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Abstract— This paper studies the tracking control prob-
lem of networked and quantized control systems under both
multiple networks and event-triggered mechanisms. Multiple
networks are to connect the plant and reference system with
decentralized controllers to guarantee their information trans-
mission, whereas event-triggered mechanisms are to reduce
the information transmission via multiple networks. In this
paper, all networks are independent and asynchronous and
have local event-triggered mechanisms, which are based on local
measurements and determine whether the local measurements
need to be transmitted. We first implement an emulation-based
approach to develop a novel hybrid model for tracking control
of networked and quantized control systems. Next, sufficient
conditions are derived and decentralized event-triggered mecha-
nisms are designed to ensure the tracking performance. Finally,
a numerical example is given to illustrate the obtained results.

I. INTRODUCTION

The introduction of wired/wireless networks to connect
multiple smart devices leads to networked control systems
(NCS), the area of which includes three activities [1]: control
of networks; control over networks; and multi-agent systems.
The presence of networks improves efficiency and flexibility
of integrated applications, and reduces installation and main-
tenance time and costs [2], [3]. Smart devices are physically
distributed and interconnected such that their communica-
tions are via different types of networks, which result in
many issues like transmission delays, packet dropouts, quan-
tization, etc. Therefore, the main challenge is how to design
the control scheme to limit the effects of the network-induced
issues and to achieve the desired performances while keeping
the information transmission as minimal as possible. One
suitable approach is periodic event-triggered control (PETC)
[4]–[6], combining time-triggered control (TTC) [7], [8] and
event-triggered control (ETC) [9], [10]. The PETC allows
the triggering condition to be evaluated with a predefined
sampling period to decide the information transition, and
leads to a balance between TTC and ETC by avoiding the
continuous evaluation of the triggering condition [4], [6].

Many existing results on NCS focus mainly on stabil-
ity analysis and stabilization control, and both TTC and
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ETC/PETC have been addressed [3], [4], [11], [12]. How-
ever, tracking control, as a fundamental problem in control
theory [13], [14], received less attention [15]–[17]. The main
objective of the tracking control is to design controllers
such that the plant can track the given reference trajectory
as close as possible [18], [19]. In the tracking control, the
controller consists of two parts [14]: the feedforward part
to induce the reference trajectory for the plant, and the
feedback part to drive the plant to converge to the reference
trajectory. As opposed to the traditional tracking control,
the main challenge of the tracking control of NCS is that
only local/partial information is transmitted to the plant due
to limited-capacity communication networks. In addition,
the information transmission via networks may be a error
source affecting the tracking performance [14]. Therefore,
both network-induced errors and local interaction rules need
to be considered simultaneously, and thus result in additional
difficulties in the tracking performance analysis.

In this paper, we study the event-triggered tracking con-
trol problem for networked and quantized control systems
(NQCS), where several issues caused by the network and
quantization are included [20]. To this end, we implement
an emulation-like approach [3], [13], [14], and develop a
novel hybrid model using the formalism in [21] to address
the event-triggered tracking control for NQCS, which is our
first contribution. In particular, a general scenario is con-
sidered: multiple independent and asynchronous networks
are applied to ensure the communication among different
components. This scenario stems from many physical sys-
tems, where different communication channels are applied
to connect sensors, controllers and actuators. Hence, this
setting recovers the architectures in [13], [14] for NCS
and [16], [17] for MAS as special cases. In this setting,
a general hybrid model is developed to incorporate all
issues caused by multiple networks and decentralized event-
triggered mechanisms (ETMs). Our second contribution is
to apply the Lyapunov-based approach to investigate the
tracking performance. Specifically, motivated by multiple
Lyapunov functions approach and under reasonable assump-
tions, the decentralized ETMs are designed to reduce the
frequency of the information transmission, and the tradeoff
between the maximally allowable sampling period (MASP)
and the maximally allowable delay (MAD) is derived to
guarantee the tracking performance.

II. PRELIMINARIES

R := (−∞,+∞); R≥0 := [0,+∞); R>0 := (0,+∞);
N := {0, 1, 2, . . .}; N+ := {1, 2, . . .}. Given two sets A and



B, B\A := {x : x ∈ B, x /∈ A}. | · | denotes the Euclidean
norm. Given two vectors x, y ∈ Rn, (x, y) := (xT, yT)T

for simplicity of notation, and 〈x, y〉 denotes the usual inner
product. E denotes the vector with all components being
1, I denotes the identity matrix of appropriate dimension,
and diag{A,B} denotes the block diagonal matrix made of
the matrices A and B. Given a function f : R≥0 → Rn,
f(t+) := lim sups→0+ f(t + s). A function α : R≥0 →
R≥0 is of class K if it is continuous, α(0) = 0, and strictly
increasing; it is of class K∞ if it is of class K and unbounded.
β : R2

≥0 → R≥0 is of class KL if β(s, t) ∈ K for fixed t ≥ 0
and β(s, t) decreases to zero as t → 0 for fixed s ≥ 0. A
function β : R3

≥0 → R≥0 is of class KLL if β(r, s, t) ∈ KL
for fixed s ≥ 0 and β(r, s, t) ∈ KL for fixed t ≥ 0.

Consider the hybrid system [21]:{
ẋ = F (x,w), (x,w) ∈ C,
x+ = G(x,w), (x,w) ∈ D,

(1)

where x ∈ Rn is the system state, w ∈ Rm is the external
input, F : C → Rn is the flow map, G : D → Rm is
the jump map, C is the flow set and D is the jump set.
For the hybrid system (1), the following basic assumptions
are presented: the sets C,D ⊂ Rn × Rm are closed; F is
continuous on C; and G is continuous on D.

Definition 1 ( [21]): The system (1) is input-to-state sta-
ble (ISS) from w to x, if there exist β ∈ KLL and γ ∈ K∞
such that |x(t, j)| ≤ β(|x(0, 0)|, t, j) + γ(‖w‖∞) for all
(t, j) ∈ domx.

III. PROBLEM FORMULATION

Consider the following nonlinear system

ẋp = fp(xp, u), yp = gp(xp), (2)

where xp ∈ Rnp is the system state, u ∈ Rnu is the control
input, and yp ∈ Rny is the plant output. Similar to [13]–[19],
the reference system tracked by (2) is of the form:

ẋr = fp(xr, uf), yr = gp(xr). (3)

where xr ∈ Rnr is the reference state (nr = np), uf ∈ Rnu is
the feedforward control input, and yr ∈ Rny is the reference
output. Assume that the reference system (3) has a unique
solution for any initial condition and any input.

To track (3), the controller for (2) in the absence of the
network and quantizer is u = uc + uf, where uc ∈ Rnu is
the feedback item from the following controller

ẋc = fc(xc, yp, yr), uc = gc(xc), (4)

where xc ∈ Rnc is the state of the feedback controller; uf ∈
Rnu is the feedforward item and is related to plant state and
reference state. We assume that fp and fc are continuous; gp
and gc are continuously differentiable.

Since the emulation-based approach is applied [3], [13],
[14], the feedback controller (4) is assumed to be designed
for the network-free and quantization-free case. Hence, our
objective is to implement the designed controller over both
ETMs and multiple networks and quantizers, and to ensure
the tracking performance of the system (2)-(4) under reason-
able assumptions and the designed decentralized ETMs.

A. Information Transmission over Multiple Networks

The information is sampled via the sensors, quantized
and then determined (by the ETM to be designed) to be
transmitted via the network. Since the sensors and actuators
may be of different types, the connection among the plant,
the reference and the controller may be via multiple net-
works (e.g., wired/wireless networks [2], [12]). Therefore,
the information is transmitted via multiple networks.

Assumption 1: In the case that the ETM is implemented,
all sensors and actuators are connected via N ∈ N+

independent and asynchronous networks.
For each network i ∈ N := {1, . . . , N}, the information

to be transmitted is denoted by zi := (yip, y
i
r , u

i
f , u

i
c) ∈ Rni

z

with niz := niy + nir + nif + nic. The dynamics of zi is

żi = f iz(zi, xp, xr, x
i
c), (5)

where f iz can be computed explicitly via (2)-(4). The depen-
dence of żi on xp and xr comes from the potential depen-
dence of yip (or yir ) on xp (or xr). Denote z := (z1, . . . , zN ) ∈
Rnz , nz :=

∑N
i=1 n

i
z , and ż = fz := (f1z , . . . , f

N
z ) ∈ Rnz .

Because of the band-limited capacity of each network and
spatial locations of its sensors and actuators, all sensors
and actuators of each network are grouped into `i ∈ N+

nodes to access to the network [11]. Correspondingly, zi is
partitioned into `i parts. For the i-th network, its sampling
time sequence is given by {tij : i ∈ N , j ∈ N+}, which is
strictly increasing. At tij , one and only one node is allowed
to access to the i-th network, and this node is chosen by an
time-scheduling protocol. For the i-th network, the sampling
intervals are defined as hij := tij+1 − tij , where i ∈ N and
j ∈ N+. Since it takes time to compute and transmit the
information, there exist transmission delays τ ij ≥ 0 such that
the information is received at the arrival times rij = tij + τ ij .

Assumption 2: For the i-th network, i ∈ N , there exist
constants Ti ≥ ∆i ≥ 0 and εi ∈ (0, Ti) such that εi ≤ hij ≤
Ti and 0 ≤ τ ij ≤ min{∆i, h

i
j} hold for all j ∈ N+.

In Assumption 2, Ti > 0 is called the maximally allowable
sampling period (MASP) for the i-th network, ∆i ≥ 0 is
called the maximally allowable delay (MAD), and εi > 0 is
the minimal interval of two successive transmissions.

The sampled information is quantized before being trans-
mitted. For each network, each node j ∈ {1, . . . , `i} has a
quantizer. The quantizer is a piecewise continuous function
q̄ij : Rn

i
j → Qij ⊂ Rn

i
j , where Qij is finite. The following

assumption is made for the quantizer; see also [22].
Assumption 3: For all i ∈ N and j ∈ {1, . . . , `i}, there

exist mij > nij > 0 and ni0j > 0 such that for all zij ∈ Rn
i
j : i)

|zij | ≤ mij ⇒ |q̄ij(zij)− zij | ≤ nij ; ii) |zij | > mij ⇒ |q̄j(zij)| >
mij − nij ; iii) |zij | ≤ ni0j ⇒ q̄ij(z

i
j) ≡ 0.

In Assumption 3, εij := q̄ij(zj) − zij is the quantization
error. mij is the range of the j-th quantizer in i-th network, nij
is the bound on the quantization error. Based on the quantizer
q̄ij and Assumption 3, the applied quantizer is of the form:

qij(µ
i
j , z

i
j) = µij q̄

i
j(z

i
j/µ

i
j), j ∈ {1, . . . , `i}, (6)

where µij > 0 is a time-varying quantization parameter.



Assumption 4 ( [13]): The initial state (xp0, xr0, xc0) is
known a priori and bounded. The quantization parameter µij
is such that |zij | ≤ mijµ

i
j for all j ∈ {1, . . . , `i} and i ∈ N .

Assumption 4 is to ensure that the quantizer does not sat-
urate. Combining all quantizers in `i nodes yields the overall
quantizer: qi(µi, zi) := (qi1(µi1, z

i
1), . . . , qi`i(µ

i
`i
, zi`i)), where

µi := (µi1, . . . , µ
i
`i

) ∈ R`i is evolving as

µ̇i(t) = 0, t ∈ (rij , r
i
j+1), (7)

µi(r
i
j

+
) = Ωiµi(r

i
j), Ωi := diag{Ωi1, . . . ,Ωi`i}, (8)

where Ωij ∈ (0, 1]. The quantized measurement is defined
as z̄i = (ȳip, ȳ

i
r , ȳ

i
c, ȳ

i
f ) := (qi(µi, y

i
p), qi(µi, y

i
r ), qi(µi, y

i
c),

qi(µi, y
i
f )); the quantization error is defined as εi :=

(εip, ε
i
r , ε

i
c, ε

i
f) = (ȳip − yip, ȳir − yir , ūic − uic, ūif − uif).

To reduce the transmission frequency, a local ETM is
implemented for each network. That is, at tij , only when
the event-triggered condition for the i-th network is satisfied
can the quantized measurement be transmitted. Define ẑ :=
(ŷp, ŷr, ûc, ûf) ∈ Rnz as the received measurement after the
transmission, and the control input received by the plant is
û := ûc + ûf. The network-induced errors are ep := ŷp − yp,
er := ŷr − yr, ec := ûc − uc and ef := ûf − uf. Let
ẑ = (ẑ1, . . . , ẑN ) and e := ẑ − z = (e1, . . . , eN ) ∈ Rnz .

In [rij , r
i
j+1], the received measurement ẑi is assumed to

be implemented via the zero-order hold (ZOH) mechanism,
that is, ˙̂zi(t) = 0 for t ∈ [rij , r

i
j+1]. Whether ẑi is updated

at rij is based on the local ETM at tij . Assume that the
event-triggered condition for the i-th network is Γi ≥ 0,
where the function Γi : R≥0 → R will be designed
explicitly in Subsection V-B. Γi ≥ 0 implies the information
transmission, and ẑi is updated with the latest information.
That is, ẑi is updated by

ẑi(r
i
j

+
) =

{
z̄i(r

i
j) + hiz(κi(t

i
j), ei(t

i
j)), Γi(t

i
j) ≥ 0,

ẑi(r
i
j), Γi(t

i
j) < 0,

(9)

where κi : R≥0 → N is a counter to record the number
of the successful transmission events. That is, κi(tij

+
) =

κi(t
i
j) + 1 if Γi(t

i
j) ≥ 0, and κi(t

i
j
+

) = κi(t
i
j) otherwise.

hiz ∈ Rnz is the update function and depends on the time-
scheduling protocol. Denote hiz := (hip,h

i
r ,h

i
c,h

i
f) from

the definition of ẑi. Furthermore, we can rewrite (9) as
ẑi(r

i
j
+

) = (1 − Υ(Γi(t
i
j)))ẑi(r

i
j) + Υ(Γi(t

i
j))[z̄i(r

i
j) +

hiz(κi(t
i
j), ei(t

i
j))], where Υ : R → {0, 1} is defined as

Υ(Γi) = 1 if Γi ≥ 0 and Υ(Γi) = 0 otherwise. Hence ,
ei is updated by ei(r

i
j
+

) = ẑi(r
i
j
+

) − zi(rij
+

) = ei(r
i
j) +

Υ(Γi(t
i
j))[h

i
z(κi(t

i
j),xi(t

i
j), ei(t

i
j), µi(t

i
j)) − ei(t

i
j)], where

hiz(κi, xi, ei, µi) = εi + hiz(κi, ei) and xi = (xip, x
i
r , x

i
c, u

i
f).

IV. DEVELOPMENT OF HYBRID MODEL

After the presentation of the information transmission, we
construct the hybrid model for the event-triggered tracking
control of NQCS in this section. Define the tracking error
η := xp−xr ∈ Rnp , and ea := (eη, ec) := (ep−er, ec) ∈ Rna

with ep, er, ec defined in Section III, where na = ny + nc.

Combining all variables and analyses in Subsection III-A,
we derive the following impulsive model:

η̇ = Fη(δ, η, xc, xr, ea, ef, er)

ẋc = Fc(δ, η, xc, xr, ea, ef, er)

ẋr = Fr(δ, xr, ef), µ̇ = 0

ėa = Ga(δ, η, xc, xr, ea, ef, er)

ėr = Gr(δ, η, xc, xr, ea, ef, er)

ėf = Gf(δ, η, xc, xr, ea, ef, er)


ti ∈ [rij , r

i
j+1], (10a)

µi(r
i
j

+
) = Ωiµi(r

i
j), δi(r

i
j

+
) = δi(r

i
j),

eia(r
i
j

+
) = eia(r

i
j) + Υ(Γi(t

i
j))[−eia(tij)

hia(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

eir(r
i
j

+
) = eir(r

i
j) + Υ(Γi(t

i
j))[−eir(tij)

+ hir(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

eif(r
i
j

+
) = eif(r

i
j) + Υ(Γi(t

i
j))[−eif(tij)

+ hif(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

(10b)

where ei := (eia, e
i
r , e

i
f), hia = (hip − hir , h

i
c), h

i
r = hir and

hif = hif . δ := (δ1, . . . , δN ) ∈ RN , and δi ∈ R≥0 is to model
the ‘continuous’ time of the i-th network and depends on
uif and/or its differential [13], [14]. Now, our objective is
to derive reasonable conditions and ETMs simultaneously to
guarantee ISS of the system (10) from (er, ef) to (η, ea).

We further transform (10) into a hybrid model in the
formalism of [21]. Define x := (η, xc, xr) ∈ Rnx and
e := (ea, er, ef) ∈ Rne with nx = np + nc + nr and ne =
na+ny+nu. Define m := (m1, . . . ,mN ) ∈ Rne with mi :=

hi(κi, ei) − ei ∈ Rni
e , where ei := (eia, e

i
r , e

i
f) and hi :=

(hia, h
i
r , h

i
f) are defined in (10). Let κ := (κ1, . . . , κN ) ∈ RN

with κi ∈ N defined in (9); µ := (µ1, . . . , µN ) ∈ RL

with L :=
∑
i∈N `i and µi ∈ R defined in (7)-(8); τ :=

(τ1, . . . , τN ) ∈ RN with τi ∈ R defined as a timer to record
both sampling intervals and transmission delays for the i-
th network; b := (b1, . . . , bN ) ∈ RN with bi ∈ {0, 1} to
show whether the next jump is from the sampling event or
the update event. Denote X := (x, e, µ,m, δ, τ, κ, b) ∈ R :=
Rnx × Rne × RL × Rne × RN × RN × RN × {0, 1}N , and
the hybrid model is given by

Ẋ = F (X), X ∈ C, X+ = G(X), X ∈ D, (11)

where C := ∪Ni=1Ci, D := ∪Ni=1(D1i ∪ D2i), Ci := {X ∈
R : (bi, τi) ∈ ({0} × Ti) ∪ ({1} × ∆i)}, D1i := {X ∈
R : (bi, τi) ∈ {0} × [εi, Ti]}, D2i := {X ∈ R : (bi, τi) ∈
{1} ×∆i}, and Ti := [0, Ti],∆i := [0,∆i]. The mapping
F in (11) is defined as

F (X) := (f(δ, x, e), g(δ, x, e), 0, 0,E,E, 0, 0), (12)

where f := (Fη, Fr, Fc) and g := (Ga, Gr, Gf) are derived
from (10a). The mapping G in (11) is defined as

G(X) :=

{
G1(X), X ∈ D1,

G2(X), X ∈ D2,
(13)



with G1(X) = ∪Ni=1G1i(X), D1 = ∪Ni=1D1i, G2(X) =
∪Ni=1G2i(X), D2 = ∪Ni=1D2i,

G1i(X) :=

{
G1i(X), X ∈ D1i,

∅, X /∈ D1i,
(14)

G1i(X) = (x, e, µ,M1i(x, e,m, κ), δ,Λiτ, κ + Υ(Γi)(I −
Λi)E, b+ (I − Λi)E);

G2i(X) :=

{
G2i(X), X ∈ D2i,

∅, X /∈ D2i,
(15)

and G2i(X) = (x, Ei(x, e,m, κ),Ωiµ,M2i(x, e,m, κ), δ, τ,
κ,Λib), where Λi := diag{Λ1

i , . . . ,Λ
N
i } with Λki = 0 if k =

i ∈ N and Λki = 1 otherwise; Ωi := diag{Ω1
i , . . . ,Ω

N
i } ∈

RL×L with Ωk
i = Ωi if k = i ∈ N and Ωk

i = I otherwise;

M1i(x, e,m, κ) := Φim+ (I − Φi)M1i(x, e,m, κ),

M2i(x, e,m, κ) := Φim+ (I − Φi)M2i(e,m),

Ei(x, e,m, κ) := Φim+ Υ(Γi)(I − Φi)Ei(e,m).

Here, Φi := diag{Φ1
i , . . . ,Φ

N
i } ∈ Rne×ne ,M1i :=

(M1
1i, . . . ,M

N
1i ) ∈ Rne ,M2i := (M1

2i, . . . ,M
N
2i ) ∈ Rne and

Ei := (E1
i , . . . , E

N
i ) ∈ Rne . If k = i, then Φki = 0,Mk

1i =
(1−Υ(Γi))mi+Υ(Γi)(hi(κi, ei)−ei),Mk

2i = −ei−mi and
Eki = ei+mi. If k 6= i, then Φki = I,Mk

1i = Mk
2i = Eki = 0.

V. MAIN RESULTS

In this section, we first present necessary assumptions,
then design the event-triggered condition for each network,
and finally establish the convergence of the tracking error.

A. Assumptions

To begin with, some assumptions are presented.
Assumption 5: There exist a function Wi : Rni

e × R`i ×
Rni

e × N × {0, 1} → R≥0 which is locally Lipschitz
in (ei, µi,mi) for all κi ∈ N, bi ∈ {0, 1}, αi ∈
K∞,  ∈ {1, . . . , 6}, and λi ∈ [0, 1) such that for all
(ei, µi,mi, κi, bi) ∈ Rni

e × R`i × Rni
e × N× {0, 1},

α1i(|eia|) ≤Wi(ei, µi,mi, κi, bi) ≤ α2i(|ei|), (16)
Wi(ei, µi, hi(κi, ei)− ei, κi + 1, 1)

≤ λiWi(ei, µi,mi, κi, 0) + α3i(|eif |) + α4i(|eir |), (17)
Wi(ei +mi,Ωiµi,−ei −mi, κi, 0)

≤Wi(ei, µi,mi, κi, 1) + α5i(|eif |) + α6i(|eir |). (18)
Assumption 6: There exist a continuous function Hibi :

Rnx × Rne → R>0, σ1ibi , σ2ibi ∈ K∞ and Libi ∈ [0,∞)

such that 〈∂Wi(ei,µi,mi,κi,bi)
∂ei

, gi(δ, x, e)〉 ≤ Hibi(x, e) +

LibiWi(ei, µi,mi, κi, bi) + σ1ibi(|eif |) + σ2ibi(|eir |) for all
(x, κi, bi) ∈ Rnx × N× {0, 1} and almost all (ei, µi,mi) ∈
Rni

e × R`i × Rni
e .

Assumptions 5-6 are on the ei-subsystem. Assumption 5
is to estimate the jumps of Wi at the discrete-time instants.
Specifically, (17) is for the successful transmission jumps
(i.e., Γi ≥ 0), and (18) is for the update jumps. Assumption
6 is to estimate the derivative of Wi in the continuous-
time intervals, and the coupling is shown via the function
Hibi . Since Assumptions 5-6 are applied to the ei-subsystem,

(17)-(18) hold with respect to eir and eif , which are parts
of ei and treated as the internal disturbances caused by
the network. Similar conditions have been considered in
existing works [3], [13], [14], where however only a common
communication network and TTC are studied.

Assumption 7: There exist a locally Lipschitz function V :
Rnx → R≥0, α1V , α2V , ζ1ibi , ζ2ibi , ζ3ibi , ζ4ibi ∈ K∞, and
µ, θibi , γibi > 0, L̄ibi ∈ R such that α1V (|η|) ≤ V (x) ≤
α2V (|x|) for all x ∈ Rnx , and for all (ei, µi,mi, κi, bi) ∈
Rni

e × R`i × Rni
e × N× {0, 1} and almost all x ∈ Rnx ,

〈∇V (x), f(δ, x, e)〉 ≤ −µV (x)−
N∑
i=1

[
H2
ibi(x, e)

+ (γ2ibi − θibi)W
2
i (ei, µi,mi, κi, bi)−Kibi(x, e, µ,m)

−ϕibi(zi) + ζ1ibi(|eif |) + ζ2ibi(|eir |)
]
, (19)

〈∇ϕibi(zi), f iz(δ, x, e)〉 ≤ L̄ibiϕi(zi) +Kibi(x, e, µ,m)

+H2
ibi(x, e) + ζ3ibi(|eif |) + ζ4ibi(|eir |), (20)

where Hibi is defined in Assumption 6, ϕibi : Rni
z → R≥0

is a locally Lipschitz function with ϕibi(0) = 0, and Kibi :
Rnx × Rne × RL × Rne → R≥0 is a continuous function.

Assumption 7 is on the x-subsystem, and imply that
the η-subsystem satisfies the ISS-like property from
(
∑N
i=1Wi, ef, er) to η. This assumption is reasonable due to

the implementation of the emulation-based approach, where
the controller is assumed to be known a priori to ensure
the tracking performance robustly in the network-free case.
Hence, in the presence of the network, (

∑N
i=1Wi, ef, er)

is treated as the disturbance. Moreover, (20) provides the
growth bound on the derivative of the function ϕibi on the
flow. Finally, for the linear case, Assumptions 5-7 can be
represented as a whole linear matrix inequality; see e.g. [23].

B. Decentralized Event-Triggered Mechanisms

With Assumption 5-7, the ETM is designed for each
network, that is, the function Γi in (10) is defined as a
mapping from Rni

z × Rni
e × R`i × Rni

e × N× {0, 1} to R:

Γi(zi, ei, µi,mi, κi, bi) := −biγibiW 2
i (ei, µi,mi, κi, bi)

− (1− bi)ρiλ̄iϕibi(zi), (21)

where Wi is from in Assumption 5, ϕibi is from in Assump-
tion 7, ρi ≥ 0 is a design parameter with ρi ∈ [0, ρ̄i), and

λ̄i := max
{
λi, (1− ρiL̄i0)−1ρiγi0

}
, (22)

ρ̄i :=

{
1, L̄i0 ≤ −γi0,
min

{
1, (L̄i0 + γi0)−1

}
, L̄i0 > −γi0,

(23)

with λi in Assumption 5 and γi0, L̄i0 in Assumption 7.
With the function (21), the event-triggered condition is

Γi ≥ 0, which is similar to those in [10], [23] for the ETC
in different contexts. One difference between (21) and the
existing ones lies in the local logical variable bi, which leads
to two cases in (21). Since the case bi = 1 implies that the
update event will occur at the arrival instant, the ETM is
not needed and Γi = −γi1W 2

i (ei, µi,mi, κi, 1) < 0, which
thus implies that the ETM will not be implemented in this



case. In contrast, for the case bi = 0, the next event is the
transmission event, and the ETM is implemented to deter-
mine whether the sampled measurement will be transmitted.
Hence, Γi = γi0W

2
i (ei, µi,mi, κi, 0) − ρiλ̄iϕi0(zi) ≥ 0

will be verified in this case. As a result, the parameters in
(22)-(23) only depend on the case bi = 0, and all designed
event-triggered conditions are consistent with the transmis-
sion setup and decentralized since only local information is
involved in each event-triggered condition.

Finally, consider the following differential equation

φ̇ibi = −2Libiφibi − γibi((1 + %ibi)φ
2
ibi + 1), (24)

where i ∈ N , Libi ≥ 0 is given in Assumption 6, and γibi >
0 is given in Assumption 7. %ibi ∈ (0, λ̄−2i φ−2ibi (0)− 1) and
φibi(0) ∈ (1, λ̄−1i ) with λ̄i in (22). From Claim 1 in [14], the
solutions to (24) are strictly decreasing as long as φibi ≥ 0.

C. Tracking Performance Analysis
Now we are ready to state the main result of this section.
Theorem 1: Consider the system (13) and let Assumptions

1-7 hold. If the MASP Ti and the MAD ∆i satisfy

γi0φi0(τi) ≥ (1 + %i1)λ̄2i γi1φi1(0), τi ∈ Ti, (25a)
γi1φi1(τi) ≥ (1 + %i0)γi0φi0(τi), τi ∈∆i, (25b)

where φibi is the solution to (24) with φibi(0), φibi(Ti) > 0,
then the system (11) is ISS from (er, ef) to (η, ea).

Theorem 1 implies the convergence of the tracking error
to a region around the origin, and the size of the convergence
region depends on the network-induced error (er, ef). If the
feedforward control inputs are transmitted directly to the
plant and reference system, then ef = 0, ϕ1 ≡ 0, and thus
the convergence region can be further smaller. Comparing
with previous works [12]–[14], [18], [23] on NCS and [15],
[16] on MAS, the event-triggered tracking control problem
is studied here for NQCS under decentralized ETMs and
network constraints. In particular, quantization effects and/or
time delays are not considered in [12], [14]–[16], [18], [23],
and the time-triggered tracking control is addressed in [13],
[14]. Therefore, a unified model is developed here and the
tracking performance is achieved via less communication.

VI. NUMERICAL EXAMPLE

Consider two connected single-link robot arms, whose
dynamics are presented as (i = 1, 2)

q̇i1p = qi2p ,

q̇i2p = −ai sin qi1p +

2∑
j=1

bij(q
1j
p − q2jp ) + ciui,

(26)

where qip := (qi1p , q
i2
p ) ∈ R2 with the configuration coordi-

nate qi1p and the velocity qi2p , both of which are measurable,
ui ∈ R is the input torque, and ai, ci > 0, bij ∈ R are certain
constants. The reference system is given by

q̇i1r = qi2r ,

q̇i2r = −ai sin qi1r +

2∑
j=1

bij(q
1j
r − q2jr ) + ciu

i
f ,

(27)
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Fig. 1. Tracking errors under the RR protocol case and the ETM (28),
where T1 = T2 = 0.01 and ∆1 = ∆2 = 0.0015.

where qir := (qi1r , q
i2
r ) ∈ R2 are the measurable reference

state, and uif = 5 sin(5t) is the feedforward input. In the
network-free case, the feedback controller is designed as
uic = −c−1i [ai(sin(qi1p )−sin(qi1r ))−(qi1p −qi1r )−(qi2p −qi2r )]
such that the tracking error is asymptotically stable.

We consider the case that the communication between the
controller and the plant is via the ETMs and two communi-
cation networks and quantizers. The controller is applied via
the ZOH devices and the networks has `i = 3 nodes for qi1p ,
qi2p and ui, respectively. Set maxi∈{1,2},j∈{1,2,3} n

i
j = 0.8

and maxi∈{1,2},j∈{1,2,3}Ωij = 0.6. Hence, the feedback
controller is uic = −c−1i [ai(sin(q̂i1p ) − sin(q̂i1r )) − (q̂i1p −
q̂i1r ) + (q̂i2p − q̂i2r )]. uif is assumed to be transmitted to (27)
directly, and q̂i1r , q̂

i2
r are implemented in the ZOH fashion.

That is, uic knows but does not depend on qi1r , q
i2
r .

Let Di =
√

3 max{1 + ai, ci}. From [13], we choose
the appropriate Lyapunov function Wi(ei, µi,mi, κi, τi, bi).
For instance, Wi(ei, µi,mi, κi, τi, bi) := ωi|eia| + |µi| for
the TOD protocol, where ωi ∈ (0, (1−maxj Ωij)/maxj n

i
j).

|∂W (ei, µi,mi, κi, τi, bi)/∂ei| ≤Mi with Mi =
√
`i for the

RR protocol case and Mi = 1 for the TOD protocol case.
Assumption 5 holds with λi = max{

√
(`i − 1)/`i, ωimin

i
j+

Ωij} and α3i = α4i = α5i = α6i = 0. Assumption 6
holds with Li0 = MiDi, Li1 = M2

i Di/λi, Hi0(x, e) =
Hi1(x, e) = Mi(|ηi2| + |(bi1 − 1)ηi1 + (bi2 − 1)ηi2| +
|bi1η(3−i)1|+ |bi2η(3−i)2|), σ1i0(v) = σ1i1(v) = ciMiv and
σ2i0(v) = σ2i1(v) = 2aiMiv for v ≥ 0.

To verify Assumption 7, define V (η) :=
∑2
i=1 φi1η

2
i1 +

φi2ηi1ηi2 + φi3η
2
i2 with φi1, φi2, φi3 ∈ R. Let âi, ãi ∈

[−ai, ai] such that ai[sin(ηi1 + qi1r )− sin(ηi1 + qi1r + ei1η +
ei1r )] = âi(e

i1
η + ei1r ) and ai[sin(qi1r ) − sin(qi1r + ei1r )] =

ãie
i1
r . Thus, 〈∇V (η), Fη(δ, x, e, µ)〉 ≤

∑2
i=1[−φi1η2i1 +

(2φi1 − 2φi3 − φi2)ηi1ηi2 − (2φi3 − φi1)η2i2 + (φi2ηi1 +
2φi3ηi2)(bi1(η11 − η21) + bi2(η12 − η22)) + 0.5(%−1i0 +
%−1i1 )(φi1ηi1 + 2φi3ηi2)2 + 0.5%i0Di|ei|2 + %i1(4a2i |eir |2 +
c2i |eif |2)], where %i0, %i1 > 0 are given in (24). If φ1, φ2, φ3
are such that −H2

ibi
(x, e) − Kibi(x, e, µ,m) − ϕibi(zi) ≥

−φi1η2i1 + (2φi1 − 2φi3 − φi2)ηi1ηi2 − (2φi3 − φi1)η2i2 +
(φi1ηi1 + 2φi3ηi2)(bi1(η11 − η21) + bi2(η12 − η22)) +
0.5(%−1i0 + %−1i1 )(φi1ηi1 + 2φi3ηi2)2, then Assumption 7
holds with θibi(v) = πiv

2, γi0 =
√
πi + %i0D2

i , γi1 =√
πi + %i1MiD2

i /λ
2
i , ζ1ibi(v) = %i1a

2
i |v|2, ζ4ibi(v) =

%i1a
2
i |v|2 and πi > 0 is arbitrarily small.

Let φ11 = 8, φ12 = 12, φ13 = 6, φ21 = 5, φ22 =
7, φ23 = 9, a1 = 9.81 ∗ 0.2, a2 = 9.81 ∗ 0.3, c1 = 2, c2 =
4, πi = 0.005, %i0 = 20 and %i1 = %i0Mi/λ1. Thus, L10 =
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Fig. 2. Tracking errors under the TOD protocol case and the ETM (28),
where T1 = T2 = 0.014 and ∆1 = ∆2 = 0.0025.

TABLE I
COMPARISON OF TRANSMISSION NUMBERS IN DIFFERENT CASES

Network Event-triggering Time-triggering
RR case TOD case [13], [14]

Network 1 887 1606 2000
Network 2 1448 1838 2000

8.8860, L11 = 18.8501, L20 = 12, L21 = 25.4558, γ10 =
22.9436, γ11 = 48.6706, γ20 = 30.9839, γ21 = 65.7267 for
the RR protocol case; L10 = 5.1303, L11 = 10.8831, L20 =
6.9282, L21 = 14.6969, γ10 = 22.9436, γ11 = 28.1, γ20 =
30.9839, γ21 = 37.9473 for the TOD protocol case. By the
detailed computation, ρ1 = 0.0501 and ρ2 = 0.0371 for RR
and TOD protocols. Hence, ρi ∈ (0, ρi), and the ETM is

Γi = −biγi|(eiη, eir , µi)|2 + (1− bi)ρiλ̄i|ηi|2 ≥ 0. (28)

Set φ10(0) = φ11(0) = 1.1023 and φ20(0) = φ21(0) =
0.8816 for the RR protocol case, and we have T1 =
0.0256,∆1 = 0.0064, T2 = 0.0161, and ∆2 = 0.0026.
Set φ10(0) = φ11(0) = φ20(0) = φ21(0) = 1.0468 for
the TOD protocol case, and we have T1 = 0.0279,∆1 =
0.00445, T2 = 0.02115, and ∆2 = 0.0032. To simplify the
simulation, the transmission intervals and the transmission
delays are constants. Under the ETM (28), Figs. 1-2 show
the convergence and boundedness of tracking errors in RR
and TOD protocol cases, respectively.

The numbers of information transmission in different cases
are presented in Table I. We consider 23 units of time for
the RR case and 32 units of time for the TOD case. The
transmission numbers are the same (2000 times) in the time-
triggered case [13], [14], whereas the transmission numbers
are reduced to different extents in the event-triggered case.
In particular, the transmission numbers of two networks in
the RR case are less than these in the TOD case.

VII. CONCLUSIONS

We presented a Lyapunov-based emulation approach for
the event-triggered tracking control problem of NQCS, where
the information communication is via multiple asynchronous
networks. To deal with this problem, we proposed a new
hybrid model, and then established sufficient conditions
and designed decentralized event-triggered mechanisms. The
tradeoff between the MASP and the MAD was determined to
guarantee the tracking performance. The effectiveness of the
proposed approach was illustrated via a numerical example.
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