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Abstract—This paper studies the tracking control prob-
lem of networked and quantized control systems under both
multiple networks and event-triggered mechanisms. Multiple
networks are to connect the plant and reference system with
decentralized controllers to guarantee their information trans-
mission, whereas event-triggered mechanisms are to reduce
the information transmission via multiple networks. In this
paper, all networks are independent and asynchronous and
have local event-triggered mechanisms, which are based on local
measurements and determine whether the local measurements
need to be transmitted. We first implement an emulation-based
approach to develop a novel hybrid model for tracking control
of networked and quantized control systems. Next, sufficient
conditions are derived and decentralized event-triggered mecha-
nisms are designed to ensure the tracking performance. Finally,
a numerical example is given to illustrate the obtained results.

I. INTRODUCTION

The introduction of wired/wireless networks to connect
multiple smart devices leads to networked control systems
(NCS), the area of which includes three activities [1]: control
of networks; control over networks; and multi-agent systems.
The presence of networks improves efficiency and flexibility
of integrated applications, and reduces installation and main-
tenance time and costs [2], [3]. Smart devices are physically
distributed and interconnected such that their communica-
tions are via different types of networks, which result in
many issues like transmission delays, packet dropouts, quan-
tization, etc. Therefore, the main challenge is how to design
the control scheme to limit the effects of the network-induced
issues and to achieve the desired performances while keeping
the information transmission as minimal as possible. One
suitable approach is periodic event-triggered control (PETC)
[4]-[6], combining time-triggered control (TTC) [7], [8] and
event-triggered control (ETC) [9], [10]. The PETC allows
the triggering condition to be evaluated with a predefined
sampling period to decide the information transition, and
leads to a balance between TTC and ETC by avoiding the
continuous evaluation of the triggering condition [4], [6].

Many existing results on NCS focus mainly on stabil-
ity analysis and stabilization control, and both TTC and
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ETC/PETC have been addressed [3], [4], [11], [12]. How-
ever, tracking control, as a fundamental problem in control
theory [13], [14], received less attention [15]-[17]. The main
objective of the tracking control is to design controllers
such that the plant can track the given reference trajectory
as close as possible [18], [19]. In the tracking control, the
controller consists of two parts [14]: the feedforward part
to induce the reference trajectory for the plant, and the
feedback part to drive the plant to converge to the reference
trajectory. As opposed to the traditional tracking control,
the main challenge of the tracking control of NCS is that
only local/partial information is transmitted to the plant due
to limited-capacity communication networks. In addition,
the information transmission via networks may be a error
source affecting the tracking performance [14]. Therefore,
both network-induced errors and local interaction rules need
to be considered simultaneously, and thus result in additional
difficulties in the tracking performance analysis.

In this paper, we study the event-triggered tracking con-
trol problem for networked and quantized control systems
(NQCS), where several issues caused by the network and
quantization are included [20]. To this end, we implement
an emulation-like approach [3], [13], [14], and develop a
novel hybrid model using the formalism in [21] to address
the event-triggered tracking control for NQCS, which is our
first contribution. In particular, a general scenario is con-
sidered: multiple independent and asynchronous networks
are applied to ensure the communication among different
components. This scenario stems from many physical sys-
tems, where different communication channels are applied
to connect sensors, controllers and actuators. Hence, this
setting recovers the architectures in [13], [14] for NCS
and [16], [17] for MAS as special cases. In this setting,
a general hybrid model is developed to incorporate all
issues caused by multiple networks and decentralized event-
triggered mechanisms (ETMs). Our second contribution is
to apply the Lyapunov-based approach to investigate the
tracking performance. Specifically, motivated by multiple
Lyapunov functions approach and under reasonable assump-
tions, the decentralized ETMs are designed to reduce the
frequency of the information transmission, and the tradeoff
between the maximally allowable sampling period (MASP)
and the maximally allowable delay (MAD) is derived to
guarantee the tracking performance.

II. PRELIMINARIES

R := (_OO’+OO); REO = [0,4—00); Ryp = (0,+OO);
= 1,2,

N := {0, ...}s Ny :={1,2,...}. Given two sets .A and



B, B\A :={z: 2z € B,z ¢ A}. | -| denotes the Euclidean
norm. Given two vectors z,y € R, (z,y) := (2T,yT)7T
for simplicity of notation, and (x,y) denotes the usual inner
product. I& denotes the vector with all components being
1, I denotes the identity matrix of appropriate dimension,
and diag{ A, B} denotes the block diagonal matrix made of
the matrices A and B. Given a function f : Ry — R",
f(tt) == limsup,_,o+ f(t + s). A function o : R>p —
R>¢ is of class K if it is continuous, a(0) = 0, and strictly
increasing; it is of class K, if it is of class K and unbounded.
B: R, — Rx is of class KL if B(s,t) € K for fixed t > 0
and (s, t) decreases to zero as t — 0 for fixed s > 0. A
function 3 : RE ) — R is of class KLL if B(r, s, t) € KL
for fixed s > 0 and B(r, s,t) € KL for fixed t > 0.
Consider the hybrid system [21]:

T =F(z,w), (z,w)eC,
zt = G(z,w), (z,w)e D,

where z € R is the system state, w € R™ is the external
input, ¥ : C — R" is the flow map, G : D — R™ is
the jump map, C is the flow set and D is the jump set.
For the hybrid system (1), the following basic assumptions
are presented: the sets C, D C R™ x R™ are closed; F' is
continuous on C'; and G is continuous on D.

Definition 1 ( [21]): The system (1) is input-to-state sta-
ble (ISS) from w to x, if there exist § € KLL and 7 € K
such that |z(¢,7)] < B(]z(0,0)],%,5) + v(]Jw|]|eo) for all
(t,7) € domz.

(D

III. PROBLEM FORMULATION

Consider the following nonlinear system

iy = folzp,u),  yp = gp(@p), 2)
where x, € R™ is the system state, u € R™ is the control
input, and y, € R™v is the plant output. Similar to [13]-[19],
the reference system tracked by (2) is of the form:

&y = fp(ﬂfr,Uf), Yr = gp(xr)~ 3)

where z, € R™ is the reference state (n, = n,), ur € R+ is
the feedforward control input, and y, € R™ is the reference
output. Assume that the reference system (3) has a unique
solution for any initial condition and any input.

To track (3), the controller for (2) in the absence of the
network and quantizer is v = u. + ug, where u, € R™ is
the feedback item from the following controller

Te = fC(mmypayr)a Ue = ge(7e), 4)

where x. € R™ is the state of the feedback controller; us €
R™ is the feedforward item and is related to plant state and
reference state. We assume that f;, and f. are continuous; g,
and g. are continuously differentiable.

Since the emulation-based approach is applied [3], [13],
[14], the feedback controller (4) is assumed to be designed
for the network-free and quantization-free case. Hence, our
objective is to implement the designed controller over both
ETMs and multiple networks and quantizers, and to ensure
the tracking performance of the system (2)-(4) under reason-
able assumptions and the designed decentralized ETMs.

A. Information Transmission over Multiple Networks

The information is sampled via the sensors, quantized
and then determined (by the ETM to be designed) to be
transmitted via the network. Since the sensors and actuators
may be of different types, the connection among the plant,
the reference and the controller may be via multiple net-
works (e.g., wired/wireless networks [2], [12]). Therefore,
the information is transmitted via multiple networks.

Assumption 1: In the case that the ETM is implemented,
all sensors and actuators are connected via N &€ Ny
independent and asynchronous networks.

For each network ¢ € N := {1,..., N}, the information
to be transmitted is denoted by z; := (i, uf, ul) € R™=
with n%, := n; + n; + ng + n¢. The dynamics of z; is

Z’i = f;(ziaxpaxrvxi)a (5)

where fzi can be computed explicitly via (2)-(4). The depen-
dence of z; on x, and x, comes from the potential depen-
dence of y (or y;) on z;, (or z;). Denote 2 := (21,...,2n5) €
R™, n, = Zilni, and z2 = f, == (fL,..., fN) € R,
Because of the band-limited capacity of each network and
spatial locations of its sensors and actuators, all sensors
and actuators of each network are grouped into ¢; € N
nodes to access to the network [11]. Correspondingly, z; is
partitioned into ¢; parts. For the i-th network, its sampling
time sequence is given by {t; 14 € N,j € Ny}, which is
strictly increasing. At t%, one and only one node is allowed
to access to the i-th network, and this node is chosen by an
time-scheduling protocol. For the ¢-th network, the sampling
intervals are defined as h’ :=t},, —t}, where i € N and
7 € Ny. Since it takes time to compute and transmit the
information, there exist transmission delays T; > 0 such that
the information is received at the arrival times r; =t} + 7;.

Assumption 2: For the i-th network, i € N, there exist
constants 7; > A; > 0 and ¢; € (0,T;) such that ¢; < h; <
T; and 0 < 7/ < min{A;, k}} hold for all j € Ny.

In Assumption 2, T; > 0 is called the maximally allowable
sampling period (MASP) for the i-th network, A; > 0 is
called the maximally allowable delay (MAD), and €; > 0 is
the minimal interval of two successive transmissions.

The sampled information is quantized before being trans-
mitted. For each network, each node j € {1,...,¢;} has a
quantizer. The quantizer is a piecewise continuous function
qj- CRY Qz- C R™, where Q§- is finite. The following
assumption is made for the quantizer; see also [22].

Assumption 3: For all i € N and j € {1,...,4;}, there
exist m’ > n’ > 0 and néj > 0 such that for all zh e R’?z‘ : 1)
< w5 = 17 (5) — 5l < wds i [<5] > ) = g, ()] >
m; — nf; i) |25 <ng; = ¢5(25) = 0.

In Assumption 3, €} := q;(z;) — z; is the quantization
error. m; is the range of the j-th quantizer in i-th network, n’
is the bound on the quantization error. Based on the quantizer
q;'. and Assumption 3, the applied quantizer is of the form:

qi(ph, 2h) = i (=i /), jef{l,....6},  (6)

where ,u;'- > ( is a time-varying quantization parameter.



Assumption 4 ( [13]): The initial state (xpo, Zr0, Zco) iS
known a priori and bounded. The quantization parameter u§
is such that |2%| <m}u’ forall j € {1,...,4;} and i € N.

Assumption 4 is to ensure that the quantizer does not sat-
urate. Combining all quantizers in ¢; nodes yields the overall

quantizer: ¢;(pi, zi) := (qi(ui, 21), - - 4p, (15, 25,)), Where

pi = (B4, ..., pp,) € R* is evolving as
/U'Z(t) =0, te (7‘;,7”;+1), (7
/J/i(rj ) = Qiui(rj)a Qi = dlag{le DI éi}7 (8)
where € (0,1]. The quantized measurement is defined

as z; = (yp’ yrﬂ yc? yt) = (ql(ula y]g)v ql(lu‘l’ yl%)v ql(/u‘l’ yé)v
qi(i, yf)); the quantization error is defined as ¢ :=
(GP,E 60, Ef) (Q;—y;,gjﬁ _ygaag —ui,ﬂ%—u%).

To reduce the transmission frequency, a local ETM is
implemented for each network. That is, at th, only when
the event-triggered condition for the i-th network is satisfied
can the quantized measurement be transmitted. Define 2 :=
(Up, Ur, Te, i) € R™= as the received measurement after the
transmission, and the control input received by the plant is
4 := . + 4is. The network-induced errors are e, := g, — yp,
e = Y — Y, € = Uc — U and ef = Uy — up. Let
2=(%,...,2v)and e : =2 — 2 = (e1,...,en) € R"=,

In [r}, 7%, ], the received measurement Z; is assumed to
be implemented via the zero- -order hold (ZOH) mechanism,
that is, Zi(t) = 0 for t € [r! 75, 7% 1]. Whether 2; is updated
at r; is based on the local ETM at tl Assume that the
event triggered condition for the i-th network is I, > 0,
where the function I'; : R>9 — R will be designed
explicitly in Subsection V-B. I'; > 0 implies the information
transmission, and Z; is updated with the latest information.
That is, 2; is updated by
5t = Zi(T}) + h;(ni(t;),ei(t;)), Iy(t5) > 0,
o z(r5), Tu(ty) <0,

where k; : R>9 — N is a counter to record the number
of the successful transmission events. That is, m(tfr) =
ki(th) 4+ 1 if Ty(t5) > 0, and m(tl ) = ki(t}) otherwise.
h! € R": is the update function and depends on the time-
scheduling protocol. Denote h% := (h{,h{, hi h{) from
the definition of Z;. Furthermore, we can rewrite (9) as
A7) = (1= TO)4(rh) + Ti(E)[z:(rh) +
he (ki(t}), ei(t}))], where T : R — {0,1} is defined as
T(T;) =1if I'; > 0 and YT(T';) = 0 otherwise. Hence ,
e; is updated by ei(r§+)_ = él(rf) zl(rﬁ) = e;(rh) +
T(TL () B2 (), %s (), @4 (£, i (£1)) — 4 (£1)], where

hé(’{iv‘riveiaﬂi) =€+ hlz(’iivei) and X; = (Cl'p,l'r,l'c,uf)-

€))

IV. DEVELOPMENT OF HYBRID MODEL

After the presentation of the information transmission, we
construct the hybrid model for the event-triggered tracking
control of NQCS in this section. Define the tracking error
n =z, —a € R™, and e, := (e, €c) := (ep—er,e) € R™
with e, e, e. defined in Section III, where n, = n, + n.

Combining all variables and analyses in Subsection III-A,
we derive the following impulsive model:

7:] = Fn(57 7, Tcy Try €q, €1, er)

ic - FC((Sa 7, Tc, Try Ca, €f, er)

r: - g(gz;f)x nfe‘mefer) theriri ], (10a)
ér = Gi(0,m, T¢, Ty, €4, €5, €r)
ér = Gi(0,m, Tc, Ty, €4, €5, €r)
(") = Qupg(rd),  8i(ri) = i),
ei(riT) = ei(rt) + T(T; () [—ei ()
hi(ra(£5), 24 (8), e (82), i (£2)],
ei(rt") = el(rd) + T (t))[—el () (10b)
+ b (i (8), i (85), 3 (), pa(£))],
ei(rt") = ef(rd) + T (t)) [—ei ()
+MMND%@)($MNW]
where e; = (ei ei,eﬁ) (hl Z,bé),hf = bf and
hi=hi 6 (61,...,6N)ERN and 9; € R>q is to model

the ‘continuous’ time of the i-th network and depends on
u§ and/or its differential [13], [14]. Now, our objective is
to derive reasonable conditions and ETMs simultaneously to
guarantee ISS of the system (10) from (e, ef) to (7, e,).
We further transform (10) into a hybrid model in the
formalism of [21]. Define = := (1,zc,z;) € R" and

e = (e er,6r) € R™ with n, = np + ne +n, and n, =
Na+ny+n,. Define m := (mq,...,my) € R™ with m; :=
hi(ki,ei) — e; € R™, where e; := (el,el,el) and h; :=
(hi, bt hi) are defined in (10). Let & := (kq,...,kn) € RY
with x; € N defined in (9); u := (p1,...,un) € R®

with £ := >"._\ ¢; and p; € R defined in (7)-(8); 7 :=
(T1,...,7N) € RY with 7; € R defined as a timer to record
both sampling intervals and transmission delays for the -
th network; b := (by,...,by) € RY with b; € {0,1} to
show whether the next jump is from the sampling event or
the update event. Denote X := (z,e, u,m, 9,7, k,b) € Z :=
R™ x R x R® x R x RY x RN x RY x {0,1}¥, and
the hybrid model is given by

X=FX), XeC, Xxt=G(X),xeD, {1

where C = UY,C;, D := UN,(Dy; U Dy;), C; == {X €
Z : (bi,7;) € ({0} x T;) U ({1} x Ay}, D1; = {X €
X . (bi,Ti) S {0} X [&'i,Ti]}, Dy; = {Z{ € X : (bi,Ti) €
{1} x A;}, and T; := [0, T3], A; := [0, A;]. The mapping
Fin (11) is defined as

F(X):=(f(5,z,¢e),9(0,z,¢),0,0,E, I, 0,0), (12)

where f := (F,, F;, F.) and g := (Ga, Gy, Gy) are derived
from (10a). The mapping G in (11) is defined as

- G

X e Dy,

13
X € Do, (13)



with Gl(%) = Ui\;lGli(%),Dl
UN 1 Goi(X), Dy = UN | Dy,

®1,(X), X €Dy,
Guoe)::{ (%), xeD

= UY Dy, Go(X) =

14
@, x¢Dli7 ( )

12(:{) = (.’E,G,M,Mli($,€7m,:‘€>,(5,AiT,H + T(F’L)(I -
z E7b+ (I - Al)E)5
B2i(X), X € Do,
G i X) = 15
2 ( ) {Qa x §é D2i7 ( )

and ®9;(X) = (x,&(x,e,m, k), Qiu, Moi(x,e,m, K), 0, T,
K, \;b), where A; := diag{A},..., AN} with A¥ =0 if k =
i € N and A¥ = 1 otherwise; Q; := diag{Q},...,Q)} ¢
REXE with QF = Q; if k=i € N and QF = I otherwise;

Myi(x,e,m, k) == ®;m + (I — ;) My;(x,e,m, K),
Moi(z,e,m, k) := &;m + (I — &;) Ma;(e, m),
gi(l‘, e,m, H) = <I>lm + T(Fz)(I — @Z)E

i(evm)'
Here, ®; := diag{®},...,®N} € Rmexne My, =
(ML, ..., MY) € R My; := (Mg;,..., ML) € R" and
E; := (E}, ... ,EN) € R If k = i, then ®F = 0, M}, =
(L="(T3))mi+Y (L) (hi(ki, e;) —e;), M5, = —e;—m; and
Ef = e;+m;. If k # i, then <I>£C =1, Mﬁ. = MQki = Ef =0.

V. MAIN RESULTS

In this section, we first present necessary assumptions,
then design the event-triggered condition for each network,
and finally establish the convergence of the tracking error.

A. Assumptions

To begin with, some assumptions are presented.

Assumption 5: There exist a function W; : R x R% x
R" x N x {0,1} — Rsq which is locally Lipschitz
in (e;,pi,m;) for all kv, € Nb, € {0,1}, a, €

Ks, 3 € {1,...,6}, and \; € [0 1) such that for all
(ei,ui,mi,m,bz) € Rne x RY x R™ x N x {O 1}
alz(|ea|) <W; (euﬂumu’%ab?) < a2z(|ez|) (16)
Wi(@i,ﬂi, hi("iia 67;) — €4, Ry + 17 1)
< XWiles, pismi, ki, 0) + as;(lef]) + aui((ef]), (17)
Wi(es +mg, Qipi, —e; — my, K4, 0)
< Wileq, pismi, ki, 1) + asi([ef]) + aei(lel]).  (18)

Assumption 6: There exist a continuous function Hj,, :
R™ x R" — R>0, O1ib;» 02ib; € Ko and Libi S [0, OO)
such that <M gi(6,x,e)) < Hy (z,e) +
LibiWi(ei,ui,mi,m,bi) + Ulibi( 4 ) + 0—2ibi( 6”) for all
(@, ki, b;) € R™ x N x {0,1} and almost all (e;, jt;,m;) €
R x R4 x Rme.

Assumptions 5-6 are on the e;-subsystem. Assumption 5
is to estimate the jumps of W; at the discrete-time instants.
Specifically, (17) is for the successful transmission jumps
(i.e., I'; > 0), and (18) is for the update jumps. Assumption
6 is to estimate the derivative of W, in the continuous-
time intervals, and the coupling is shown via the function
Hy,,. Since Assumptions 5-6 are applied to the e;-subsystem,

(17)-(18) hold with respect to e! and ef, which are parts
of e; and treated as the internal disturbances caused by
the network. Similar conditions have been considered in
existing works [3], [13], [14], where however only a common
communication network and TTC are studied.

Assumption 7: There exist a locally Lipschitz function V' :
R™ — R>o, a1v,a2v, Cuib;, Cib;» C3ibi» Caib; € Koo, and
s 0iv, s vin, > 0,Lip, € R such that arv(|n]) < V(m) <
agy (|z|) for all x € R™, and for all (e;, p;, m;, ki, b;) €
R™ x R% x R™ x N x {0,1} and almost all z € R™,

N
i=1
+ (’yini - gibi)Wiz(ei’ Mgy Ty Ky bz) - Kibi (xa €, W, m)
—pib, (25) + Cua, (lef]) + Cain, (l€}])] (19)
<v§01b1 (zz)a f; (57 x, 6)> < leL(pl(Zl) + KlbL (J?, €, L, m)
+ HE, (2, €) + Cav, (|ef]) + Caan, (J€f]), (20)
where H;p,, is defined in Assumption 6, @;p, : R™: R>o

is a locally Lipschitz function with @;p, (0) = 0, and Ky, :
R™ x R™ x R x R" — Rx is a continuous function.
Assumption 7 is on the z-subsystem, and imply that
the n-subsystem satisfies the ISS-like property from
(Zivzl Wi, eg, e;) to n. This assumption is reasonable due to
the implementation of the emulation-based approach, where
the controller is assumed to be known a priori to ensure
the tracking performance robustly in the network-free case.
Hence, in the presence of the network, (Zf\;l Wi, eg, er)
is treated as the disturbance. Moreover, (20) provides the
growth bound on the derivative of the function ¢;;, on the
flow. Finally, for the linear case, Assumptions 5-7 can be
represented as a whole linear matrix inequality; see e.g. [23].

B. Decentralized Event-Triggered Mechanisms
With Assumption 5-7, the ETM is designed for each
network, that is, the fuqction I'; in _(10) is defined as a
mapping from R x R™ x R% x R x N x {0,1} to R
bz’Yzb W (61, iy My Ko bz)
— (1= bi)pidigan, (2:), 21

where W; is from in Assumption 5, ¢;, is from in Assump-

Fi(zia Ciy Mgy TGy K, bl) =

tion 7, p; > 0 is a design parameter with p; € [0, ;), and
Ai i=max {\;, (1 — p;iLio) " pivio} » (22)
_ 1; LzO = —7i0,
Pi = 1 (23)
min {1, (Lio + 7vi0) "} , Lio > —io,

with )\; in Assumption 5 and 7,9, Lio in Assumption 7.
With the function (21), the event-triggered condition is
I'; > 0, which is similar to those in [10], [23] for the ETC
in different contexts. One difference between (21) and the
existing ones lies in the local logical variable b;, which leads
to two cases in (21). Since the case b; = 1 implies that the
update event will occur at the arrival instant, the ETM is
not needed and I'; = —v;1 W2 (e, j1s, mi, ki, 1) < 0, which
thus implies that the ETM will not be implemented in this



case. In contrast, for the case b; = 0, the next event is the
transmission event, and the ETM is implemented to deter-
mine whether the sampled measurement will be transmitted.
Hence, T'; = ~vioW2(es, pti, miy 54, 0) — pidiwio(z) > 0
will be verified in this case. As a result, the parameters in
(22)-(23) only depend on the case b; = 0, and all designed
event-triggered conditions are consistent with the transmis-
sion setup and decentralized since only local information is
involved in each event-triggered condition.
Finally, consider the following differential equation

Givy = —2Lip, biny — Yivs (1 + 01,) 5, + 1),

where i € N, L;, > 0 is given in Assumption 6, and v, >
0 is given in Assumptlon 7. 0ib; € (0,A] ‘1515 (0) — 1) and
o, (0) € (1, /\ ) with ); in (22). From Cla1m 1in [14], the
solutions to (24) are strictly decreasing as long as ¢;p, > 0.

(24)

C. Tracking Performance Analysis

Now we are ready to state the main result of this section.
Theorem 1: Consider the system (13) and let Assumptions
1-7 hold. If the MASP T; and the MAD A; satisfy

Yiodio(1i) > (1 + 0i1)AFvi10i1(0), (25a)
Yi1¢i1 (i) = (1 + 0i0)VioPio(73), (25b)

where ¢;p, is the solution to (24) with ¢, (0), ¢ip, (T3) > 0
then the system (11) is ISS from (e;, ef) to (1, €,).
Theorem 1 implies the convergence of the tracking error
to a region around the origin, and the size of the convergence
region depends on the network-induced error (e;, er). If the
feedforward control inputs are transmitted directly to the
plant and reference system, then e = 0,p; = 0, and thus
the convergence region can be further smaller. Comparing
with previous works [12]-[14], [18], [23] on NCS and [15],
[16] on MAS, the event-triggered tracking control problem
is studied here for NQCS under decentralized ETMs and
network constraints. In particular, quantization effects and/or
time delays are not considered in [12], [14]-[16], [18], [23],
and the time-triggered tracking control is addressed in [13],
[14]. Therefore, a unified model is developed here and the
tracking performance is achieved via less communication.

7 € T,
T; € Ai,

VI. NUMERICAL EXAMPLE
Consider two connected single-link robot arms, whose
dynamics are presented as (i = 1,2)
2il i2
gy =dp

y . 26
qi? = —a;sinq}, +wa (0,7 — 027 + ciug, (20

where g/ := (q',q2?) € R2 with the configuration coordi-
nate q;' and the velocity q}?, both of which are measurable,
u; € R is the input torque, and a;, ¢; > 0,b;; € R are certain
constants. The reference system is given by

il 12
qr _qr )

2 27
02 = —aising' + > bi;(a — q¥) + e,
Jj=1

Fig. 1.
where T}

Tracking errors under the RR protocol case and the ETM (28),
=T =0.01 and A1 = Ay = 0.0015.

where g¢ := (qi',q??) € R? are the measurable reference
state, and u! = 5sin(5t) is the feedforward input. In the
network-free case, the feedback controller is designed as
Haq(sin(ap') —sin(ai")) — (' —ai') — (a5 —a;)]
such that the tracking error is asymptotically stable.

We consider the case that the communication between the
controller and the plant is via the ETMs and two communi-
cation networks and quantizers. The controller is applied via
the ZOH devices and the networks has ¢; = 3 nodes for qél,
qf)z and wu;, respectively. Set max;e(1,2},je{1,2,3} né» = 0.8
and max;e(y 2} je(1,2,3) 25 = 0.6. Hence, the feedback
controller is ul = —c{l[ai(sin(ﬁél) —sin(gi')) — (a5" —
at) + (@ - ﬁ; ). uf is assumed to be transmitted to (27)
directly, and g, are implemented in the ZOH fashion.
That is, u! knows but does not depend on q'!, qi2.

Let D; = v/3max{l + a;,c;}. From [13], we choose
the appropriate Lyapunov function W;(e;, ti, mi, K4, 75, by ).
For instance, W;(e;, i, mi, ki, 75, bi) = wslet] + |u;| for
the TOD protocol, where w; € (0, (1 —max; %)/ max; n}).
|OW (&5, pi, My, ki, T, by) /Oes| < M; with M; = \/¥; for the
RR protocol case and M; = 1 for the TOD protocol case.
Assumption 5 holds with \; = max{\/ 1)/4;, wlmm‘ +
Q‘} and asg; = au; = as; = ag = 0. Assumptlon 6
holds with LzO = MDZ,LH = M?D;/\;, Hig(z,e) =
H’Ll( ) - M(|nz2‘ + |( il 1)777,1 + (bZ2 - 1)7722| +
|bi177(37i)1| + |bi2n(3—i)2])» o1i0(v) = 0151 (v) = ¢;M;v and
UQiO('U) = O'Qil(v) = QCliMﬂ} for v > 0.

To verify Assumption 7, define V() := Zle bind +
GioamiMiz + Gisns With @i, ¢, ¢z € R. Let a;,a; €
[—ai, ;] such that a[sin(n + qi') — sin(na + g + e +

Z‘i —
U, = —¢;

e = ai(e) + ef') and agfsin(q}") — sin(qf" + 6”)} =
aieﬂ' Thus, <VV(77);F77(67$767/’L)> < Z?:l[ ¢117]i1 +
(2051 — 2¢i3 — Giz)nimiz — (i3 — di1 )N + (@277@1 +

2@137712)([?1'1(7]11 - 7721) + bi2(7712 - 7]22)) + 0. 5(&0
01 )(Dirmin + 2¢i3nia)® + 0.50i0Dileil* + 0i(4aflef]” +
c?|et|?)], where 00, 0i1 > 0 are given in (24). If ¢y, ¢a, d3
are such that —H3 (z,e) — Ky, (z, e, p,m) — @i, () >
—anZ + (2001 — 2¢i3 — Gi2)niiniz — (23 — Gi1)n +
(0i1mi1 + 2¢ismi2) (bin (1 — m21) + bia(m2 — m22)) +
0‘5(9;01 + g;ll)(d)ﬂnil + 2¢i3mi2)%, then Assumption 7
holds with 0, (v) = mv% vio = /mi + 00D, Vi1 =
Vi + 0t MiD2 /02, Cin,(v) = 0ud2|v|?, Can,(v) =
oira?|v|? and 7; > 0 is arbitrarily small.

Let ¢11 = 8,012 = 12,913 = 6,021 = 5,020 =
7, ¢23 = 9,0,1 = 0.81 % 0.2,&2 = 0.81 % 0.3,61 = 2,(32 =
4, T = 0005, 0i0 = 20 and 0i1 = QZQM7/A1 ThllS, L10 =




o 2 a 6 14 16 18 20

*Time (1)
Fig. 2. Tracking errors under the TOD protocol case and the ETM (28),
where T7 = T = 0.014 and A1 = Ao = 0.0025.

TABLE I
COMPARISON OF TRANSMISSION NUMBERS IN DIFFERENT CASES

Event-triggering Time-triggering

Network
etwor RR case TOD case [13], [14]

Network 1 887 1606 2000

Network 2 1448 1838 2000

8.8860, L1 = 18.8501, Loy = 12, Loy = 25.4558, 719 =
22.9436,v11 = 48.6706,v99 = 30.9839, 91 = 65.7267 for
the RR protocol case; Li1g = 5.1303, L1; = 10.8831, Loy =
6.9282, Ly; = 14.6969,v19 = 22.9436,v11 = 28.1,v50 =
30.9839, v21 = 37.9473 for the TOD protocol case. By the
detailed computation, p; = 0.0501 and po = 0.0371 for RR
and TOD protocols. Hence, p; € (0,p;), and the ETM is

Ui = —biyil ey, e, i) |* + (1= by)pikilmi|* > 0. (28)
Set ¢10(0) = ¢11(0) = 1.1023 and ¢20(0) = ¢21(0) =
0.8816 for the RR protocol case, and we have T} =
0.0256,A; = 0.0064,75 = 0.0161, and A, = 0.0026.
Set ¢10(0) = ¢11(0) = ¢20(0) = ¢21(0) = 1.0468 for
the TOD protocol case, and we have 77 = 0.0279,A; =
0.00445,T» = 0.02115, and Ay = 0.0032. To simplify the
simulation, the transmission intervals and the transmission
delays are constants. Under the ETM (28), Figs. 1-2 show
the convergence and boundedness of tracking errors in RR
and TOD protocol cases, respectively.

The numbers of information transmission in different cases
are presented in Table I. We consider 23 units of time for
the RR case and 32 units of time for the TOD case. The
transmission numbers are the same (2000 times) in the time-
triggered case [13], [14], whereas the transmission numbers
are reduced to different extents in the event-triggered case.
In particular, the transmission numbers of two networks in
the RR case are less than these in the TOD case.

VII. CONCLUSIONS

We presented a Lyapunov-based emulation approach for
the event-triggered tracking control problem of NQCS, where
the information communication is via multiple asynchronous
networks. To deal with this problem, we proposed a new
hybrid model, and then established sufficient conditions
and designed decentralized event-triggered mechanisms. The
tradeoff between the MASP and the MAD was determined to
guarantee the tracking performance. The effectiveness of the
proposed approach was illustrated via a numerical example.
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