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Abstract— This paper presents a control strategy based on
a new notion of time-varying fixed-time convergent control
barrier functions (TFCBFs) for a class of coupled multi-
agent systems under signal temporal logic (STL) tasks. In this
framework, each agent is assigned a local STL task regradless
of the tasks of other agents. Each task may be dependent
on the behavior of other agents which may cause conflicts
on the satisfaction of all tasks. Our approach finds a robust
solution to guarantee the fixed-time satisfaction of STL tasks
in a least violating way and independent of the agents’ initial
condition in the presence of undesired violation effects of the
neighbor agents. Particularly, the robust performance of the
task satisfactions can be adjusted in a user-specified way.

Keywords: Multi-agent systems, fixed-time stability, signal tem-
poral logic, control barrier functions

I. INTRODUCTION

Recent technological advances in distributed sensing, com-
putation and data management have enabled us to develop
smart systems using collaborative multi-agent systems. These
emergent applications are required to perform more complex
task specifications which are typically formulated by tempo-
ral logics [1]. Among those, signal temporal logic (STL)
is more beneficial as it is interpreted over continuous-time
signals [2], allows for imposing tasks with strict deadlines
and introduces quantitative semantics known as robustness
to the physical systems [3].

Control barrier functions [4] guarantee the existence of a
control law that renders a desired set forward invariant. The
notions of input-to-state safety and robustness have appeared
in [5] and [6]. Nonsmooth, Higher order and time-varying
control barrier functions are provided in [7], [8] and [9],
respectively. Control Lyapunov functions are control design
tools to obtain a number of specific performance criteria,
such as, optimality, transient behavior or robustness. In most
of the modern emergent applications such as cyber physical
systems, connected automated vehicles and networked con-
trol systems, the safety property of the system performance
has become a part of control design [10].

We aim to consider a class of control-affine nonlinear
coupled multi-agent systems under dependent spatiotemporal
constraints. Under spatial constraints, the system trajectories
should evolve in some safe sets at all times, while visiting
some goal sets in specific time intervals. These kinds of
constraints are common in safety-critical applications. In
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addition, temporal constraints pertain to the system conver-
gence or a task completion within a fixed-time interval, and
appear in time-critical applications.

In [11], a distributed control strategy for safety and fixed-
time stability of multi-agent systems has been provided,
while [12] considers the problem for a single-agent system
subject to disturbances. However, they assume that there
are no dynamical couplings among agents and their initial
conditions are inside the safe sets, and provide independent
constraints for safety preservation and performance satis-
faction, which may cause failures in the satisfiability of
all specifications. Moreover, they use time-invariant control
barrier functions which contain a lower degree of freedom
in comparison to the time-varying ones, and may lead to
inability in achieving more complex tasks. We introduce a
time-varying fixed-time convergent control barrier function
notion to guarantee the satisfaction of a set of STL tasks by
maintaining the safety as well as convergence to the specified
safe sets within a finite-time interval, independent of the
initial conditions of the system.

We study multi-agent systems working under local and
possibly conflicting specifications from a fragment of STL
tasks. Each agent is subject to its local task, while the task
itself may depend on the behavior of other agents. Therefore,
all local tasks may possibly not be satisfiable at the same
time. A robust fixed-time framework is presented to find a
least violating solution using the notion of fixed-time stability
in a more suitable way compared to the approach presented
in [13]. Particularly in this paper, the lower bound of the
presented fixed-time convergent barrier function is tunable
with respect to parameters of the quadratic programming
formulation, independent of initial conditions, and the time
of reaching this optimal bound is characterized in a user-
specified way. Regarding the fixed-time stability properties
we ensure that if the required conditions are not satisfied
initially, they will be satisfied within a fixed-time and remain
satisfied thereafter. Therefore, we are able to unify the safety
and performance criteria in one fixed-time constraint.

Section II gives some preliminaries on STL, multi-agent
systems and problem formulation. Problem solution is stated
in Section III and simulations along with some concluding
points are presented in Sections IV and V, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Signal temporal logic (STL)

Signal temporal logic (STL) [2] is based on predicates v
which are obtained by evaluation of a continuously differ-
ential predicate function /h : RY - R as v := T (True) if



h(€) > 0 and v := L (False) if h(¢) < 0 for & € R The
STL syntax is then given by

b= T|V|ﬁ¢|¢/ A ¢/,|¢/U[a,b]¢”a (1)

where ¢’ and ¢” are STL formulas and where Uy, is
the until operator with ¢ < b < oo. In addition, we
introduce Fi, 3¢ = TUpp ¢ (eventually operator) and
Glap)¢ = —Flq5—¢ (always operator). Let &’ |= ¢ denote
the satisfaction relation, i.e., whether a signal £’ : R>o — R4
satisfies ¢ (at time 0). STL semantics are defined in [2]. A
formula ¢ is satisfiable if 3¢’ : R>o — R? such that ¢’ |= ¢.

B. Coupled multi-agent systems

Consider an undirected graph G := (V,€) where V :=
{1,---, M} indicates the set consisting of M agents and
€ € V x V represents communication links. Consider xj €
R™ and u; € R™* as the state and input vectors of agent k,

respectively. Furthermore, = := [ac?, e ,xﬂ]T € R™ with
n:=mny+---+ny and

Ty = fo(@n, 1) + gr(@k, ur + c(z,1), 2
where fk : R™ x RZO — R"k, gr R™ x RZO —

R™*™k are locally Lipschitz continuous functions. In ad-
dition, ¢y (x,t) models dynamical couplings between agents
such as mechanical connections, unmodelled dynamics or
process noise. We assume that cg(x,t) is unknown but
bounded. Therefore, the control design does not require
any knowledge on z. In other words, there exist Cj, > 0,
which is known by agent & and |lcx(x,t)]| < Cj for all
(x,t) e R™ x Rzo.

Each agent k is assigned its local task ¢ of the form (1).
The satisfaction of ¢, may depend on the behavior of other
agents j # k, which is resulted by the evolution of their state
trajectories. Therefore, the agent £ may obtain information
from the other agent’s tasks. We assume satisfaction of all
local tasks is possible regardless of the other agent tasks.
However, since the tasks are dependent, satisfiability of each
local task does not imply satisfiability of the conjunction
of all local tasks. Let the satisfaction of ¢; depend on the
behavior of a subset of agents denoted by V, C V with
[Vi| > 1 where [Vg| corresponc%g. to the cardinality of the set

V. Let Zp, := {:cHT e xJIT\/kI be the stacked state vector
of all agents in Vy, for ji,---,jv,| € Vi and ng := nj, +
L TNE We also define the projection map py : R" —
R™ considering the fact that elements of T, are contained in
x. Let the projector from a set S € R™ onto the formula state-

space R™ be Py(S) := {Zy € R™ |3z € S,pr(x) := Ty }.
C. Time-varying fixed-time convergent barrier functions

Let $*(zZy,t) : R™ x Rsg — R be a continuously
differentiable function. Similar to [14], we introduce time-
varying barrier functions % (Zy,t) to satisfy STL task ¢y.
If

Cr(t) := {Tp € R™ |5§k(ik,t) >0}

is forward invariant, then it holds that Z; = ¢y. Similar
to [13] the barrier functions are piecewise continuous in the

second argument with discontinuities caused by switchings at

instants {sk := 0, 5%, s5 ...}. Note that the time-varying bar-

rier functions could be constructed for the conjunctions in ¢y,

by using a smooth under-approximation of the min-operator.

In particular, for a number of p; functions $ ;“ (Zk,t), we have
min

Pk
je{l,-<~,pk}ﬁ§($k,t) ~ —nikln(j; exp(—nkﬁf(xk,t)))
with 7, > 0, which is proportionally related to the accuracy
of this approximation.
In view of [14, Steps A, B, and C], each corresponding
barrier function to ¢, could be constructed as

that

1 Pk
9 (@, t) = —aln(z exp(—me 9} (1)), (3)
=

where each 5'9;? (Zx, t) corresponds to an always or eventually
operator with a corresponding time interval [af ,bﬂ. The
switching instants bf are times that the jth temporal operator
is satisfied and its corresponding barrier function ﬁj’?(fk,t)
will be deactivated. This time-varying strategy helps reducing
the conservatism in the presence of large numbers of con-
junctions. Due to the knowledge of [a?,bﬂ, the switching
sequences are known in advance and at time ¢ > s,’f, the next
switch occurs at s¥, | = argminbfe{b;@w.’bgk}C(b]’-“, t) where

ko E _
C(b?,t) = { bj t, bJ t>0 . In addition, for each

0, otherwise
switching instant s}, it holds that lim (1) C €r(sh)
TS —

where lim € (7) is the left-sided limit of € (t) at t = sb.

TS —
We also make the following assumption:

Assumption 1 The functions $H*(z;,t), k € {1,--- , K},
are differentiable, the sets &, are compact, and their interior
(i.e., int(Cx(t)) = {Tx|H* (T, t) > 0}) is non-empty for all
t>0.

D. Problem formulation

We consider the STL fragment

V=Tl Ay, (4a)
¢ = Glap) | Flan) [V U 0" ¢ A ¢, (4b)

where ', 1" are formulas of class v in (4a) and ¢', ¢”
are formulas of class ¢ in (4b). Consider K formulas
¢1,- -, ¢ of the form (4b) and let the satisfaction of ¢y
for k € {1,--- , K} depend on the set of agents V;, C V.

Assumption 2 All predicate functions in ¢y, are concave.

Concave predicate functions contain linear functions as well
as functions corresponding to reachability tasks (predicates
like [[z—p|| < e p € R", € > 0). As the minimum
of concave predicate functions is again concave, concave
predicates are needed to construct valid control Lyapunov
functions.

Moreover, the formula dependencies should hold accord-
ing to the graph topology as below.



Assumption 3 For each ¢y, with k € {1,---
that (j,k) € € for all j € Vi\{k}.

, K}, it holds

We further examine the behavior of each agent & under
satisfaction of the following assumption for other agents j #
k, which we put in more perspective later (cf. Remark 4).

Assumption 4 Each agent j # k applies a bounded and
continuous control law w;(x,t) to achieve x;(t) € B, for a
compact set B; and for all t > 0.

Considering (2), we can rewrite the stacked dynamics for the
set of agents in V, as follows

T =fi(Zk, t) + Gr(Ze, )k + Ci(z, 1)
Fre(@r, t) + G (@r, t)ug + (2, 1), )

T
: i1 @07 B @ D7)
Gk (Tk, t) := diag(gj, (zj,t), -

where fi,(Zy, 1) ==

agj\vk\(xjwkpt

er(x,t) = [le(levt)T""’Cj\vk\(xjwk\’t)T} , and
T
Up = [uj{7 7u]‘7;)k‘:| for j1>"' 7j\Vk\ € Vk
Therefore, fk(xk.,t) = [fk(xk,t)T,OT,---,OT]T,
- T .
gk(xkrat) = I:gk(xkat)T70T7 7OT] 5 Ck(l',t) =

T
e(at) 0T dyy (@ 0Ty, (0T with
d iz, t) = fi(zj,t) + gj(x;,t)uj(z,t). In the sequel,
¢r(x,t) is treated as an unknown disturbance. Let C,
be a positive constant such that ||&(x,t)|| < Cj for all
(z,t) € ® x R>¢ with ® € R™ an open and bounded set
for which it holds that Py (D) D € (t) for all ¢ > 0 as well
as P;(D) D B;(t) for all j # k. Due to Assumption 4 and
continuity property of functions f;(z;,t) and g;(x;,t), C
exists and acts as a non-vanishing disturbance. This will be
elaborated more in Remark 4.

Assumption 5 The function gy, (zy,t) has full row rank for
(J]k,t) € R™ x Rzo.

Assumption 5 allows to decouple the construction of barrier
functions from the agent dynamics. In other words, for a
function $*(z,t) it holds that %ﬁ’“@gk(ajk,t) = 0 if
and only if %ﬁ’“” = 0. This restriction could be relaxed
for some class of dynamics using the notion of higher order
barrier functions [8].

We should emphasize that if ¢;, contains concave predicate
functions and gk(a}k7 t) has full row rank for all (Zj,t) €
R x R>g, then Hk (Zg,t) can be constructed as in [14].

The problem formulation is stated as follows:

Problem. 1 Find a control input ug(t) € Uy, t > 0,
k € {1,---, K}, such that for all initial conditions Z(0)
and in the absence of formulae dependencies and dynamic
couplings, the set ¢ is invariant for (5). In addition, in
the presence of such undesirable effects, the trajectories
converge to a neighborhood of set €, in a fixed-time interval
and independent of the initial condition of the agents; i.e.,
fk(Tk) € €4 in a least violating way, for some user-defined
Ty, > 0.

III. PROBLEM SOLUTION

In order to guarantee reaching the spatiotemporal con-
straints in the presence of non-vanishing additive disturbance
in a least violating manner, we present fixed-time convergent
control barrier functions that are essential for valid behavior
composition.

A. Fixed-time convergence

We start with a lemma on the fixed-time convergence
guarantee for a class of control Lyapunov functions (CLFs).

Lemma 1 [/2] A continuously differentiable positive-
definite proper function Vi, : R™ — Rxq is called robust
fixed-time CLF (RFxT CLF) for (5), if the following holds:

Vie(Zx) < —an VP (2x) — anV;f”(fk) +azg, (6)

with a1, a9, > 0,a3; € Rybyp = 1+ — o ybop = ].—T
for some py, > 1, along the trajectories of (5). Then, there
exists a neighborhood Dy, of the origin such that for all
Zr(0) € R™\ Dy, the trajectories of (5) reach the set Dy,
within a fixed time T}, satisfying

Lk [1-+ck]
ark(cr—by) log( [14+b4| )
s

Vaikazg (kk 1 )

jagg > 2 /a1iazsg
jazp = 2/a1iazy

T, <

1 .
alkkku( —tan" kog) ;0 < asp < 2\/airaz
Tarean raze < 0
(N
with
1323
_ ask+v/ aszk?—4aipazk
{an < (/g™ |
agg > 2/a1asy

Dy = e

xk|vk < k#k(gzz)

} jagk = 2\/a1as )

Ty Vi < 2\/%} ;0 < asgk < 2y/arkazk

0mx jasp <0
3
where ki, > 1 and by, ¢y, are the solutions of i(s) = a1j.5%—
4 a2
asis + asp = 0. Moreover, ki, = | —E2257%k qnd Loy, =

daf),
asgk .
VAaikazr—aZ,

Proof: For as, < 0, we obtain the standard form of the
inequality which guarantees the fixed-time convergence to
the origin for all z;, € R™ ([15]). For as; > 0, by rewriting
(6) we get

Vi (21 (Tk)) ]
I= b1k ba dVk
E —a1, V" — agr V. ** + asg
Vi (1(0))
Ty
> [a=1i, ©)
0

where T}, is convergence time of the system trajectories to
the set Dy. It can be shown that for all T, ¢ Dy, the system
trajectories reach the set Dy in a fixed-time interval.



To prove this claim, first consider 0 < a3 < 2/a1xa2k.
We have that —ay, V'™ —ag, VP2 +ag, < —2\/argaog Vi +
asy, for all V3, > 2\/% Thus, for all Vi (Z4(0)) >V, > 1
the left integrand in (9) is negative and hence, the following
is obtained:

1

dVy
b b <
—a V" — aV,** + asg

Vk(fk(o))
1
dV,
/ ; i . (0
E —alka e — aszk 2k + ask Vi
Vi (2(0))
We obtain T}, < I < al’:zlk (5 — tan~ ko) by evaluating

the second integral in (10).

For azx > 2,/airaz; we have Vi > 1. Therefore, for
Vk(i'k) > Vk > 1 we get —alkab”“‘ — anka”" + azp <
—aig VP — a9, VP + ag), Vi, which leads to

W v
e
1< .
N / —a1 VI — agp VI + as Vi,
Vi (21 (0))

Solving the above integral for Vi > 1 leads to I <

s [1+ck| :
airter =5 108 ([T, 1) With ¢ > by

Finally, for asx = 2\/a1,az; we have ¢, = by, = —, /Z%z.

Hence,

% v,
k
s . 7a1kab1k — anV,fZ’“ + ask Vi
Vi (71(0))
_ P 1 _ 1 )
ik o 4+ Ve ck+ Vi(@k(0))
< ke 1 ok

< )
T ke + Ve Varkaak(kk — 1)

1
where the last inequality follows from the fact that V,* >
—kycy, for ki > 1 results in a finite non-negative value for
1. The proof is complete. |

Remark 1 Note that an upper-bound for T}, could be con-
sidered as a user-defined fixed convergence time.

Next, we provide a theorem to guarantee the robust fixed-
time forward invariance property of the set € (¢). By the
term robust we mean that in the absence of agent couplings
and violating effects of the other local tasks, the fixed-
time convergence to the set € (¢) is guaranteed. However,
in the presence of such undesirable effects, the fixed-time
convergence to the set €y ,¢(t) O € (), which later will be
defined by Proposition 1, is guaranteed.

Theorem 2 Consider a multi-agent network consisting of M
agents subject to the dynamics of (2) under Assumption 5
and K formulas ¢y, of the form (4b) under Assumption 2. Let
9% (2, t) be a time-varying barrier function associated with
the task ¢ according to Section II-C. If for some positive

constants o, Bi, Y1k > 1, Yor < 1, for some open set Py,(D)
with Pi(D) D €(t) for all t > 0, and for all (Ty,t) €
Pr(D) x (sf, S?+1), there exists a control law uy(xy,t) for
agent k € Vi, such that
k(= k=~
O 0D (k) + gr(n, tyu) + 22500 >
k T ~ _ _ .

| 22550 | G — ke sgn(33* (@, )19 (i, O™

— By sgn(H* 2k, 1))[9* (2, 1),
then C(t) is robust fixed-time forward invariant and

9* (24, t) is a valid time-varying fixed-time convergent con-
trol barrier function (TFCBF).

Y

Remark 2 We have substituted H %

Tl

‘ C as an upper-

k-

bound for %m:’t)ék in the valid control barrier function

condition (11), since that way it may contain feasibility issues

if 85’)k(ik,t) ( t) =0 d 09" (Zp,t) ~ t 0. Th
Oxy, e\ Tk, - an Oz r, Ck(x, ) # . en,

satisfaction of the inequality would rely on %ﬁi’m)ék(% t)
which comes from the behavior of the Vi\{k} that are
unknown to agent k. As mentioned before, we treat this term
as an unknown disturbance and give an estimation for Cr
in the sequel. Furthermore, consider py as some extended
class IC function [4] with

pi(r) = agsgn(r)|r|"* + Brsgn(r)|r|*. (12)

By Assumptions 2 and 5, the functions $* (%, t) can be
corlzcstmcted with py, satisfying [14, Lemma 4] to ensure that
% > —pi (9%(Z, t)) + x for some x > 0 when
%ﬁj)gk(fk,t) = 0. This ensures that all agents in Vy,
can use a collaborative control law as presented in [14,
Theorem 1] and choosing (12) gives the fixed-time conver-
gence property without causing feasibility problems for (11).
Then, possible violation in (11) comes from conflicting local
objectives. We will treat the task conflictions by a relaxation
term €y, in the quadratic program formulation (cf. Section
111-B).

We defined a class of control Lyapunov functions (RFxT
CLFs) with a user-defined fixed-time convergence guarantee
in Lemma 1 with the convergence time (set) (i.e., T}, (Dx)),
characterized by given parameters aix, ask, big, bop and
independent of the initial conditions Z(0). The following
Proposition proves that the inequality (11) leads to a robust
fixed-time convergence to the predefined predicates.

Proposition 1 Consider the set €y (t) associated with
9*(zg,t) defined on Pp(D) with €(t) C Pi(D). Let
positive constants oy, B, Ok, Y1k = 1+ i, Yor. = 1 — F%k
wr > 1, be given. Then, any controller uy : Pp(D) — Uy
such that (11) is satisfied for the system (5) with ||éx(x,t)|| <
Cr and &, > H‘WU@ for all (Zy,t) € Pu(D) x
R, renders the set €y (t) robust fixed-time convergent. In
particular, given the initial condition T1(0) € Py (D)\€x(0),
the controller drives the state trajectories Tj(t) within a
Sfixed-time given by (7) to the set €, ,¢(t) given as follows.

Q:kﬂ"f(t) = {fk e R™ |57Jk(jk7t) > _ek,max}v



where

Spt/Orn2—daun B\ "
(Hk—kﬁk) 30k > 2v/ B

QQk
i
€k, max — k“k( ) 2 ;5k = 2m
2\/% 10 < 0 < 24/ Bk
Proof: Consider the RFXTCLFs Vi (Zy,t) =

max {0, —$H*(z},t)} for each predicate ¢;. These functions
satisfy Vie(Zg, t) = 0 for z4(0) € €, (0). Therefore, as long
as $%(Zp,t) > 0, Vi remains 0 and then Zj(t) € €x(2),
t > 0. Moreover, Vi (Zy,t) > 0 for Ty, € Pp(D)\Cx(¢) and

— BiVi(Tg, t)7".

Thus, according to Lemma 1, the convergence of Vi (Z, t) to
the set Dy, in a fixed-time 7T}, is guaranteed. In other words,

Snt/or%—4 H
*(%M) ;0K > 2v/au B,

Vi(Tg, t) < 0p — ap Vi (Tg, 1)

tfk
a2 | M) i
*2\/% ;0 <0 < 2V au By
0 ,6]9 < 07
(13)
which ensures the convergence to set €y ,.f(2). |

Remark 3 Note that in the presence of non-vanishing dis-
turbances, it is not possible to guarantee the convergence of
state trajectories to the desired set €. The set € ¢ gives
an estimate of the neighborhood that the system trajectories
converge to, within a fixed-time interval upper-bounded by
(7). In the cases that the system dynamics does not contain
any couplings and task conflictions (0, = 0), the convergence
to €, is guaranteed. As we consider the conflicting specifi-
cations and couplings between the agents and model them
by constant upper-bounds, the system contains non-vanishing
disturbance and hence, Lemma 1 is applied here.

B. QP based formulation

We now formulate a quadratic program that renders € (t)
robust fixed-time convergent in the presence of dynamic cou-
plings as well as task conflictions. Define z;, = [ug, 6k}T €
R™+*+1 and consider the following optimization problem to
find a control input that solves Problem 1.

1

. LT
e

8ﬁk(fk,t) bk (Tk, 1)
st =g U ) + gi (o, Due) + =

> 0y — ay, sgn(9* (24, 1)) 19" (@, )

— Br, sgn(9* Tk, 1)) |9F (T5, )] — e, (14)

where 6§, > HMH Ck Constraint (14) corresponds to
the fixed-time convergence of the closed-loop trajectones to
the set Cprr(t), where ag, B > 0, 11, = 1+ 7, Yo =
1-— —, wr > 1 are fixed. Moreover, €, > 0 relaxes QP in
the presence of conflicting tasks and minimizing it results in
a least violating solution.

Remark 4 Note that our analysis relies on Assumption 4.
However, this assumption is obsolete if (14) is solved for
each agent k. Thus, to give an estimation on Ch, first the
set © should be selected such that P,(D) D By for each
k. Then, Cy is selected such that ||é(z,t)| < Cy for all
(z,t) € © x R>. Assuming that the agents are subject to
bounded inputs, i.e., ui(t) € Uy for some compact set Uy,
an estimate of C}, can be obtained. In addition, considering
Assumption 2 and barrier function construction according to
Section II-C, H %H is upper bounded and this bound
k
can be acquired, too.
Theorem 3 Let the solution to the QP (14) be denoted
as zj(-). Assume that 6, > C), ‘ %H — €5 for all
(Zg,t) € Pu(D) x Rxq. If the solution z{(-) is continuous
on Py (D)\&(t), then under the control input ui(-) = uj(-)
the closed-loop trajectories of (5) reach the set & .y in a
fixed-time Ty, given by (7), with a1, = ag, asr = B and
asr — 5k.

Proof
|

Bmk

Considering Proposition 1 for dp >
t) H Ck — €y, convergence to the set & ¢, which
is provided by the user-defined bounds for $*(Z,t) as in

(13), will be achieved in the presence of couplings and task
conflictions in a least violating way. |

IV. SIMULATIONS

Consider a multi-agent system consisting of M := 3
omnidirectional robots denoting by z, := [p}, LL‘]C)?,]T € R3,
k e {1,---,M}, in which p = [zp1,2]" and 243
represent the robot’s position and orientation with respect to
the first coordinate, respectively [16]. The agent dynamics
are subject to & = fr(z,t) + gr(ag, Hur + cp(z,t),

cos(x3) —sin(xgs) 0
where g, = sin(zg,3)  cos(zrs) 0 | (BE) 'Ry
0 0 1
0 cos(m/6) —cos(m/6)
with B, := | —1 sin(7/6) sin(7/6) to model
Ly, Ly, Ly,
the geometric constraint. Moreover, R; = 0.02 is the
wheel radius and L, = 0.2 describes the radius of the

robot body. Furthermore, fx(x,t) are locally Lipschitz
continuous functions describing the induced dynamical
couplings for the purpose of collision avoidance. We
follow the the example of [17] by adding the coupling
effects of other agents and considering different tasks to
show the effect of changing the parameters during the
conflictions. We pick C’k =1, k € {1,2,3}, to model
the disturbances or conflicting behavior of other agents.
Consider the formulae ¢1 := G|15,90)(|[p1 + g1 — P2/ < 2)A
Glas,35)(lp1 + 92 — psl| < 7.7) A Fiso,90)(llp1 — 93]l < 2),
P2 1= G[15,90](||P2 —g1—pill <2)A F[30,35](HP2 — gal|
4) A Fiso,90/(llp2 + g1 — pal| < 5), &3
Gass)(llps — g2 —pill < 7.7) A Flaoe0)(llps — g5l
5) A Fiso,00(lp3 — g1 — paf| < 5), where g1 = [0.8, 0]
g2 = [0,-0.8]", g3 = [-1.2,1.2]", g4 = [1.2,1.2]7,

~—
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Fig. 1: Fixed-time convergent barrier functions evolution for
ap = ,Bk =1.
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Fig. 2: Robot trajectories. The triangles denote the orientation
for o, = B, = 1.

g5 = [1.2, —1.2]". We first choose the parameters of the QP
formulation as uy, = 4, o, = By = 1, k € {1,2,3}. Then,
we get 0, = 0.9741 and considering (13), the upper bound of
72\/% = —0.487 is acquired for the TFCBFs $*(Zy, 1),
k € {1,2,3}, as can be seen in Figure 1 as well as the agent
trajectories presented in Figure 2. We change the value of
parameters «y, S to 0.4. This l;?:lds to 0 = 0.9713 and
(@, t) > — (2w 1300, & € {1,2,3).
Therefore, a higher deviation from the desired set as well
as a faster settling-time in the main switching instant of
t = 35 s is acquired as is shown in Figure 3. Hence, the
fixed-time convergence criterion allows us to characterize
the behavior of TFCBFs independent of the agents initial
conditions. The computation times on an Intel Core
15-8365U with 16 GB of RAM are about 2.45ms.

V. CONCLUSION

Based on a new notion of time-varying fixed-time con-
vergent control barrier functions, we presented a feedback
control strategy to find robust solutions for the performance
of the multi-agent systems under conflicting local STL tasks.
In particular, the lower bound of the introduced TFCBFs and
the finite convergence time can be characterized in a user-
specified way, independent of the initial conditions of the
agents. Future works extend these results to more general
collaborative tasks, including leader-follower topologies.

0 E
Time (5)

Fig. 3: Fixed-time convergent barrier functions evolution for
ap = ,Bk =04.
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