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Abstract— In a crowd model based on leader-follower in-
teractions, where positions of the leaders are viewed as the
control input, up-to-date solutions rely on knowledge of the
agents’ coordinates. In practice, it is more realistic to exploit
knowledge of statistical properties of the group of agents, rather
than their exact positions. In order to shape the crowd, we study
thus the problem of controlling the moments instead, since it
is well known that shape can be determined by moments. An
optimal control for the moments tracking problem is obtained
by solving a modified Hamilton-Jacobi-Bellman (HJB) equation,
which only uses the moments and leaders’ states as feedback.
The optimal solution can be solved fast enough for on-line
implementations.

I. INTRODUCTION

With continuous urbanization of the global population,
researchers are getting more and more aware that it is
important to have a better understanding of crowd behavior
under certain circumstances. Experts from different fields,
including sociologists, psychologists, ecologists, physicists,
mathematicians and computer scientists use their different
perspectives to model and analyze the crowd. One typical
and important application of the crowd behavior study is the
evacuation problem in emergency situations. Although the
human behavior can be very complicated in these situations,
researchers have made lots of effort to model, analyze and
simulate the crowd with different approaches for the purpose
of minimizing the total societal loss.

From the pure social psychology point of view, there
are models such as the theory of planned behavior form
I. Ajzen [1]. J.D. Sime linked the psychology part and the
engineering part of the crowd behavior problem in [2]. From
the engineering aspect, one commonly used macroscopic
approach is to consider the whole crowd as one entity that
is described by a density function and use tools such as
fluid mechanics and partial differential equations to conduct
analysis. This continuum setting of the crowd has been used,
e.g., in [8] and [9]. The disadvantage of this type of approach
relies on the fact that a density approximation of the human
crowd is not adequate when the density is low. On the other
hand, low computational cost is obviously the advantage of
the approach, especially when the scale of the crowd is large
enough.
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Another method for crowd analysis is by using the tool
of multi-agent systems theory that has rapidly developed
in the past decades. Compared to the continuum setting,
multi-agent system analysis can be seen as a microscopic
model that focuses on individual behaviors. Part of the idea
came from animal flocking observation and modeling such as
Reynolds model in [10] in 1987. This kind of approach was
used, e.g., in [11], [12]. One of the most widely used models,
the social force model in [14], also uses this setting. With
the theory development in multi-agent consensus problems,
researchers do strict analysis for linear multi-agent systems,
e.g., in [13]. However, many models for human crowd are
highly nonlinear, which makes the analysis much harder
due to the lack of theoretical support for nonlinear systems.
The computation cost is also a big issue for numerical
experiments. Nevertheless, the advantage is the accuracy of
individual states if compared to macroscopic approaches.

Among the multi-agent crowd models, there is one type
of model called leader-follower model that divides the crowd
into two groups based on their roles. These models are very
useful for example in the evacuation problem, where the
rescue workers act as leaders and the general public can
be considered as followers. Such models can be found for
example in [15], [16] and [17]. A central issue for leader-
follower models is controllability. In [7], the controllabil-
ity of linear leader-follower models is discussed in detail.
Unfortunately, the system becomes uncontrollable in most
cases of reasonable linear models. In [18], an optimal control
approach is used for control design even though the system
is not controllable for the evacuation problem. In leader-
follower based models, the formation of the followers is
in general very hard to control by only the leaders, since
the system is often uncontrollable. On the other hand, it
is unfortunate that the possibility of shaping the crowd is
seldom discussed in the literature since the shape is less
restrictive than the formation and maybe more elaborate to
control. In this paper, we will study the moments of the
crowd, which have a strong connection to the shape as shown
in [3] and [4]. By using dynamic programming techniques,
we will attack the problem of shaping the crowd.

In the method introduced later in this article, we will
design a controller so that the shape of the crowd will
track approximately some desired shape during the process.
Although the asymptotic behavior of the crowd is important,
the transient phase is even more critical for crowd control
problems. Lyapunov stability analysis does not cover the
transient behavior of the system in a straightforward man-
ner, thus is not used in the paper. We instead introduce



a new control design approach by using optimal control
theory. Moreover, the leaders will need only the moments
information together with their own states to calculate their
movement as time evolves even though the optimal control
problem has all the followers’ positions and velocities as its
state variables. This make the method introduced in the paper
more practical since individual states are in general very hard
to measure. The numerical method introduced is shown to
be efficient enough for on-line implementation as well.

The outline of this paper is as follows: in Section II, the
basic leader-follower model is stated and the moments of
the crowd are defined. There is a short discussion about
the moments tracking problem in general and the motivation
why the optimal control approach is used in this paper. The
optimal control problem is introduced and approximately
solved in Section III. In Section IV, some improvements of
the method are made to handle numerical issues while a
detailed experiment is carried out to test the capability and
robustness of the method. A short conclusion can be found
in Section V together with a brief outline for future work.

II. PROBLEM FORMULATION

A. Leader-follower model

We will study the behavior of two types of agents in a
two dimensional space. The first type of agents are called
followers. We assume that there are N followers in total, and
their motion follows some simple rules that mostly depend
on the relative positions and velocities among them and on
those to the other type of the agents - the leaders. The M
leaders, on the other hand, have better knowledge of the
whole environment and can plan their motion accordingly.
Based on the situation of the whole crowd, the leaders should
behave in an optimal way to guide the followers to reach
certain goals. The position of follower i is denoted by a
vector zi ∈ R2, and its velocity denoted by vi ∈ R2. The
position of leader j is denoted by zl j ∈ R2, and its velocity
by vl j ∈ R2.

Suppose that without the leaders, the influence from
follower k to follower i is modeled as f (zi,vi,zk,vk). By
assuming unit mass for each follower, we can write

v̇i =
N

∑
k=1
k 6=i

f (zi,vi,zk,vk)− pvi, (1)

where p is a coefficient to model the damping effect such
as resistance or physical limit of the agent. When follower
i senses any of the leaders, the influence by the leader is
added to the model:

v̇i =
M

∑
j=1

g(zi,vi,zl j ,vl j)+
N

∑
k=1
k 6=i

f (zi,vi,zk,vk)− pvi. (2)

The functions f and g will be defined or described later.
Note that here we sum up all the terms with the M leaders,
meaning that the leader-follower interaction is state-based.
There is no predesigned network. If g has no zeros in its
domain, then the followers can always sense all the leaders
and be influenced more or less by all of them.

For the leader j, we have

v̇l j = u j− pv j, (3)

so it has the same damping coefficient as the followers and
u j is the input to be designed in order to fulfill certain tasks.
We will use the following notation in this paper:

z =


z1
z2
...

zN

 ,v =


v1
v2
...

vN

 ,zl =


zl1
zl2
...

zlM

 ,vl =


vl1
vl2
...

vlM

 .
B. Definitions of moments

In order to shape the crowd, we need at least some statistic
properties of it. In this article, we make use of moments of
the agents’ position. There are two ways to define moments:

1) Definition 1: The (raw) moment of order k is defined
by

Mab =
1
N

N

∑
i=1

za
i,xzb

i,y, (4)

where zi,x and zi,y are the x, y coordinate for zi,anda,b ∈ N
with a+b = k.

2) Definition 2: The centralized moment is defined by

M̄10 = M10, M̄01 = M01, (5)

and

M̄ab =
1
N

N

∑
i=1

(zi,x−M10)
a(zi,y−M01)

b, (6)

for k > 1, and a+b = k. It is not hard to show that one can
calculate all the centralized moments by knowing all the raw
moments and vise versa.Unless particularly stated, we will
only use the raw moments in the rest of the paper.

The moments have a strong relationship with the shape of
the crowd. If the shape and the distribution in the shape is
known, one can approximate the moments by

Mab =
∫

S
xayb

ρ(x,y)dxdy,

where S is the shape, and ρ(x,y) is the density function of
the distribution. On the other hand, if all the moments Mab
with a+b≤ 2n−1 are given, then one can approximate the
shape, assuming it is convex and a uniform distribution, by
a n-polygon by using a modified method similar to the one
introduced in [3].

C. Moments tracking

It is noticeable that the scale of the leader-follower model:
żi = vi,

v̇i = ∑
M
j=1 g(zi,vi,zl j ,vl j)+∑k 6=i f (zi,vi,zk,vk)− pvi,

żl j = vl j ,

żl j = u j− pv j,

for i = 1, · · · ,N, and j = 1, · · · ,M becomes very large when
the number of followers increases. Hence, individual control
will be difficult even if the whole system is controllable,
which is not always the case. This gives a motivation to



look into the statistical properties of the crowd instead.
Because of the strong connection between the moments and
the shape, we can setup a moments tracking problem if we
want to do shape tracking. Namely, from a desired shape
“signal” and a desired density distribution, we can calculate
the corresponding desired moments. If moments of the crowd
could track the desired moments, then the crowd should more
or less follow the desired shape. The more moments we track,
the better the performance should be.

Theoretically, if we can derive the evolution of the mo-
ments Mab with a + b ≤ m and their time derivatives by
functions only using Mab, d

dt Mab,a+b≤m and zl ,vl ,u, then
we will obtain a, probably nonlinear, system with Mab and
d
dt Mab,a + b ≤ m and zl ,vl as its states u as its control.
Furthermore, if this system is controllable, them for any
continuous moments signal, we can get a minimum energy
feedback control to track those moments. However, it is im-
possible in general to write down this type of system without
using any information from z and v defined previously if no
approximation is made. Even if for some special f and g
functions, one can write down the system of moments, it
is inaccessible for almost all cases that we have examined.
This is still true even if one simplifies the leader-follower
dynamics into a single integrator system. The analysis of
some specific models are made in [19] and is omitted here
due to the space limitation.

Another way to deal with the tracking problem of an
uncontrollable system is by setting a cost function for the
system and using optimal control techniques to solve it. A
very standard cost function is the quadratic errors between
the real moments and the desired moments signals. Given a
sequence of nonnegative scalars {cab} with a+ b ≤ m, we
can setup the following optimal control problem:

min
u ∑

a+b≤m

∫ t f

t0
cab(Mab(t)−Md

ab(t))
2dt

s.t. żi = vi,

v̇i = ∑
M
j=1 g(zi,vi,zl j ,vl j)+∑k 6=i f (zi,vi,zk,vk)− pvi,

żl j = vl j ,

v̇l j = u j− pvl j ,

‖u j(t)‖ ≤ umax,

z(t0),v(t0),zl(t0),vl(t0) given,
(7)

where Md
ab(t) is the given signal for Mab(t) to track.

The analytic solution is possible to find only if f and g
are simple functions such as linear functions. One can use
Pontryagin’s minimum principle (PMP) to solve such type
of problem similar to the method used in [18]. However,
these two functions are usually nonlinear in practical models,
which implies that PMP is to hard to solve. For the dynamic
programming approach, if we can find a cost to go function
J that satisfies the Hamilton-Jacobi-Bellman equation, then
the optimal control can be calculated by partial derivatives

of J. The HJB equation of (7) can be written as:

−∂J
∂ t

= ∑
a+b≤m

cab(Mab(t)−Md
ab(t))

2 +
∂J
∂ z

T

v

+
N

∑
i=1

∂J
∂vi

(
M

∑
j=1

g(zi,vi,zl j ,vl j)+∑
k 6=i

f (zi,vi,zk,vk)− pvi)

+
∂J
∂ zl

T

vl−
M

∑
j=1

umax‖
∂J

∂vl j

‖− p
∂J
∂vl

T

vl , (8)

with the boundary condition

J(t f ,z,v,zl ,vl) = 0. (9)

Unfortunately, this partial differential equation is also very
difficult to solve since the number of variables is proportional
to the number of followers, which means the complex of
solving the PDE becomes very high. Meanwhile, even if the
HJB equation is sovable, one needs all the followers’ states
to calculate the optimal control, which is very difficult to
implement in practice. Hence we will introduce a suboptimal
control by using moments information as feedback while the
complexity of the algorithm is low enough.

III. FEEDBACK CONTROL USING MOMENTS
INFORMATION ONLY

In this section, we will study a special problem, which
gives a reasonable model for crowd behavior. Let us make
the following assumption for g:

The function g is composed of two parts, a position
consensus part and a velocity alignment part. There are two
functions that give different weight to these two parts which
only depend on the positions of the leader and the follower,
i.e.,

g(zi,vi,zl j ,vl j) = g1(zi,zl j)(zl j − zi)+g2(zi,zl j)(vl j − vi),

where g1 and g2 are real valued functions. Ideally, both g1
and g2 should be functions of the distance d = ‖zi− zl j‖ to
make the model reasonable in practice. Moreover, g1 should
be relatively large when d is large while g2 should dominate
when d is close to zero. This is due to the fact that catching
up the leader is more important when the distance is large
while moving in the same direction makes more sense when
the distance is already short enough.

With the above assumptions we can rewrite the HJB
equation (8) as

−∂J
∂ t

=L (t)+
∂J
∂ z

T

v+
N

∑
i=1

∂J
∂vi

( M

∑
j=1

g1(zi,zl j)(zl j − zi)

+g2(zi,zl j)(vl j − vi)+ fi− pvi

)
+

∂J
∂ zl

T

vl

−
M

∑
j=1

umax‖
∂J

∂vl j

‖− p
∂J
∂vl

T

vl , (10)

where the notations L (t) = ∑a+b≤m cab(Mab(t)−Md
ab(t))

2

and fi = ∑
N
k=1 f (zi,vi,zk,vk) are introduced for simplicity.

In order to avoid using all the followers’ states z and v,
we want to derive J as a function of Mab with a+ b ≤ m,



Ṁ10, Ṁ01, zl and vl only, which means that the followers’
positions only appear in the moments and their velocities
only appear in the time derivative of the first order moments.
In this section, we will show that this can be achieved with
an approximated HJB equation.

Proposition 3.1: The Hamilton-Jacobi-Bellman equation
(10) can be approximated in such a way so that the cost-
to-go function J has t,Mab with a+b≤m, Ṁ10, Ṁ01, zl and
vl as its variables.

Assuming that there is a function J̄(t,Mab,Ṁ10,Ṁ01,zl ,vl)
that satisfies (10), then we would have the following equa-
tions because of the chain rule:

∂ J̄
∂ zi

= ∑
a+b≤m

∂ J̄
∂Mab

∂Mab

∂ zi
=

1
N ∑

a+b≤m

∂ J̄
∂Mab

[
aza−1

i,x zb
i,y

bza
i,xzb−1

i,y

]
.

∂ J̄
∂vi

=
∂ J̄

∂Ṁ10

∂Ṁ10

∂vi
+

∂ J̄
∂Ṁ01

∂Ṁ01

∂vi
=

1
N

 ∂ J̄
∂Ṁ10

∂J
∂Ṁ01

 .
Then we can write the HJB equation for J̄ as

−∂ J̄
∂ t

=L (t)+
1
N ∑

a+b≤m

∂ J̄
∂Mab

N

∑
i=1

[
aza−1

i,x zb
i,y bza

i,xzb−1
i,y

]
vi

+
1
N

[
∂ J̄

∂Ṁ10

∂ J̄
∂Ṁ01

]( M

∑
j=1

( N

∑
i=1

(
g1(zi,zl j)(zl j − zi)

+g2(zi,zl j)(vl j − vi)
))

+
N

∑
i=1

fi(z,v)− p
N

∑
i=1

vi

)
+

∂ J̄
∂ zl

T

vl− p
∂ J̄
∂vl

T

vl−
M

∑
j=1

umax‖
∂ J̄

∂vl j

‖. (11)

Unfortunately, there are still terms on the right-hand side
of the equation that contain z and v, which implies that the
assumption does not hold in general. We need to approximate
those terms in order to get rid of z and v. In order to do the
approximation, we need to make some further assumptions:

• f (zi,vi,zk,vk) = − f (zk,vk,zi,vi), meaning that the
follower-follower interactions are symmetric. As a re-
sult, we get ∑

N
i=1 fi(z,v) = 0.

• The terms of the form ∑
N
i=1 h(zi)vi can be approximated

by (∑N
i=1 h(zi))Ṁ1 for any scalar function h(·), where

Ṁ1 =
[
Ṁ10 Ṁ01

]T . This leads to the following approx-
imation

N

∑
i=1

za
i,xzb

i,yvi ≈ (
N

∑
i=1

za
i,xzb

i,y)Ṁ1 = NMabṀ1,

N

∑
i=1

(g2(zi,zl j)(vl j − vi))≈
( N

∑
i=1

(g2(zi,zl j)
)
(vl j − Ṁ1)

If we regard z and v as random variables, then this
assumption is equivalent to saying that z and v are
independent.

• The functions g1(z1,z2) and g2(z1,z2) can be approxi-
mated by polynomials of z1 with degree less than m for

a given z2, i.e.,

g1(z1,z2) =
m−1

∑
a=0

m−a−1

∑
b=0

αab(z2)za
1xzb

1y,

g2(z1,z2) =
m−1

∑
a=0

m−a−1

∑
b=0

βab(z2)za
1xzb

1y.

This approximation can be usually achieved by Taylor
expansion around certain points if the function g1 and g2
are “good” enough (smooth and not very steep). Once
we can use polynomials to approximate g1 and g2, we
will have

N

∑
i=1

g1(zi,zl j)(zl j − zi)

≈
N

∑
i=1

m−1

∑
a=0

m−a−1

∑
b=0

αab(zl j)z
a
i,xzb

i,y(zl j − zi)

=
m−1

∑
a=0

m−a−1

∑
b=0

αab(zl j)
N

∑
i=1

za
i,xzb

i,y(zl j − zi)

=N
m−1

∑
a=0

m−a−1

∑
b=0

αab(zl j)

(
Mabzl j −

[
Ma+1,b
Ma,b+1

])
.

Similarly, we have
N

∑
i=1

g2(zi,zl j) = N
m−1

∑
a=0

m−a−1

∑
b=0

βab(zl j)Mab.

With the above assumptions the HJB equation (11) can be
finally written as:

−∂ J̃
∂ t

= L (t)+
∂ J̃
∂ zl

T

vl− p
∂ J̃
∂vl

T

vl−umax‖
∂ J̃
∂vl
‖

+
m

∑
a=0

m−a

∑
b=0

∂ J̃
∂Mab

[
aMa−1,b bMa,b−1

]
Ṁ1

+
[

∂ J̃
∂Ṁ10

∂ J̃
∂Ṁ01

]( M

∑
j=1

(m−1

∑
a=0

m−a−1

∑
b=0

αab(zl j)Mabzl j

−
m−1

∑
a=0

m−a−1

∑
b=0

αab(zl j)

[
Ma+1,b

Ma,b+1

]

+
m−1

∑
a=0

m−a−1

∑
b=0

βab(zl j)Mab(vl j − Ṁ1)
)
− pṀ1

)
(12)

with the boundary condition

J̃(t f ,Mab,Ṁ10,Ṁ01,zl ,vl) = 0. (13)

Remark: The complexity of solving the partial differential
equation (12) is still big. In practice, model predictive control
(MPC) technique can be used so that one will recursively
solve similar equations with relatively small t f . More nu-
merical aspects will be discussed and examined in the next
section.

IV. NUMERICAL EXPERIMENTS

We will implement the optimal control approach on a
specific model to show the capability and robustness of it.
Let us use the following settings:

N = 100,M = 4,m = 5,



which means there are 100 followers and 4 leaders. The
moments we want to track is up to the fifth orders, i.e.,
Mab with a+ b ≤ 5 because we will deal with 4-polygon
now. The reference signal for the moments are calculated
from integrating xayb over a moving and shrinking square
when assuming a uniform distribution. Namely, we want the
followers uniformly spread inside a moving square while
following the leaders. The center of the square should
initially be located at the origin and slowly move to a point
called “exit” at the position of

[
120 120

]T . In this case,
there is a potential numerical problem of the approach in
that for high order moments, the scale of their value becomes
quite big. For example, the 5-order moment M40 may become
1205 ≈ 2×1010, which is much bigger than M10 ≈ 120 when
the followers reach the exit. Therefore, we change to a new
coordinate system in each MPC iteration as below.

A. Re-coordination and centralized moments

In each MPC iteration of solving (7), we change the
coordinates by making the current center-of-mass of the
follower crowd,

[
M10 M01

]T , the new origin. By doing this,
the measured moments then become the centralized moments
we defined in (6). The reference signal needs to be updated
as well and there are two ways doing that:
1. Integrate the functions xayb over the original desired

shape in the new coordinate system. Some extra calcu-
lations are needed in each iteration step.

2. Track the original first order moments M10 and M01 in
the new coordinate system while the other (centralized)
moments track signals generated by integrating over
a shape centered on the origin. Since those reference
signals can be calculated off-line, this approach will
speed up the calculation. However, the objective is
changed from “the crowd should follow ‘this’ shape
trajectory” to “the center of the crowd should follow
‘this’ path while the whole crowd should form ‘this’
shape”.

The second approach alters the objective a little while not
changing the ultimate goal of shape tracking, and is used in
the simulation to simplify the computation.

We use the following functions for the model:

g1(d) = 0.3+20e−
d
10 − 20

d +0.1
, and g2(d) =

20
d +0.1

.

f (zi,vi,zk,vk) =
8
d

e−0.2d(zi− zk)

Φ̄ =c0((Ṁd
10− Ṁ01)

2 +(Ṁd
01− Ṁ01)

2)

+
m−1

∑
a=0

m−a−1

∑
b=0

cab(Md
ab−Mab)

2,

¯L (t) =
m−1

∑
a=0

m−a−1

∑
b=0

c̄ab(Md
ab(t)−Mab)

2,

where cab and c̄ab can be tuned for the test purpose. Note that
the moments we write here should already be transformed
accordingly as we mentioned above.

We still need to do polynomial approximation of the func-
tions g1 and g2 by using Taylor expansions. The expansion
should be taken around the center-of-mass of the follower
crowd, which is now the origin in the new coordinate system,
and the degree of the polynomial should be m−1 = 4. The
expansion will look like:

gs(z,zl)≈ gs(l)+gsx(l)zx +gsy(l)zy + · · ·

+
1

24

(
gsxxxx(l)z4

x +4gsxxxy(l)z3
xzy

+6gsxxyy(l)z2
xz2

y +4gsxxyy(l)zxz3
y +gsyyyy(l)z4

y

)
,

where l = ‖zl‖, gsx =
∂gs
∂x , gsy =

∂gs
∂y , and the higher order

partial derivatives are denoted in the same pattern, for s =
1,2. Note that both the variables z, zl and the functions g1,
g2 should be already transformed into the new coordinate
system here.

B. Numerical solution to HJB equation
Once we have all the information needed, we should

solve (12) with the boundary condition (13). We use the
backward explicit finite difference method to solve the PDE
by approximating the partial derivatives as:

∂ J̃(t +∆t)
∂ t

≈ J̃(t +∆t)− J̃(t)
∆t

,

and
∂ J̃(·,ξ )

∂ξ
≈ J̃(·,ξ +∆ξ )− J̃(·,ξ −∆ξ )

2∆ξ
,

where ξ can be Mab, Ṁ10, Ṁ01, z j, or v j. Then we can solve
for the function value of J̃ at each MPC step t = τ .

With the setting we made, there are 38 non-time variables
for J̃ and each partial derivative needs function values at
two points in the later time to approximate, which results
to a complexity of O(76q) that grows exponentially with q,
where q∆t is the prediction horizon. Fortunately, it is still
fast to solve with q = 3. The simulations we make below
assume q = 3 and ∆t = 0.1.

C. Simulation
In this simulation, the 100 followers are initially randomly

distributed in the area of [−50,50]× [−50,50] while the
4 leaders start at

[
±25 ±25

]T . The desired shape is a
shrinking square first moving from the origin to the point[
0 120

]T , and then to the point
[
120 120

]T where the
exit is. When the square reaches the exit, it will stay there
with the size 10×10 for a while. We want the crowd to be
uniformly spread in the desired shape. The coefficients in the
cost functions are set to be

cab = c̄ab =

{
1000, k = 1,
102(2−k), k > 1,

(14)

where a+b = k. The total length of the simulation is 120s.
Figure 1 gives four snapshots of the simulation and

Figure 2 gives the weighted tracking errors, where eab =
cab‖Mab(t)−Md

ab(t)‖2, up to the fourth order. The oscillation
of the tracking error is expected since it is a double integrator
model and the prediction horizon q∆t is short.



(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 80

Fig. 1. Snapshots for simulation 1. The blue dots indicate the position of
the 100 followers and the red crosses are the 4 leaders. The squares are the
desired shape in each plot. The black arrows are the velocity of the leaders
while the red arrows are the acceleration of the leaders which come from
the solution of (7).

Fig. 2. Weighted tracking errors for different moments with the definition
eab = cab‖Mab(t)−Md

ab(t)‖
2 up to the fourth order.

V. CONCLUSIONS AND FUTURE WORK

Since the moments of the crowd have a strong connection
to its shape, we use moments to control the shape of the
crowd. An optimal moments tracking problem is introduced
in the paper and solved numerically with only using moments
information as feedback. In order to further reduce the com-
putational complexity, a model predictive control algorithm is
used. A numerical experiment shows that the method solves

the moments tracking problem efficiently enough and the
performance of the optimal controller is acceptable even
during the transient phase in the simulations.

Future work involves using local measurements of the
moments to design a distributed leading strategy for the
leaders. A better understanding of the relationship between
the moments and shapes may give a more practical cost
function to achieve a better performance in terms of shaping.
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