ‖−2 ∂bF (x,t)T

∂x . By [16, Prp 3.3.9] and
due to the convexity of (14) we may conclude that the KKT
conditions of (14) are necessary and sufficient. Finally, it
can be shown that the proposed control law is continuous in
(x, t). �

The proposed MPC problem is solved at pre-determined,
equidistant time instants τj based on the current state of
the system x(τj). The resulting control law is applied over a
finite time interval [τj , τj+1) until the next state measurement
x(τj+1) becomes available at τj+1. The aforementioned
procedure is repeated for a finite number of times J with
J = maxl bl

∆τ . Given the actuation limitations of the agents
satisfaction of φ might not be possible at all times as
this decision might lead to excessive state and input costs.
Therefore, we propose the relaxation of bH(x, t) ≥ 0 by
introducing a slack variable ε = ε(t) ≥ 0 and imposing the
constraint bH(x, t) ≥ −ε for every t ∈ [τj , τj + N). The
relaxation factor ε is considered as an MPC variable and
the goal is to minimize its value within [τj , τj + N ], j =
0, . . . , J . The proposed framework can accommodate any
differentiable cost function L(u,x, ε) such as the quadratic
one, i.e., L(u,x, ε) = ‖u‖2Qu + ‖x‖2Qx + ‖ε‖2Qε . Based on
the above, we may define the MPC problem as follows:

min
u,ε

∫ τj+N

τj

L(u,x, ε)dt (15)

s.t. ẋ = Ax +Bu, a.e. [τj , τj +N ] (15a)
bH(x, t) ≥ −ε, t ∈ [τj , τj +N) (15b)

x(τj) = xj (15c)
x(τj +N) ∈ CF (τj +N) (15d)

x ∈ X, t ∈ [τj , τj +N ] (15e)
u ∈ U, t ∈ [τj , τj +N ] (15f)
ε ∈ [0,∞), t ∈ [τj , τj +N ] (15g)

Equation (15a) defines the system dynamics while (15b)
ensures that x(t) lies in the interior or at the closest possible
distance from CH(t). Constraints (15c), (15d) express the
initial and terminal conditions of the states respectively. As
discussed earlier (15d) ensures that the system behaves in



a desired way towards the satisfaction of φ′ with robustness
rF . Finally, (15e)-(15g) ensure that x,u, ε take values among
the admissible.

For the optimal control problem (15) we make the follow-
ing assumption on the regularity of u(t) on any time interval
[τj , τj +N ], j = 0, . . . , J :

Assumption 4. Any control input u : [τj , τj +N ]→ U, j =
0, . . . , J satisfying (15a)-(15g) is continuous a.e. in [τj , τj +
N ].

Theorem 2. Consider the system (1) and the STL formula
φ defined by (4). Let Assumptions 1-4 hold. Assume that
the MPC problem (15) is feasible at τ0 = 0. Then, (15) is
recursively feasible.

Proof. Assume that (15) is feasible at τj , j ≥ 1. Let uj :
[τj , τj + N ] → U, εj : [τj , τj + N ] → [0,∞) denote the
control input and the violating factor respectively, found as
a solution of (15) over the time interval [τj , τj+N ]. Consider
the candidate control input:

uj+1(t) =

{
uj(t), t ∈ [τj+1, τj +N ]

ū(t), t ∈ (τj +N, τj+1 +N ]

where ū : (τj + N, τj+1 + N ] → U is the optimal solution
of (14). By Theorem 1, there always exists an admissible,
control law ū(x̄(t), t) that is continuous in x̄, where x̄ :
[τj +N, τj+1 +N ] → X is a solution of (1) for ū(x̄(t), t).
The solution x̄(t) is an absolutely continuous function in
t. Hence, the feedback control law ū(x̄(t), t) = ū(t) is
continuous a.e. in (τj + N, τj+1 + N ]. Additionally, by
feasibility of (15) at [τj , τj+N ] the feasible control uj(t) sat-
isfies Assumption 4. As a result the proposed control signal
uj+1(t) satisfies Assumption 4 guaranteeing the existence
of solutions of (1) over the interval [τj+1, τj+1 + N ]. By
Theorem 1 bF (x̄(t), t) ≥ 0 is true for any solution x̄(t) of (1)
for ū(t) and for all t ∈ [τj+N, τj+1 +N ]. Therefore, (15d)-
(15e) is satisfied. In addition, since uj(t), t ∈ [τj+1, τj +N ]
is a feasible input for the MPC at τj , any solution xj of
(1) for uj satisfies the state constraints, i.e., xj(t) ∈ X, t ∈
[τj+1, τj+N ]. Note also that uj+1(t) ∈ U, t ∈ [τj+1, τj+1 +
N ]. Hence, (15e)-(15f) are satisfied. Let bH(x̄, t) be the
value of the barrier function for x̄(t), t ∈ (τj+N, τj+1+N ].
Consider the violation factor εj+1(t), t ∈ [τj+1, τj+1 +N ]:

εj+1(t) =

{
εj(t), t ∈ [τj+1, τj +N ]

ε̄(t), t ∈ (τj +N, τj+1 +N ]

where ε̄ := ε̄(t) is defined as:

ε̄ =

{
0, bH(x̄, t) ≥ 0

−bH(x̄, t), bH(x̄, t) < 0

By feasibility of (15) at τj it holds that: 1) εj(t) ≥ 0 is
true for every t ∈ [τj , τj+N ] and 2) (15b) is satisfied for any
solution xj(t) of (1) when applying uj(t) a.e. in [τj , τj+N ].
By definition, ε̄ ≥ 0. For bH(x̄, t) ≥ 0, εj+1 = 0 implies
the satisfaction of (15b). Finally, setting εj+1 = −bH(x̄, t)
when bH(x̄, t) < 0 results in εj+1+bH(x̄, t) = 0. Therefore,

(15b) is satisfied as equality. Based on the analysis above
the candidate solution (uj+1, εj+1) satisfies the constraints
(15a)-(15g). As a result, (15) is feasible over [τj+1, τj+1 +
N ]. Since the above hold for any j ≥ 1, (15) is recursively
feasible. �

Theorem 3. Let the Assumptions of Theorem 2 hold. Let
xCL : [0, τJ ]→ X be a solution of (1) under the control law

κ(x(t)) =

{
uj(t), t ∈ [τj , τj+1), j = 0, . . . , J − 1

uJ(t), t = τJ
.

Then, ρφ(xCL, 0) ≥ minj=0,...,J ρ̄j with ρ̄j ≥
inft∈[τj ,τj+N ] bH(xCL(t), t) ≥ −εwc, j = 0, . . . , J
where εwc = maxj=0,...,J ε

j
wc, εjwc = supt∈[τj ,τj+N ] ε(t) and

ρ̄j is maximized over [τj , τj +N ].

Proof. By Theorem 2, (15) is feasible for every j = 0, . . . , J .
This implies that κ(x(t)) is always defined and due to
Assumption 4 it is continuous a.e. in [0, τJ ]. Hence, there
always exists a solution xCL : [0, τJ ] → X to (1) satisfying
(15b) for every t ∈ [0, τJ ].

The formula φ, defined by (4) is a conjunction
of always and eventually formulas ϕ̃i, i ∈ IH .
Hence, by definition of the robust semantics we have:
ρφ(xCL, 0) = mini∈IH ρ

ϕ̃i(xCL, 0). By construction,
bH(x, t) ≤ mini∈IH biH(x, t). Hence, for t ∈ Ti it holds
that:

hi(xCL(t)) ≥ γiH(t) + bH(xCL(t), t) (16)

By design of γiH(t) it holds that: γiH(t) ≥ γiH(t∗iH) ≥
rH for every t ∈ Ti where t∗iH is the time instant at
which the formula ϕ̃i is satisfied with robustness rH and
Ti is the time interval over which biH(x, t) contributes to
bH(x, t). Equation (16) implies that hi(xCL(t)) ≥ rH +
bH(xCL(t), t) ≥ rH + inft′∈[τj ,τj+N ] bH(xCL(t′), t′), t ∈
Ti. Let ρ̄j = rH + inft′∈[τj ,τj+N ] bH(xCL(t′), t′). If
ϕ̃i is an always formula it holds that: ρϕ̃i(xCL, 0) =
mint1∈[ãi,b̃i]

hi(xCL(t1)) ≥ ρ̄j ≥ minj=0,...,J ρ̄j . If the for-
mula ϕ̃i is an eventually formula it holds that: ρϕ̃i(xCL, 0) =
maxt1∈[ãi,b̃i]

hi(xCL(t1)) ≥ maxt1∈[ãi,t∗iH ] hi(xCL(t1)) ≥
minj=0,...,J ρ̄j . Considering the aforementioned results, we
may conclude that ρφ(xCL, 0) = mini∈IH ρ

ϕ̃i(xCL, 0) ≥
minj=0,...,J ρ̄j . Note that rH > 0 is true, and thus ρ̄j ≥
inft′∈[τj ,τj+N ] bH(xCL(t′), t′). By (15b) bH(xCL(t′), t′) ≥
−ε ≥ −εjwc, t′ ∈ [τj , τj +N ]. Considering this result and for
εwc = maxj=0,...,J ε

j
wc we have that bH(xCL(t′), t′) ≥ −εwc.

�

V. SIMULATION RESULTS

In this section we present a simulation scenario for a
system with dynamics ẋ = −Ax + Bu where x ∈ R2,

A =

[
3 1

1 2

]
and B =

[
1 0

1 1

]
. The initial condition of the

system is x(0) =
[
−0.4 −0.15

]T
. The system is subject to

state and inputs constraints with dx = 1.5 and du = 9. Next
consider the formula φ′′ =

∧3
i=1 ϕi with the subformulas

ϕi, i = 1, . . . , 3 defined as: ϕ1 = G[0,4]ψ1, ϕ2 = ψ2 U[5,8]ψ3



(a) Barrier Function Evolution (b) State Trajectory (c) Violation Factor

Fig. 1: The evolution of the barrier function bH(xCL(t), t), the closed loop trajectory xCL(t) and the maximum violation
factor εjwc, j = 0, . . . , J obtained by the proposed MPC scheme.

and ϕ3 = F[8,10]ψ4. The predicate functions corresponding
to ψi, i = 1, . . . 4 are defined as: h1(x) = 0.2−‖x− pA‖2,
h2(x) =

[
−10 1

]
x + 2, h3(x) = 0.2 − ‖x − pB‖2,

h4(x) = 0.2−‖x−pC‖2 where pA =
[
−0.3 0.2

]T
, pB =[

0.35 0.5
]T
, pC =

[
0.35 −0.5

]T
. Based on φ′′ the state

of the system needs to stay close to pA, approach pB while
respecting a safety requirement and finally reach pC . The
optimization horizon and sampling rate are chosen as N = 3
and ∆τ = 0.1 respectively. The robustness value correspond-
ing to the barrier function bH(x, t), bF (x, t) is rH = 0.1 and
rF = 0.01 respectively. The closed loop trajectory of the
system xCL(t) is shown in Figure 1b for t ∈ [0, 10]. Based
on Theorem 3 and Figure 1c we have ρφ(x, 0) ≥ −0.1344
which is a more conservative bound when compared to
the results of Figure 1a from which we can deduce that
ρφ(x, 0) ≥ 0.1 since inft∈[0,10] bH(xCL(t), t) = 0.0026. The
jumps shown in Figure 1a at times t = 0, t = 4, t = 5 and
t = 8 sec occur due to the deactivation policy described in
section III. The simulations were performed in an Intel Core
i7-8665U with 16GB RAM with the average computational
time of the MPC being equal to 4.7375 sec.

VI. CONCLUSION

A model predictive control framework is proposed for a
linear system under STL specifications. The satisfaction of
the STL tasks is imposed within the MPC scheme using a
time-varying barrier function, designed offline. The recursive
feasibility of the proposed scheme is proven by introducing
a time-varying terminal constraint that ensures a worst-case
temporal behavior for the system guaranteeing the satisfac-
tion of the task. Future work will extend the framework to
multi-agent systems.
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