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Abstract— This paper presents a control strategy based on
a new notion of time-varying fixed-time convergent control
barrier functions (TFCBFs) for a class of coupled multi-
agent systems under signal temporal logic (STL) tasks. In this
framework, each agent is assigned a local STL task regradless
of the tasks of other agents. Each task may be dependent
on the behavior of other agents which may cause conflicts
on the satisfaction of all tasks. Our approach finds a robust
solution to guarantee the fixed-time satisfaction of STL tasks
in a least violating way and independent of the agents’ initial
condition in the presence of undesired violation effects of the
neighbor agents. Particularly, the robust performance of the
task satisfactions can be adjusted in a user-specified way.

Keywords: Multi-agent systems, fixed-time stability, signal tem-

poral logic, control barrier functions

I. INTRODUCTION

Recent technological advances in distributed sensing, com-

putation and data management have enabled us to develop

smart systems using collaborative multi-agent systems. These

emergent applications are required to perform more complex

task specifications which are typically formulated by tempo-

ral logics [1]. Among those, signal temporal logic (STL)

is more beneficial as it is interpreted over continuous-time

signals [2], allows for imposing tasks with strict deadlines

and introduces quantitative semantics known as robustness

to the physical systems [3].

Control barrier functions [4] guarantee the existence of a

control law that renders a desired set forward invariant. The

notions of input-to-state safety and robustness have appeared

in [5] and [6]. Nonsmooth, Higher order and time-varying

control barrier functions are provided in [7], [8] and [9],

respectively. Control Lyapunov functions are control design

tools to obtain a number of specific performance criteria,

such as, optimality, transient behavior or robustness. In most

of the modern emergent applications such as cyber physical

systems, connected automated vehicles and networked con-

trol systems, the safety property of the system performance

has become a part of control design [10].

We aim to consider a class of control-affine nonlinear

coupled multi-agent systems under dependent spatiotemporal

constraints. Under spatial constraints, the system trajectories

should evolve in some safe sets at all times, while visiting

some goal sets in specific time intervals. These kinds of

constraints are common in safety-critical applications. In
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addition, temporal constraints pertain to the system conver-

gence or a task completion within a fixed-time interval, and

appear in time-critical applications.

In [11], a distributed control strategy for safety and fixed-

time stability of multi-agent systems has been provided,

while [12] considers the problem for a single-agent system

subject to disturbances. However, they assume that there

are no dynamical couplings among agents and their initial

conditions are inside the safe sets, and provide independent

constraints for safety preservation and performance satis-

faction, which may cause failures in the satisfiability of

all specifications. Moreover, they use time-invariant control

barrier functions which contain a lower degree of freedom

in comparison to the time-varying ones, and may lead to

inability in achieving more complex tasks. We introduce a

time-varying fixed-time convergent control barrier function

notion to guarantee the satisfaction of a set of STL tasks by

maintaining the safety as well as convergence to the specified

safe sets within a finite-time interval, independent of the

initial conditions of the system.

We study multi-agent systems working under local and

possibly conflicting specifications from a fragment of STL

tasks. Each agent is subject to its local task, while the task

itself may depend on the behavior of other agents. Therefore,

all local tasks may possibly not be satisfiable at the same

time. A robust fixed-time framework is presented to find a

least violating solution using the notion of fixed-time stability

in a more suitable way compared to the approach presented

in [13]. Particularly in this paper, the lower bound of the

presented fixed-time convergent barrier function is tunable

with respect to parameters of the quadratic programming

formulation, independent of initial conditions, and the time

of reaching this optimal bound is characterized in a user-

specified way. Regarding the fixed-time stability properties

we ensure that if the required conditions are not satisfied

initially, they will be satisfied within a fixed-time and remain

satisfied thereafter. Therefore, we are able to unify the safety

and performance criteria in one fixed-time constraint.

Section II gives some preliminaries on STL, multi-agent

systems and problem formulation. Problem solution is stated

in Section III and simulations along with some concluding

points are presented in Sections IV and V, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Signal temporal logic (STL)

Signal temporal logic (STL) [2] is based on predicates ν
which are obtained by evaluation of a continuously differ-

ential predicate function h : Rd → R as ν := ⊤ (True) if



h(ξ) ≥ 0 and ν := ⊥ (False) if h(ξ) < 0 for ξ ∈ R
d. The

STL syntax is then given by

φ ::= ⊤|ν|¬φ|φ′ ∧ φ′′|φ′U[a,b]φ
′′, (1)

where φ′ and φ′′ are STL formulas and where U[a,b] is

the until operator with a ≤ b < ∞. In addition, we

introduce F[a,b]φ := ⊤U[a,b]φ (eventually operator) and

G[a,b]φ := ¬F[a,b]¬φ (always operator). Let ξ′ |= φ denote

the satisfaction relation, i.e., whether a signal ξ′ : R≥0 → R
d

satisfies φ (at time 0). STL semantics are defined in [2]. A

formula φ is satisfiable if ∃ξ′ : R≥0 → R
d such that ξ′ |= φ.

B. Coupled multi-agent systems

Consider an undirected graph G := (V, E) where V :=
{1, · · · ,M} indicates the set consisting of M agents and

E ∈ V × V represents communication links. Consider xk ∈
R

nk and uk ∈ R
mk as the state and input vectors of agent k,

respectively. Furthermore, x :=
[

xT1 , · · · , xTM
]T ∈ R

n with

n := n1 + · · ·+ nM and

ẋk = fk(xk, t) + gk(xk, t)uk + ck(x, t), (2)

where fk : R
nk × R≥0 → R

nk , gk : R
nk × R≥0 →

R
nk×mk are locally Lipschitz continuous functions. In ad-

dition, ck(x, t) models dynamical couplings between agents

such as mechanical connections, unmodelled dynamics or

process noise. We assume that ck(x, t) is unknown but

bounded. Therefore, the control design does not require

any knowledge on x. In other words, there exist Ck ≥ 0,

which is known by agent k and ‖ck(x, t)‖ ≤ Ck for all

(x, t) ∈ R
n × R≥0.

Each agent k is assigned its local task φk of the form (1).

The satisfaction of φk may depend on the behavior of other

agents j 6= k, which is resulted by the evolution of their state

trajectories. Therefore, the agent k may obtain information

from the other agent’s tasks. We assume satisfaction of all

local tasks is possible regardless of the other agent tasks.

However, since the tasks are dependent, satisfiability of each

local task does not imply satisfiability of the conjunction

of all local tasks. Let the satisfaction of φk depend on the

behavior of a subset of agents denoted by Vk ⊆ V with

|Vk| ≥ 1 where |Vk| corresponds to the cardinality of the set

Vk. Let x̄k :=
[

xj
T
1 · · ·xjT|Vk|

]T

be the stacked state vector

of all agents in Vk for j1, · · · , j|Vk| ∈ Vk and n̄k := nj1 +
· · · + nj |Vk|. We also define the projection map pk : Rn →
R

n̄k considering the fact that elements of x̄k are contained in

x. Let the projector from a set S ∈ R
n onto the formula state-

space R
n̄k be Pk(S) := {x̄k ∈ R

n̄k |∃x ∈ S, pk(x) := x̄k}.

C. Time-varying fixed-time convergent barrier functions

Let Hk(x̄k, t) : R
n̄k × R≥0 → R be a continuously

differentiable function. Similar to [14], we introduce time-

varying barrier functions Hk(x̄k, t) to satisfy STL task φk.

If

Ck(t) := {x̄k ∈ R
n̄k |Hk(x̄k, t) ≥ 0}

is forward invariant, then it holds that x̄k |= φk. Similar

to [13] the barrier functions are piecewise continuous in the

second argument with discontinuities caused by switchings at

instants {sk0 := 0, sk1 , s
k
2 , ...}. Note that the time-varying bar-

rier functions could be constructed for the conjunctions in φk
by using a smooth under-approximation of the min-operator.

In particular, for a number of pk functions Hk
j (x̄k, t), we have

that min
j∈{1,··· ,pk}

Hk
j (x̄k, t) ≈ − 1

ηk
ln(

pk
∑

j=1

exp(−ηkHk
j (x̄k , t)))

with ηk > 0, which is proportionally related to the accuracy

of this approximation.

In view of [14, Steps A, B, and C], each corresponding

barrier function to φk could be constructed as

H
k(x̄k, t) := − 1

ηk
ln(

pk
∑

j=1

exp(−ηkHk
j (x̄k , t))), (3)

where each Hk
j (x̄k , t) corresponds to an always or eventually

operator with a corresponding time interval
[

akj , b
k
j

]

. The

switching instants bkj are times that the jth temporal operator

is satisfied and its corresponding barrier function Hk
j (x̄k , t)

will be deactivated. This time-varying strategy helps reducing

the conservatism in the presence of large numbers of con-

junctions. Due to the knowledge of
[

akj , b
k
j

]

, the switching

sequences are known in advance and at time t ≥ ski , the next

switch occurs at ski+1 := argminbk
j ∈{bk

1 ,...,b
k
pk

}ζ(b
k
j , t) where

ζ(bkj , t) :=

{

bkj − t, bkj − t > 0
∞, otherwise

. In addition, for each

switching instant skl , it holds that lim
τ→sk

l
−
Ck(τ) ⊆ Ck(s

k
l )

where lim
τ→sk

l
−
Ck(τ) is the left-sided limit of Ck(t) at t = skl .

We also make the following assumption:

Assumption 1 The functions Hk(x̄k, t), k ∈ {1, · · · ,K},

are differentiable, the sets Ck are compact, and their interior

(i.e., int(Ck(t)) = {x̄k|Hk(x̄k, t) > 0}) is non-empty for all

t ≥ 0.

D. Problem formulation

We consider the STL fragment

ψ ::= ⊤|ν|ψ′ ∧ ψ′′, (4a)

φ ::= G[a,b]ψ|F[a,b]ψ|ψ′U[a,b]ψ
′′|φ′ ∧ φ′′, (4b)

where ψ′, ψ′′ are formulas of class ψ in (4a) and φ′, φ′′

are formulas of class φ in (4b). Consider K formulas

φ1, · · · , φK of the form (4b) and let the satisfaction of φk
for k ∈ {1, · · · ,K} depend on the set of agents Vk ⊆ V .

Assumption 2 All predicate functions in φk are concave.

Concave predicate functions contain linear functions as well

as functions corresponding to reachability tasks (predicates

like ‖x− p‖ ≤ ǫ, p ∈ R
n, ǫ ≥ 0). As the minimum

of concave predicate functions is again concave, concave

predicates are needed to construct valid control Lyapunov

functions.

Moreover, the formula dependencies should hold accord-

ing to the graph topology as below.



Assumption 3 For each φk with k ∈ {1, · · · ,K}, it holds

that (j, k) ∈ E for all j ∈ Vk\{k}.

We further examine the behavior of each agent k under

satisfaction of the following assumption for other agents j 6=
k, which we put in more perspective later (cf. Remark 4).

Assumption 4 Each agent j 6= k applies a bounded and

continuous control law uj(x, t) to achieve xj(t) ∈ Bj for a

compact set Bj and for all t ≥ 0.

Considering (2), we can rewrite the stacked dynamics for the

set of agents in Vk as follows

˙̄xk =f̄k(x̄k, t) + ḡk(x̄k, t)ūk + c̄k(x, t)

f̃k(xk, t) + g̃k(xk, t)uk + c̃k(x, t), (5)

where f̄k(x̄k, t) :=
[

fj1(xj1, t)
T , · · · , fj |Vk|(xj |Vk|, t)

T
]T

,

ḡk(x̄k, t) := diag(gj1(xj1, t), · · · , gj |Vk|(xj |Vk|, t)),

c̄k(x, t) :=
[

cj1(xj1, t)
T , · · · , cj |Vk|(xj |Vk|, t)

T
]T

, and

ūk :=
[

uj
T
1 , · · · , ujT|Vk|

]T

for j1, · · · , j|Vk| ∈ Vk.

Therefore, f̃k(xk, t) :=
[

fk(xk, t)
T , 0T , · · · , 0T

]T
,

g̃k(xk, t) :=
[

gk(xk, t)
T , 0T , · · · , 0T

]T
, c̃k(x, t) :=

c̄k(x, t) +
[

0T , dj1(x, t)
T , · · · , dj |Vk|(x, t)

T
]T

with

dj(x, t) := fj(xj , t) + gj(xj , t)uj(x, t). In the sequel,

c̃k(x, t) is treated as an unknown disturbance. Let C̃k

be a positive constant such that ‖c̃k(x, t)‖ ≤ C̃k for all

(x, t) ∈ D × R≥0 with D ∈ R
n an open and bounded set

for which it holds that Pk(D) ⊃ Ck(t) for all t ≥ 0 as well

as Pj(D) ⊃ Bj(t) for all j 6= k. Due to Assumption 4 and

continuity property of functions fj(xj , t) and gj(xj , t), C̃k

exists and acts as a non-vanishing disturbance. This will be

elaborated more in Remark 4.

Assumption 5 The function gk(xk, t) has full row rank for

(xk, t) ∈ R
nk × R≥0.

Assumption 5 allows to decouple the construction of barrier

functions from the agent dynamics. In other words, for a

function Hk(x̄k, t) it holds that
∂Hk(x̄k,t)

∂xk
gk(xk, t) = 0 if

and only if
∂Hk(x̄k,t)

∂xk
= 0. This restriction could be relaxed

for some class of dynamics using the notion of higher order

barrier functions [8].

We should emphasize that if φk contains concave predicate

functions and ḡk(x̄k, t) has full row rank for all (x̄k, t) ∈
R

n̄k × R≥0, then Hk(x̄k, t) can be constructed as in [14].

The problem formulation is stated as follows:

Problem. 1 Find a control input uk(t) ∈ Uk, t ≥ 0,

k ∈ {1, · · · ,K}, such that for all initial conditions x̄k(0)
and in the absence of formulae dependencies and dynamic

couplings, the set Ck is invariant for (5). In addition, in

the presence of such undesirable effects, the trajectories

converge to a neighborhood of set Ck in a fixed-time interval

and independent of the initial condition of the agents; i.e.,

x̄k(T̄k) ∈ Ck in a least violating way, for some user-defined

T̄k > 0.

III. PROBLEM SOLUTION

In order to guarantee reaching the spatiotemporal con-

straints in the presence of non-vanishing additive disturbance

in a least violating manner, we present fixed-time convergent

control barrier functions that are essential for valid behavior

composition.

A. Fixed-time convergence

We start with a lemma on the fixed-time convergence

guarantee for a class of control Lyapunov functions (CLFs).

Lemma 1 [12] A continuously differentiable positive-

definite proper function Vk : Rn̄k → R≥0 is called robust

fixed-time CLF (RFxT CLF) for (5), if the following holds:

V̇k(x̄k) ≤ −a1kV b1k
k (x̄k)− a2kV

b2k
k (x̄k) + a3k, (6)

with a1k, a2k > 0, a3k ∈ R, b1k = 1 + 1
µk
, b2k = 1 − 1

µk

for some µk > 1, along the trajectories of (5). Then, there

exists a neighborhood Dk of the origin such that for all

x̄k(0) ∈ R
n̄k\Dk, the trajectories of (5) reach the set Dk

within a fixed time Tk satisfying

Tk ≤



















µk

a1k(ck−bk)
log( |1+ck|

|1+bk| ) ; a3k > 2
√
a1ka2k

µk√
a1ka2k

( 1
kk−1 ) ; a3k = 2

√
a1ka2k

µk

a1kk1k
(π2 − tan−1k2k) ; 0 ≤ a3k < 2

√
a1ka2k

µkπ
2
√
a1ka2k

; a3k ≤ 0

,

(7)

with

Dk =







































{

x̄k|Vk ≤ (
a3k+

√
a3k

2−4a1ka2k

2a1k
)
µk
}

; a3k > 2
√
a1ka2k

{

x̄k|Vk ≤ kµk

k (a2k

a1k
)

µk
2

}

; a3k = 2
√
a1ka2k

{

x̄k|Vk ≤ a3k

2
√
a1ka2k

}

; 0 ≤ a3k < 2
√
a1ka2k

0n̄k ; a3k ≤ 0

,

(8)

where kk > 1 and bk, ck are the solutions of γk(s) = a1ks
2−

a3ks+ a2k = 0. Moreover, k1k =

√

4a1ka2k−a2

3k

4a2

1k

and k2k =

− a3k√
4a1ka2k−a2

3k

.

Proof: For a3k ≤ 0, we obtain the standard form of the

inequality which guarantees the fixed-time convergence to

the origin for all x̄k ∈ R
n̄k ([15]). For a3k ≥ 0, by rewriting

(6) we get

I =

Vk(x̄k(Tk))
∫

Vk(x̄k(0))

1

−a1kV b1k
k − a2kV

b2k
k + a3k

dVk

≥
Tk
∫

0

dt = Tk, (9)

where Tk is convergence time of the system trajectories to

the set Dk. It can be shown that for all x̄k /∈ Dk, the system

trajectories reach the set Dk in a fixed-time interval.



To prove this claim, first consider 0 ≤ a3k < 2
√
a1ka2k.

We have that −a1kV b1k
k −a2kV b2k

k +a3k ≤ −2
√
a1ka2kV̄k+

a3k for all V̄k ≥ a3k

2
√
a1ka2k

. Thus, for all Vk(x̄k(0)) ≥ V̄k ≥ 1
the left integrand in (9) is negative and hence, the following

is obtained:

1
∫

Vk(x̄k(0))

dVk

−a1kV b1k
k − a2kV

b2k
k + a3k

≤

1
∫

Vk(x̄k(0))

dVk

−a1kV b1k
k − a2kV

b2k
k + a3kVk

. (10)

We obtain Tk ≤ I ≤ µk

a1kk1k
(π2 − tan−1k2k) by evaluating

the second integral in (10).

For a3k ≥ 2
√
a1ka2k we have V̄k ≥ 1. Therefore, for

Vk(x̄k) ≥ V̄k ≥ 1 we get −a1kV b1k
k − a2kV

b2k
k + a3k ≤

−a1kV b1k
k − a2kV

b2k
k + a3kVk which leads to

I ≤
V̄k
∫

Vk(x̄k(0))

dVk

−a1kV b1k
k − a2kV

b2k
k + a3kVk

.

Solving the above integral for V̄k ≥ 1 leads to I ≤
µk

a1k(ck−bk)
log( |1+ck|

|1+bk| ) with ck ≥ bk.

Finally, for a3k = 2
√
a1ka2k we have ck = bk = −

√

a2k

a1k
.

Hence,

I ≤
V̄k
∫

Vk(x̄k(0))

dVk

−a1kV b1k
k − a2kV

b2k
k + a3kVk

=
µk

a1k
(

1

ck + V̄
1

µk

− 1

ck + Vk(x̄k(0))
)

≤ µk

a1k

1

ck + V̄
1

µk

≤ µk√
a1ka2k(kk − 1)

,

where the last inequality follows from the fact that V̄
1

µk

k ≥
−kkck for kk > 1 results in a finite non-negative value for

I . The proof is complete.

Remark 1 Note that an upper-bound for Tk could be con-

sidered as a user-defined fixed convergence time.

Next, we provide a theorem to guarantee the robust fixed-

time forward invariance property of the set Ck(t). By the

term robust we mean that in the absence of agent couplings

and violating effects of the other local tasks, the fixed-

time convergence to the set Ck(t) is guaranteed. However,

in the presence of such undesirable effects, the fixed-time

convergence to the set Ck,rf (t) ⊇ Ck(t), which later will be

defined by Proposition 1, is guaranteed.

Theorem 2 Consider a multi-agent network consisting of M
agents subject to the dynamics of (2) under Assumption 5

and K formulas φk of the form (4b) under Assumption 2. Let

Hk(x̄k, t) be a time-varying barrier function associated with

the task φk according to Section II-C. If for some positive

constants αk, βk, γ1k > 1, γ2k < 1, for some open set Pk(D)
with Pk(D) ⊃ Ck(t) for all t ≥ 0, and for all (x̄k, t) ∈
Pk(D)× (skj , s

k
j+1), there exists a control law uk(xk, t) for

agent k ∈ Vk such that

∂Hk(x̄k,t)
∂xk

(fk(xk, t) + gk(xk, t)uk) +
∂Hk(x̄k,t)

∂t
≥

∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
C̃k − αk sgn(Hk(x̄k, t))|Hk(x̄k, t)|

γ1k

−βk sgn(Hk(x̄k, t))|Hk(x̄k, t)|
γ2k ,

(11)

then Ck(t) is robust fixed-time forward invariant and

Hk(x̄k, t) is a valid time-varying fixed-time convergent con-

trol barrier function (TFCBF).

Remark 2 We have substituted

∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
C̃k as an upper-

bound for
∂Hk(x̄k,t)

∂x̄k
c̃k in the valid control barrier function

condition (11), since that way it may contain feasibility issues

if
∂Hk(x̄k,t)

∂xk
gk(xk, t) = 0 and

∂Hk(x̄k,t)
∂x̄k

c̃k(x, t) 6= 0. Then,

satisfaction of the inequality would rely on
∂Hk(x̄k,t)

∂x̄k
c̃k(x, t)

which comes from the behavior of the Vk\{k} that are

unknown to agent k. As mentioned before, we treat this term

as an unknown disturbance and give an estimation for C̃k

in the sequel. Furthermore, consider ρk as some extended

class K function [4] with

ρk(r) = αksgn(r)|r|γ1k + βksgn(r)|r|γ2k . (12)

By Assumptions 2 and 5, the functions Hk(x̄k, t) can be

constructed with ρk satisfying [14, Lemma 4] to ensure that
∂Hk(x̄k,t)

∂t
> −ρk

(

Hk(x̄k, t)
)

+ χ for some χ > 0 when
∂Hk(x̄k,t)

∂x̄k
ḡk(x̄k, t) = 0. This ensures that all agents in Vk

can use a collaborative control law as presented in [14,

Theorem 1] and choosing (12) gives the fixed-time conver-

gence property without causing feasibility problems for (11).

Then, possible violation in (11) comes from conflicting local

objectives. We will treat the task conflictions by a relaxation

term εk in the quadratic program formulation (cf. Section

III-B).

We defined a class of control Lyapunov functions (RFxT

CLFs) with a user-defined fixed-time convergence guarantee

in Lemma 1 with the convergence time (set) (i.e., Tk (Dk)),

characterized by given parameters a1k, a2k, b1k, b2k and

independent of the initial conditions x̄k(0). The following

Proposition proves that the inequality (11) leads to a robust

fixed-time convergence to the predefined predicates.

Proposition 1 Consider the set Ck(t) associated with

Hk(x̄k, t) defined on Pk(D) with Ck(t) ⊂ Pk(D). Let

positive constants αk, βk, δk, γ1k = 1 + 1
µk

, γ2k = 1− 1
µk

,

µk > 1, be given. Then, any controller uk : Pk(D) → Uk

such that (11) is satisfied for the system (5) with ‖c̃k(x, t)‖ ≤
C̃k and δk ≥

∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
C̃k, for all (x̄k, t) ∈ Pk(D) ×

R≥0, renders the set Ck(t) robust fixed-time convergent. In

particular, given the initial condition x̄k(0) ∈ Pk(D)\Ck(0),
the controller drives the state trajectories x̄k(t) within a

fixed-time given by (7) to the set Ck,rf (t) given as follows.

Ck,rf (t) := {x̄k ∈ R
n̄k |Hk(x̄k, t) ≥ −ǫk,max},



where

ǫk,max =















(
δk+

√
δk

2−4αkβk

2αk
)
µk

; δk > 2
√
αkβk

kµk

k ( βk

αk
)

µk
2 ; δk = 2

√
αkβk

δk
2
√
αkβk

; 0 ≤ δk < 2
√
αkβk.

Proof: Consider the RFxTCLFs Vk(x̄k, t) =
max {0,−Hk(x̄k, t)} for each predicate φk. These functions

satisfy Vk(x̄k, t) = 0 for x̄k(0) ∈ Ck(0). Therefore, as long

as Hk(x̄k, t) ≥ 0, Vk remains 0 and then x̄k(t) ∈ Ck(t),
t ≥ 0. Moreover, Vk(x̄k, t) > 0 for x̄k ∈ Pk(D)\Ck(t) and

V̇k(x̄k, t) ≤ δk − αkVk(x̄k, t)
γ1k − βkVk(x̄k, t)

γ2k .

Thus, according to Lemma 1, the convergence of Vk(x̄k, t) to

the set Dk in a fixed-time Tk is guaranteed. In other words,

H
k(x̄k, t) ≥























−(
δk+

√
δk

2−4αkβk

2αk
)
µk

; δk > 2
√
αkβk

−kµk

k ( βk

αk
)

µk
2 ; δk = 2

√
αkβk

− δk
2
√
αkβk

; 0 ≤ δk < 2
√
αkβk

0 ; δk ≤ 0,
(13)

which ensures the convergence to set Ck,rf (t).

Remark 3 Note that in the presence of non-vanishing dis-

turbances, it is not possible to guarantee the convergence of

state trajectories to the desired set Ck. The set Ck,rf gives

an estimate of the neighborhood that the system trajectories

converge to, within a fixed-time interval upper-bounded by

(7). In the cases that the system dynamics does not contain

any couplings and task conflictions (δk = 0), the convergence

to Ck is guaranteed. As we consider the conflicting specifi-

cations and couplings between the agents and model them

by constant upper-bounds, the system contains non-vanishing

disturbance and hence, Lemma 1 is applied here.

B. QP based formulation

We now formulate a quadratic program that renders Ck(t)
robust fixed-time convergent in the presence of dynamic cou-

plings as well as task conflictions. Define zk =
[

uTk , εk
]T ∈

R
mk+1, and consider the following optimization problem to

find a control input that solves Problem 1.

min
uk,εk∈R≥0

1

2
zTk zk

s.t.
∂Hk (x̄k , t)

∂xk
(fk (xk , t) + gk (xk , t)uk ) +

∂Hk (x̄k , t)

∂t

≥ δk − αk sgn(Hk(x̄k, t))|Hk(x̄k, t)|
γ1k

− βk sgn(Hk(x̄k, t))|Hk(x̄k, t)|
γ2k − εk, (14)

where δk ≥
∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
C̃k. Constraint (14) corresponds to

the fixed-time convergence of the closed-loop trajectories to

the set Ck,rf (t), where αk, βk > 0, γ1k = 1 + 1
µk

, γ2k =

1 − 1
µk

, µk > 1 are fixed. Moreover, εk ≥ 0 relaxes QP in

the presence of conflicting tasks and minimizing it results in

a least violating solution.

Remark 4 Note that our analysis relies on Assumption 4.

However, this assumption is obsolete if (14) is solved for

each agent k. Thus, to give an estimation on C̃k, first the

set D should be selected such that Pk(D) ⊃ Bk for each

k. Then, C̃k is selected such that ‖c̃k(x, t)‖ ≤ C̃k for all

(x, t) ∈ D × R≥0. Assuming that the agents are subject to

bounded inputs, i.e., uk(t) ∈ Uk for some compact set Uk,

an estimate of C̃k can be obtained. In addition, considering

Assumption 2 and barrier function construction according to

Section II-C,

∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
is upper bounded and this bound

can be acquired, too.

Theorem 3 Let the solution to the QP (14) be denoted

as z∗k(·). Assume that δk ≥ C̃k

∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
− ε∗k for all

(x̄k, t) ∈ Pk(D) × R≥0. If the solution z∗k(·) is continuous

on Pk(D)\Ck(t), then under the control input uk(·) = u∗k(·)
the closed-loop trajectories of (5) reach the set Ck,rf in a

fixed-time Tk given by (7), with a1k = αk, a2k = βk and

a3k = δk.

Proof: Considering Proposition 1 for δk ≥
∥

∥

∥

∂Hk(x̄k,t)
∂x̄k

∥

∥

∥
C̃k − εk, convergence to the set Ck,rf , which

is provided by the user-defined bounds for Hk(x̄k, t) as in

(13), will be achieved in the presence of couplings and task

conflictions in a least violating way.

IV. SIMULATIONS

Consider a multi-agent system consisting of M := 3

omnidirectional robots denoting by xk :=
[

pTk , xk,3
]T ∈ R

3,

k ∈ {1, · · · ,M}, in which pk := [xk,1, xk,2]
T

and xk,3
represent the robot’s position and orientation with respect to

the first coordinate, respectively [16]. The agent dynamics

are subject to ẋk = fk(x, t) + gk(xk, t)uk + ck(x, t),

where gk :=





cos(xk,3) − sin(xk,3) 0
sin(xk,3) cos(xk,3) 0

0 0 1



 (BT
k )

−1Rk

with Bk :=





0 cos(π/6) − cos(π/6)
−1 sin(π/6) sin(π/6)
Lk Lk Lk



 to model

the geometric constraint. Moreover, Rk = 0.02 is the

wheel radius and Lk = 0.2 describes the radius of the

robot body. Furthermore, fk(x, t) are locally Lipschitz

continuous functions describing the induced dynamical

couplings for the purpose of collision avoidance. We

follow the the example of [17] by adding the coupling

effects of other agents and considering different tasks to

show the effect of changing the parameters during the

conflictions. We pick C̃k = 1, k ∈ {1, 2, 3}, to model

the disturbances or conflicting behavior of other agents.

Consider the formulae φ1 := G[15,90](‖p1 + g1 − p2‖ ≤ 2)∧
G[25,35](‖p1 + g2 − p3‖ ≤ 7.7) ∧ F[50,90](‖p1 − g3‖ ≤ 2),
φ2 := G[15,90](‖p2 − g1 − p1‖ ≤ 2) ∧ F[30,35](‖p2 − g4‖ ≤
4) ∧ F[50,90](‖p2 + g1 − p3‖ ≤ 5), φ3 :=
G[25,35](‖p3 − g2 − p1‖ ≤ 7.7) ∧ F[40,60](‖p3 − g5‖ ≤
5) ∧ F[50,90](‖p3 − g1 − p2‖ ≤ 5), where g1 = [0.8, 0]

T
,

g2 = [0,−0.8]
T

, g3 = [−1.2, 1.2]
T

, g4 = [1.2, 1.2]
T

,
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Fig. 1: Fixed-time convergent barrier functions evolution for

αk = βk = 1.
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Fig. 2: Robot trajectories. The triangles denote the orientation

for αk = βk = 1.

g5 = [1.2,−1.2]
T

. We first choose the parameters of the QP

formulation as µk = 4, αk = βk = 1, k ∈ {1, 2, 3}. Then,

we get δk = 0.9741 and considering (13), the upper bound of

− δk
2
√
αkβk

= −0.487 is acquired for the TFCBFs Hk(x̄k, t),

k ∈ {1, 2, 3}, as can be seen in Figure 1 as well as the agent

trajectories presented in Figure 2. We change the value of

parameters αk, βk to 0.4. This leads to δk = 0.9713 and

Hk(x̄k, t) ≥ −(
δk+

√
δk

2−4αkβk

2αk
)
µk

= 13.09, k ∈ {1, 2, 3}.

Therefore, a higher deviation from the desired set as well

as a faster settling-time in the main switching instant of

t = 35 s is acquired as is shown in Figure 3. Hence, the

fixed-time convergence criterion allows us to characterize

the behavior of TFCBFs independent of the agents initial

conditions. The computation times on an Intel Core

i5-8365U with 16 GB of RAM are about 2.45ms.

V. CONCLUSION

Based on a new notion of time-varying fixed-time con-

vergent control barrier functions, we presented a feedback

control strategy to find robust solutions for the performance

of the multi-agent systems under conflicting local STL tasks.

In particular, the lower bound of the introduced TFCBFs and

the finite convergence time can be characterized in a user-

specified way, independent of the initial conditions of the

agents. Future works extend these results to more general

collaborative tasks, including leader-follower topologies.

0 10 20 30 40 50 60 70 80 90

Time (s)

-14

-12

-10

-8

-6

-4

-2

0

2

4

6
H1(x̄1, t)
H2(x̄2, t)
H3(x̄3, t)

Fig. 3: Fixed-time convergent barrier functions evolution for

αk = βk = 0.4.
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