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Abstract— This paper proposes an approach that combines
motion planning and hybrid feedback control design in order to
find and follow trajectories fulfilling a given complex mission
involving time constraints. We use Metric Interval Temporal
Logic (MITL) as a rich and rigorous formalism to specify such
missions. The solution builds on three main steps: (i) using
sampling-based motion planning methods and the untimed
version of the mission specification in the form of Zone
automaton, we find a sequence of waypoints in the workspace;
(ii) based on the clock zones from the satisfying run on the Zone
automaton, we compute time-stamps at which these waypoints
should be reached; and (iii) to control the system to connect two
waypoints in the desired time, we design a low-level feedback
controller leveraging Time-varying Control Barrier Functions.
Illustrative simulation results are included.

I. INTRODUCTION

In recent years, different variants of temporal logic speci-
fications have been established to complement the traditional
A-to-B motion planning algorithms with more complex,
structured missions. For instance, with the use of Linear
Temporal Logic (LTL), one can formalize properties such
as “Visit region A, then B, while avoiding a dangerous area
C”. In order to allow for time constraints in the mission
specification, such as “Visit A within 10 to 20 time units,
then visit B no earlier than 30 time units after reaching A,
while avoiding C”, a timed temporal logic is required, such as
Metric Interval Temporal Logic (MITL). A general approach
to planning under temporal logic tasks builds on finding a
suitable discrete abstraction of the system dynamics, such as
a finite bisimulation, or a graph obtained from a sampling-
based motion planning method, ensuring that a transition
in the abstraction can be followed via an application of a
certain control law [1], [2]. When it comes to planning under
timed temporal logic tasks, finding such a discrete abstraction
becomes much more challenging. Related literature often
assumes that a discrete system model is given, e.g., in a
form of a Weighted Timed Automaton [3], [4]. Another
approaches use time-sampling to obtain a discretization [5],
or work directly with the original system dynamics and use
a restricted fragment of Signal Temporal Logic (STL) for
control over a short time horizon [6].

This work proposes an approach to find and follow a
trajectory fulfilling a time-bounded MITL task that integrates
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Fig. 1. The approach.

sampling-based motion planning with low-level feedback
controller design. A general overview is presented in Fig. 1.
A given MITL task specification is first translated into a
Timed Automaton (TA) and then to a Zone Automaton (ZA),
which is its time-abstract representation. The ZA is used by
an RRT?-based algorithm to find an obstacle-free path – a
sequence of waypoints – in the workspace enclosed in a
sequence of polytopes. Times to reach these waypoints are
calculated by using clock zones of the ZA as constraints
of a Linear Program (LP). To execute the timed path, we
propose the use of the quadratic program-based Time-varying
Control Barrier Functions controller derived in [6]. Such
a controller ensures that if the system is within a convex,
obstacle-free space, such as a polytope computed by the
sampling-based planner, it is able to navigate from an initial
to a goal configuration within a given time window.

The works most closely related to ours include sampling-
based motion planning under different temporal logic spec-
ifications. Rapidly-exploring Random Tree (RRT) technique
was used to find a motion plan that fulfills µ-calculus specifi-
cations [7], while RRT? [8] was used for minimum-violation
motion planning under finite-LTL specifications [9], and later
on complemented to deal with syntactically co-safe LTL (sc-
LTL) in workspaces with limited perception horizons [10].
One of the recent works proposes an RRT?-based algorithm
to find a motion plan that maximally-satisfies a Signal Tem-
poral Logic (STL) formula [5]. The method relies on time-
sampling and uses quantitative semantics provided by the
STL to guide both sampling and steering towards the most
robust solution. A reactive motion planner that takes into
account imperfect state information and uses feedback-based
information roadmaps (FIRMs) to maximize the probability
of satisfying a high level specification given in LTL has
been proposed in [11]. Lastly, [12] proposes a framework
capable of planning in dynamically changing environments
with dynamic, local MTL mission requirements.

Other closely related work includes literature on control



barrier functions, which have been used in [13], [14], [15],
[16] to establish forward invariance of certain sets, defining
safety specifications for dynamical systems. Additionally,
[14], [15], [16] propose a quadratic program that guarantees
safety while aiming for reachability specifications. However,
it has been shown that the system may not reach the goal
configuration, although remaining safe; if it is reached, it
is not known in advance how long it takes to accomplish
the task. Our previous work [6] proposes to use time-
varying control barrier function, opposed to static ones as
in the aforementioned works, to satisfy a subclass of Signal
Temporal Logic tasks.

To our best knowledge, none of the state-of-the-art works
addresses the problem of sampling-based motion planning
for a nonlinear dynamical system in a complex workspace
under timed temporal logic specification with closed-loop
control guarantees and without the necessity of introducing
time sampling.

The remainder of the paper is structured as follows. Sec. II
describes preliminary theory. We formally define our prob-
lem in Sec. III together with the proposed approach, which
is detailed in three sections: motion planning algorithm
(Sec. IV), timed path calculation (Sec. V), and low-level
controller (Sec. VI). Lastly, the approach is analyzed in
Sec. VII and case studies are presented in Sec. VIII.

II. PRELIMINARIES

Real numbers are denoted by R, while Rn is the n-
dimensional real vector space. N denotes nonnegative inte-
gers. Time is denoted by T = R≥0, the set of nonnegative
real numbers, and the set of Booleans by B.

A convex polytope in Rn can be represented by its H-
representation, defined as an intersection of a finite number
of half-spaces, written in the form of a matrix inequality as
Ax ≤ b, x ∈ Rn.

A. System Dynamics

Let x ∈ Rn, u ∈ Rm, d ∈ D ⊂ Rn, where D := {d ∈
Rn|‖d‖ ≤ D} for some D ≥ 0, be the state, input, and
unknown disturbance, respectively, of a nonlinear system

ẋ = f(x) + g(x)u+ d(t), (1)

with locally Lipschitz continuous functions f : Rn → Rn
and g : Rn → Rn×m such that g(x)g(x)T is positive definite
for all x ∈ Rn and d : R≥0 → D is piecewise continuous.

The bounded subset W ⊂ Rn defines a workspace, divided
into obstacles Wobs ⊂W and free space Wfree = W \Wobs .

The free space Wfree is divided into k mutually disjunct
open regions of interest, Wfree = {W 1

free , . . . ,W
k
free}, with

the property that the union of their closures is Wfree .
Each state x ∈ Rn is associated with a subset of atomic
propositions AP through a labeling function L : W → 2AP.
Without loss of generality, we assume that each region of
interest W i

free satisfies that L(x) = L(x′), for all x, x′ ∈
W i

free and hence, with a slight abuse of notation, we use
L :Wfree → 2AP as a labeling function of regions.

Definition 1 (Timed path). A finite trajectory x of the
system (1) in Wfree defines a timed path (p, t) =
(x0, t0)(x1, t1) . . . (x`, t`), such that for all i ∈ {0, . . . `}:
• p = x0x1 . . . x`, with xi = x(ti),
• t = t0t1 . . . t` is a sequence of time-stamps, with ti ∈

T, t0 = 0, ti ≥ ti−1, ;
• L(xi) holds true during the time interval (ti, ti+1).

Definition 2 (Timed word). A trajectory x with a timed path
(p, t) = (x0, t0)(x1, t1) . . . (x`, t`) generates a timed word
w(x) = w(p, t) = (L(x0), t0)(L(x1), t1) . . . (L(x`), t`).

Given a timed word w = (L(x0), t0) . . . (L(x`), t`), let
wt = (L(xi), ti− t)(L(xi+1), ti+1− t) . . . (L(x`), t`− t) be
a suffix of that word starting at time t, where ti−1 < t ≤ ti.

B. Time-bounded MITL

A time-bounded Metric Interval Temporal Logic (MITL)
formula over a set of atomic propositions (AP) and time
intervals of the form [a, b], a, b ∈ N and a < b is defined as:

φ := > | p | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2 | F[a,b]φ | G[a,b]φ,
(2)

where the proposition p ∈ AP and ¬, ∧, are standard
negation and conjunction, and U , F and G correspond to
temporal operators until, eventually and always, respectively.

Definition 3 (MITL [17]). The satisfaction of a time-
bounded MITL formula φ over AP on a timed word
w = (w0, t0) . . . (w`, t`) is defined as follows:

w |= p ⇐⇒ p ∈ w0

w |= ¬φ ⇐⇒ w 6|= φ

w |= φ1 ∧ φ2 ⇐⇒ w |= φ1 and w |= φ2

w |= φ1U[a,b]φ2 ⇐⇒ ∃t′. t′ ∈ [a, b] s.t. wt
′
|= φ2

and ∀t′′ < t′, wt
′′
|= φ1

w |= F[a,b]φ ⇐⇒ ∃t′. t′ ∈ [a, b]s.t.wt
′
|= φ

w |= G[a,b]φ ⇐⇒ ∀t′. t′ ∈ [a, b]⇒ wt
′
|= φ.

C. Timed and Zone Automata

Let C = {c1, . . . , c|C|} be a finite set of clocks. A clock
valuation is a function ν : C → T that assigns a value to
each clock. ν+δ maps every clock c to the value ν(c)+δ, for
δ ∈ R. For R ⊆ C, ν[R := 0] assigns 0 to each c ∈ R, and
agrees with ν over the rest of the clocks. A clock constraint
g is defined as

g := > | ¬g | c ./ ψ | g1 ∧ g2
where c ∈ C, ψ ∈ N and ./ ∈ {<,>,≤,≥,=}. The set
of clock constraints over C is Φ(C).

Similarly, a clock zone ϕ is defined as
ϕ := c ./ ψ | (c1 − c2) ./ ψ | ϕ1 ∧ ϕ2

where c, c1, c2 ∈ C. ϕ ⇑ denotes the set of valuations ν + δ
for ν ∈ ϕ and δ ∈ T. For R ⊆ C, ϕ[R := 0] denotes the set
of clock valuations ν[R := 0], where ν satisfies ϕ. The set
of clock zones over C is Γ(C).

Definition 4 (Timed Automaton [18]). A Timed Automaton
(TA) A is a tuple A = (Q,Q0, C, Inv,E, F,AP) where



Q is a finite set of locations; Q0 ⊆ Q is the set of initial
locations; C is a finite set of clocks; Inv : Q → Φ(C) is
the invariant function; E ⊆ Q × Q × 2AP × Φ(C) × 2C is
the set of edges; F ⊆ Q is the set of accepting locations;
and AP is a finite set of atomic propositions.

A state (q, ν) of a TA is given by location q ∈ Q, and
clock valuation ν. A TA has two types of transitions:

• time passing: (q, ν)
δ−→ (q, ν + δ) if ν satisfies Inv(q)

and (ν + δ) satisfies Inv(q), where δ ∈ T;
• discrete jump: (q, ν)

w−→ (q′, ν′) if (q, q′, w, g,R) ∈ E,
ν satisfies g, ν′ = ν[R := 0] and ν′ satisfies Inv(q′).

A run r of a TA A with initial state (q0, ν0) over a
timed word w = (w0, t0) . . . (w`, t`) is a finite sequence of
transitions (q0, ν0)

δ1−→ w1−−→ (q′, ν′)
δ2−→ w2−−→ . . . (q′′, ν′′) such

that t0 = 0 and ti = ti−1 + δi, ∀i ≥ 1. A timed word w is
accepted by TA A if there exists an accepting run r of A over
w such that the last location of its last state is accepting. The
language L(A) of A is the set of all accepted words by A.
Its untimed language Lun(A) is the set of all untimed words
accepted by A, which are the projections of the accepted
words of A onto their first components. Untimed words are
thus sequences over 2AP.

Lemma 1 ([17]). Any MITL formula φ over AP can be
algorithmically translated into a TA A such that L(A) is
exactly the set of timed words that satisfy φ.

Definition 5 (Zone Automaton). A Zone automaton Z(A) is
a tuple Z(A) = (Z,Z0, Ez, Fz,AP), where Z = Q× Γ(C)
is the set of states, Q is a set of locations, C is a set of
clocks; Z0 ⊆ Z is set of initial states; EZ : Z × 2AP → Z
is the transition function; Fz ⊆ Z is the set of accepting
states, and AP is the alphabet, i.e. a finite set of atomic
propositions.

A Zone automaton is in fact a finite automaton and as
such, it defines a language L(Z(A)) of words over 2AP that
are accepted by its finite accepting runs.

Lemma 2 ([18]). Any TA A can be algorithmically trans-
lated into a ZA Z(A), such that L(Z(A)) = Lun(A).

III. PROBLEM DEFINITION AND APPROACH

Our goal is to design a control law for a dynamical system
that produces a trajectory satisfying a complex task in a
complex environment involving time bounds. While standard
control theory methods are not immediately suited for han-
dling high-level, long-term tasks, motion planning algorithms
are, but require certain – often strong – assumptions on the
low-level controllers. This paper bridges the two approaches;
we allow for handling high-level tasks via integrated motion
planning and control scheme. In addition to a sequence of
waypoints (timed path) in the workspace that the system
should go through, our motion planning algorithm generates
properties that need to be met by its low-level controller. We
propose such a controller and this way, we not only obtain a
satisfying timed path, but also an actual satisfying trajectory
of the original system. We state our problem as follows:

Problem 1. Given a system (1), a labeled workspace W
partitioned into Wobs and Wfree , and a mission specification
φ in time-bounded MITL, find a control law u producing a
trajectory x that generates a timed word w(x) satisfying φ.

Our approach to Problem 1 is illustrated in Fig. 1. First, the
time-bounded MITL mission specification φ is translated into
a Timed Automaton A (Lemma 1) and thereafter to its time-
abstract representation Zone automaton Z(A) (Lemma 2).
The ZA is used in a sampling-based motion planning al-
gorithm, named MITL-RRT?. It returns (i) a sequence of
waypoints that give a path satisfying an untimed version of
the specification, and (ii) assumptions to be met by the low-
level controller in the form of a sequence of obstacle-free
polytopes within which the trajectory of the system has to
stay.

Second, given a sequence of waypoints, we find appropri-
ate time stamps so that the corresponding timed path satisfies
the specification φ. To that end, we exploit the structure of
the ZA and use its clock zones as constraints of a Linear
Program (LP).

Third, we design a hybrid feedback control law that,
applied to system (1), tracks the timed path returned by
the motion planner while staying within the obstacle-free
polytopes returned by MITL-RRT?.

This approach can be formalized by decomposing Prob-
lem 1 into the following three sub-problems, addressed in
Sec. IV, V, and VI, respectively:

Problem 2. Given a workspace W and a mission speci-
fication φ in bounded MITL translated into an equivalent
Timed Automaton A, and into an untimed Zone Automaton
Z(A), find a path p = x0x1 . . . x` and a sequence of convex
polytopes π = π1π2 . . . π` such that:
• every πi ∈ π is convex and obstacle-free;
• the i-th polytope πi contains xi−1 and xi;
• p is accepted by Z(A), i.e. there exists a timed path

(p, t) = (x0, t0)(x1, t1) . . . (x`, t`) such that the timed
word w(p, t) satisfies φ.

Problem 3. Given a path p = x0x1 . . . x` and a specification
φ in bounded MITL, find a sequence of time stamps t =
t0t1 . . . t` that, together with p, generates a timed path
(p, t) = (x0, t0)(x1, t1) . . . (x`, t`) such that the timed word
w(p, t) satisfies φ.

Problem 4. Design a control law u(x, t) capable of driving
a system (1) throughout a timed path (p, t) while remaining
inside a sequence π of obstacle-free, convex polytopes.

IV. MOTION PLANNING

To solve Problem 2, suppose that the MITL formula φ has
been translated to a Timed Automaton A and to its time-
abstract Zone automaton Z(A) = (Z,Z0, Ez, Fz,AP) using
an existing algorithm, such as [19], [20].

Our approach builds on sampling-based motion planning
algorithms, in particular on RRT?, which was originally de-
signed for the anytime, incremental, asymptotically optimal
motion planning while avoiding obstacles. Loosely speaking,



RRT? incrementally builds a tree G = (V,E) whose nodes
V are states of the state-space and an edge e ∈ E connects
two nodes only if there exists a controller capable of taking
the system from the parent to the child node. RRT? iteratively
draws a sample from W and attempts to connect it to a near
node that already is part of the tree. Namely, given a cost
function J , the algorithm connects the sample to the optimal
parent node, which ensures the lowest cost to get to it from
the root and whose trajectory is obstacle-free. Lastly, the
algorithm performs rewiring of the tree, i.e. it checks if any
node near the most recently added one gets a lowest cost
if using such node as its parent. Rewiring is the key to the
asymptotic optimality of the algorithm.

In our approach, outlined in Alg. 1, the nodes V of the
RRT? tree are tuples from Wfree × Z, with V rooted at
(xinit, z0), xinit ∈Wfree , z0 ∈ Z0. The function near(x, z)
returns every node (x′, z′) of the tree V such that z′ = z
and x′ is within a ball of radius γ(log(|V |)/|V |)1/n from x,
where γ is a design parameter and |V | the cardinality of V .

Thanks to the controller that solves Problem 4, there
always exists a control law that steers the system from a
parent node xpa to ε-neighborhood of a child node x if
there exists an obstacle-free, convex polytope containing
both xpa and x. Therefore, let us introduce the function
polytraj(xpa, x) to construct such polytope. For simplicity,
we present it here for n = 2, but this can be extended to any
dimensions in a straightforward way.

Let us define a design parameter β � ε, which will
directly influence the size of the polytope. Let v̂ denote the
unit vector v̂ = (xpa− x)/||xpa− x||, and ŵ the unit vector
normal to v̂. Then polytraj(xpa, x) can be written as

v̂
ŵ
−v̂
−ŵ

x ≤

β + ||xpa − x||/2 + v̂µ

β + ŵµ
β + ||xpa − x||/2− v̂µ

β − ŵµ

 , (3)

with µ = (xpa − x)/2, the midpoint of the segment.
Such polytope created by polytraj is checked to be

obstacle-free by the Boolean function obsFree() (line 5);
if so, the update function (Alg. 2) is called (line 6).

The update function described in Alg. 2 is responsible for
determining new edges to be added to the tree. Given parent
xpa and child x nodes, they either have different or equal
set of labels according to the labeling function L.

1) L(xpa) 6= L(x): in such case, there must be a point
xmid on the trajectory from parent to child node that lies on
the boundary between differently labeled workspace regions.
Since, according to Definition 1, the parent’s label must hold
true on the entire trajectory to its child node, xmid must be
considered as an intermediary node between xpa and x (lines
1-9). From polytraj , two other polytopes are created: (i) its
intersection with the region labeled L(xpa) (line 2), (ii) its
intersection with the region labeled L(x) (line 3). Then, if
they are connected, i.e. there is one edge common to both
polytopes (line 4), xmid is created at the intersection between
a straight line connecting parent to child and the polytopes
(line 5). Then, using the transition relation ∆ defined by

Algorithm 1: MITL-RRT?

Input: W - workspace, φ - mission given as Zone automaton
Z(A), N - number of iterations

Output: p - path, z - sequence of states of Z(A),
π - sequence of polytopes

1 V ← {(xinit, z0)}; E ← ∅;
2 for i = 1, . . . , N do
3 (x, z)← sample;
4 for (x′, z′) ∈ near(x, z) do
5 if obsFree(polytraj(x′, x)) then
6 update((x′, z′), x)

7 if (x, z) ∈ V then
8 for (x′, z′) ∈ near(x, z) do
9 if obsFree(polytraj(x, x′)) then

10 update((x, z), x′)

11 if existsSolution() then
12 return (p, z), π
13 else
14 return Fail

Algorithm 2: update((xpa, zpa), x)

1 if L(x) 6= L(xpa) then
2 π1 = polytraj(xpa, x) ∩ L−1(xpa)
3 π2 = polytraj(xpa, x) ∩ L−1(x)
4 if connected(π1, π2) then
5 xmid = line(xpa, x) ∩ π1

6 zmid ← ∆(zpa, L(x)); z ← ∆(zmid, L(x))
7 addEdge((xpa, zpa), (xmid, zmid), π1)
8 addEdge((xmid, zmid), (x, zmid), π2)
9 addEdge((xmid, zmid), (x, z), π2)

10 else
11 π = polytraj(xpa, x) ∩ L−1(xpa)
12 if valid(π) then
13 addEdge((xpa, zpa), (x, zpa), π)
14 addEdge((xpa, zpa), (x,∆(zpa, L(x))), π)

the edges Ez of the automaton, zmid and z are calculated
(line 6). Lastly, three edges are added to the tree (lines 7-9).

2) L(xpa) = L(x): described in lines 11-14, in such case
the polytope is created from the intersection of polytraj with
the region labeled L(xpa). If the polytope is valid, i.e. convex
(line 12), two edges are added to the tree (line 14).

Alg. 3 attempts to add an edge to the tree G connecting
(xpa, zpa) to (x, z). In the case (x, z) is not part of the set
of nodes V yet, it is added to it, an edge is created in E
connecting it to (xpa, zpa) and the corresponding polytope
π is properly stored (lines 1-3). Otherwise, if (x, z) ∈ V , an
edge is created only if it yields a lower cost to reach (x, z)
having (xpa, zpa) as its parent in comparison to the already
existent edge with parent(x, z) (lines 4-8). We propose to
use the Euclidean distance as cost function that approximates
the cost of the trajectory of 1 going through the sequence
of points of a path; cost(xpa, zpa) and cost(x, z) denote the
current lowest cost to get from the root of the tree to xpa
and x, respectively, while C(xpa, x) calculates the Euclidean



Algorithm 3: addEdge((xpa, zpa), (x, z), π)

1 if (x, z) /∈ V then
2 V ← V ∪ {(x, z)}
3 E ← E ∪ {((xpa, zpa), (x, z))}; π(x, z) = π
4 else
5 if cost(xpa, zpa) + C(xpa, x) < cost(x, z) then
6 E ← E \ {(parent(x, z), (x, z))}
7 E ← E ∪ {((xpa, zpa), (x, z))}
8 π(x, z) = π

distance between them.
Lastly, the rewiring procedure is performed (Alg. 1 lines

8-10), where it checks if any node (x′, z′) near the recently
added node (x, z) can benefit from having it as parent. After
the predetermined number N of iterations is reached, the
existsSolution() function performs a graph search, looking
for the lowest-cost path rooted in (xinit, z0) and ending at
any (xend, zend) such that zend ∈ Fz . If no path is found, it
returns a failure message (lines 11-14).

Lemma 3 (Untimed word acceptance). A path p =
x0 . . . x` returned by Alg. 1 (if found) generates a word
L(x0) . . . L(x`) accepted by the Zone automaton Z(A).
Proof. Given the tree G = (V,E) built by Alg. 1, assume
that the modified graph search on Alg. 1 Line 11 returns
(p, z), a sequence of nodes (x0, z0) . . . (x`, z`) in V such

that z0
L(x1)−−−→ z1

L(x2)−−−→ z2 . . .
L(x`)−−−→ z` is an accepting

run of Z(A). p = (x0x1 . . . x`) and z = (z0z1 . . . z`)
are projections of (p, z) onto Wfree and Z, respectively, and
since z is an accepting run in Z(A), it accepts the word
L(x0)L(x1) . . . L(x`).

According to Lemma 2, there must exist a se-
quence of time stamps t = t0t1 . . . t` that, associ-
ated with L(x0)L(x1) . . . L(x`), results in a timed word
w = (L(x0), t0)(L(x1), t1) . . . (L(x`), t`) such that the TA
A accepts w.

V. TIMED PATH COMPUTATION

To solve Problem 3, it is necessary to determine a sequence
of time intervals δi for i ∈ I = {1, . . . , |x|−1} that together
with the path p returned by Alg. 1 generates a timed path
(p, t), with t0 = 0, ti = ti−1 + δi producing an accepting
timed word w(p, t) of the TA.

From an initial state (q0, ν0) a run of a TA over a timed
word w(p, t) = (wi, ti), i ∈ I , consists of a sequence of
time delays followed by discrete jumps written as

(qi−1, νi−1)
δi−→ (qi−1, νi−1 + δi)

wi−→ (qi, νi) (4)

with νi = (νi−1+δi)[R := 0]. Considering the sequence z of
states of the Zone automaton returned by Alg. 1, such run can
be written as: for every transition from zi−1 = 〈qi−1, ϕi−1〉
to zi = 〈qi, ϕi〉, i ∈ I , one can write that

〈qi−1, ϕi−1〉 → 〈qi−1, ϕi−1 ⇑ ∧Inv(qi−1)〉 → 〈qi, ϕi〉. (5)

We propose to solve the time stamp assignment problem
via Linear Program (LP), which calculates time intervals

δi directly proportional to the distance between consecutive
nodes di−1,i, while subject to the time constraints from (4)
and (5). We pose the LP as to minimize the maximum
speed reached between two consecutive points on the path,
assuming that the actual length of the trajectory between two
points is approximated by the straight-line distance between
them:

min
δ1,...,δ|x|−1

ξ (6a)

s.t. ∀i ∈ I, di−1,i
δi
≤ ξ (6b)

∀i ∈ I, νi−1 + δi ∈ (ϕi−1 ⇑ ∧Inv(qi−1)) (6c)
∀i ∈ I, νi ∈ ϕi (6d)

with di−1,i the Euclidean distance between xi−1 and xi.
In such formulation, ξ puts an upper-bound on the relation
between di−1,i and δi (6b). In turn, (6c) ensures the time-
passing transition of the TA happens within the bounds of
the clock zone and (6d) does the same for the discrete jump.

Lemma 4 (Mission satisfaction). A solution (p, z), π re-
turned by Alg. 1 together with the sequence of time stamps t
obtained as a solution to (6) produce a timed word w(p, t)
that satisfies the MITL mission φ.
Proof. Let a timed path (p, t) = (x0, t0) . . . (x`, t`) be de-
fined by the projection of (p, z) onto Wfree and t = t0t1 . . . t`
that solve the LP (6) such that t0 = 0 and ti = ti−1 + δi.
Alg. 1 encloses the projection onto Wfree of every edge
((xi, zi)(xi+1, zi+1)) ∈ E of the tree G = (V,E) with
an obstacle-free, convex polytope πi such that L(xi) holds
true for any trajectory in (xi, xi+1) if there exists a control
law able to maintain the system (1) inside πi. Therefore,
according to Def. 1, the timed path (p, t) generates a timed
word w(p, t) such that L(xi) holds true during the entire
time interval [ti, ti+1). Since the time stamps are calculated
by the LP based on (4) and (5), a run of the TA A over
the timed word w(p, t) is an accepting run, and therefore
satisfies the bounded MITL formula φ as in Def. 3.

VI. HYBRID FEEDBACK CONTROL DESIGN

To solve Problem 4, we propose a hybrid feedback control
strategy consisting of |p| − 1 continuous-time feedback
control laws ui(x, t) and a switching mechanism. With
i ∈ {1, . . . , |p| − 1}, the switching mechanism is

u(x, t) = ui(x, t) for ti−1 ≤ t < ti. (7)

where each ui(x, t) is designed based on Time-varying
Control Barrier Functions formulated to solve requirements
stated in Signal Temporal Logic (STL) [6].

Definition 6 (STL [21]). Let U be a collection of predicates
µ(x), effective functions of the form µ : Rn → B. An STL
formula is an MITL formula over the atomic propositions
µ(x) ∈ U .

In order to drive the system starting in xi−1 at ti−1 to
xi at ti time units while staying inside an obstacle-free
convex polytope πi, whose H-representation is Aix ≤ bi,
the corresponding STL formula ψi is written as



ψi = F[ti,ti](‖x− xi‖ ≤ ε) ∧ G[ti−1,ti](Aix ≤ Bi), (8)

with Bi = bi+ε. We expand the polytopes by ε to ensure the
ball of radius ε around each xi is inside both πi and πi+1.
If now

∧|p|−1
i=1 ψi is satisfied, we guarantee that Problem 4

is solved. The design of ui(x, t) then depends on ψi and
is based on time-varying control barrier functions as in [6].
We propose control design below and refer the reader to the
original paper for further intuition. First, define

b′i(x, t) = γi(t)− ‖x− xi‖

where γi(t) is designed such that b′i(x, ti) = γi(ti)− ‖x−
xi‖ ≤ ε−‖x−xi‖. The intuition here is that the control law
ui(x, t) will enforce that b′i(x(t), t) ≥ 0, ∀t ∈ [ti−1, ti) such
that consequently ‖x(ti)− xi‖ ≤ ε holds, i.e. F[ti,ti](‖x−
xi‖ ≤ ε) is satisfied. In particular, we set γi(t) =

ε−γi,0
ti−ti−1

(t−
ti−1) + γi,0 where γi,0 is a design parameter explained later
with γi,0 > ε such that γ̇i(t) < 0 for all t ≥ ti−1. Note that
hence b′i(x, ti) = ε− ‖x− xi‖ so that b′i(x, t) accounts for
the first part of the conjunction in (8). For the second part
in (8), let NAi denote the number of rows in Ai and Bi and
for each predicate function j ∈ {1, . . . , NAi

}, select

b′′i,j(x) = Bi(j)−Ai(j, :)x

where Bi(j) denotes the j-th element of Bi, while Ai(j, :)
the j-th row of Ai. Finally, we compose the barrier function

bi(x, t) = −
1

ηi
ln
(
exp

(
−ηib′i(x, t)

)
+

NAi∑
j=1

exp
(
−ηib′′i,j(x)

))
(9)

where ηi > 0 is another design parameter. It holds
that bi(x, t) ≤ min

(
b′i(x, t), b

′′
i,1(x), . . . , b′′i,NAi

(x)
)

and it can be proven that limηi→∞ bi(x, t) =
min

(
b′i(x, t), b

′′
i,1(x), . . . , b′′i,NAi

(x)
)
. Consequently, when

ui(x, t) is such that bi(x(t), t) ≥ 0 for all t ∈ [ti−1, ti),
then, for all t ∈ [ti−1, ti), b′i(x(t), t) ≥ 0 and b′′i,j(x(t)) ≥ 0
for all j ∈ {1, . . . , NAi

}, which implies that ψi is satisfied.
Next, define Cδii (t) = {x ∈ R2|bi(x, t) ≥ δi} where C0

i (t)
is the set where the solution x : [ti−1, ti) → R2 of (1)
with initial position x(ti−1) needs to evolve in so that ψi
is satisfied. It is assumed that the design parameters ηi > 0,
δi > 0, and γi,0 > ε are selected such that Cδii (ti) 6= ∅
and x(ti−1) ∈ Cδii (ti−1). This can always be achieved by
considering a sufficiently small δi and choosing ηi and γi,0
sufficiently large. Note in this respect that Aix(ti−1)<Bi
and Aixi<Bi. We emphasize that δi > 0 ensures that
C0
i (t) is neither empty nor a singleton for all t ∈ [ti−1, ti),

which becomes important in the proof of Corollary 1. A
systematic procedure to select ηi and γi,0 is omitted due to
space limitations and presented in [22]. We next propose
ui(x, t) that achieves bi(x(t), t) ≥ 0 for all t ∈ [ti−1, ti).
First, consider the convex quadratic program

min
û

ûTQû (10a)

s.t.
∂bi(x, t)

∂x

T (
f(x) + g(x)û

)
+
∂bi(x, t)

∂t
≥

‖∂bi(x, t)
∂x

‖D − αi(bi(x, t))
(10b)

where αi is a class K-function and Q is a positive semidefi-
nite matrix. Since g(x)g(x)

T is positive definite, it holds that
∂bi(x,t)
∂x

T
g(x) = 0m

T if and only if ∂bi(x,t)
∂x = 02. Note that

(10b) reduces to ∂bi(x,t)
∂t ≥ −αi(bi(x, t)) if ∂bi(x,t)

∂x = 02 so
that no û appears in (10b). We next provide an assumption
that relaxes [6, Assumption 3] and later, in Corollary 1, show
that αi can be selected such that this assumption holds.

Assumption 1. For each (x, t) ∈ C0
i (t) × [ti−1, ti) with

∂bi(x,t)
∂x = 02 it holds that ∂bi(x,t)

∂t >− αi(bi(x, t)).

Lemma 5. Assume that ψi is of the form (8) and encoded in
bi(x, t) according to (9) and that Assumption 1 holds, then
ui(x, t) = û where û is given by (10) leads to (x, 0) |= ψi.
Proof. For cases where ∂bi(x,t)

∂x 6= 02, it follows that
∂bi(x,t)
∂x g(x) 6= 0m

T and hence û in (10b) can be selected
so that (10) is feasible. For cases where ∂bi(x,t)

∂x = 02,
feasibility is guaranteed by Assumption 1. By virtue of [23,
Thm. 1] it follows that the solution û to (10) and hence
ui(x, t) is Lipschitz continuous. This implies the existence
of a unique solution x : [ti−1, τi,max) → Rn to (1) with
τi,max > 0. Note next that (10b) implies
∂bi(x, t)

∂x

T (
f(x) + g(x)û+ d

)
+
∂bi(x, t)

∂t
≥ −αi(bi(x, t))

for all d ∈ D since −∂bi(x,t)
∂x

T
d ≤ |∂bi(x,t)

∂x

T
d| ≤

‖∂bi(x,t)
∂x ‖‖d‖ ≤ ‖∂bi(x,t)

∂x ‖D. Consequently, the solution
x(t) satisfies ḃi(x(t), t) ≥ −αi(bi(x(t), t)) for all t ∈
[ti−1, τi,max). The solution x(t) is defined over [ti−1, ti), i.e.,
τi,max ≥ ti, due to [24, Thm. 3.3] and since x(t) is forced
to remain in a compact set, i.e., within the convex polytope
πi. According to [6, Thm. 1] it follows that b(x(t), t) ≥ 0
for all t ∈ [ti−1, ti) so that (x, 0) |= ψi.

We next show that Assumption 1 can be satisfied by a
suitable choice of αi.

Corollary 1. The class K-function αi can be selected such
that Assumption 1 holds.
Proof. Note that the function bi(x, t

′) is concave in x
for each fixed t′ ∈ [ti−1, ti). This follows since the
functions b′i(x, t

′) and b′′i,j(x) are concave. Then due
to [25, Section 3.5] it holds that exp(−ηib′i(x, t′)) and
exp(−ηib′′i,j(x)) are log-convex. It further holds that a sum
of log-convex functions is log-convex. Consequently, it holds
that − 1

ηi
ln
(

exp(−ηib′i(x, t′)) +
∑NAi
j=1 exp(−ηib′′i,j(x))

)
is concave. This implies that, for each t′ ∈ [ti−1, ti),
there is only one optimum of b(x, t′), i.e., there is x∗t′ =
argmaxx∈Rnb(x, t′) with x∗t′ ∈ C0

i (t
′) and b(x∗t′ , t

′) >

b(x, t′) for all x 6= x∗t′ such that ∂bi(x,t
′)

∂x = 02 if and
only if x = x∗t′ . Note next that bi(x, t) is constructed
such that bi(x

∗
t′ , t
′) ≥ δi > 0 for each t′ ∈ [ti−1, ti)

and hence it holds that b′i(x
∗
t′ , t
′) ≥ δi. Furthermore, note

that b′i(x, t
′) and each b′′i,j(x) are continuously differen-

tiable so that these functions are upper bounded within the
convex polytope πi, i.e., there exists a bmax

i > 0 so that
max(b′i(x, t

′), b′′i,1(x), . . . , b′′i,NAi
(x)) ≤ bmax

i . Hence we
derive that, for each t′ ≥ ti−1, it holds that

∂b(x∗t′ , t
′)

∂t
=

− exp(−ηib′i(x∗t′ , t′))|
∂b′i(x

∗
t′ ,t
′)

∂t
|

exp(−ηib′i(x∗t′ , t′)) +
∑NAi
j=1 exp(−ηib′′i,j(x∗t′ , t′))



≥
− exp(−ηiδi)| ε−γi,0ti−ti−1

|
(NAi + 1) exp(−ηibmax

i )
= ζi.

where ζi is in particular independent of t′ and x∗t′ . If it is now
guaranteed that ζi > −αi(δi), then it holds that ∂b(x∗

t′ ,t
′)

∂t >
−αi(bi(x∗t′ , t′) for all t′ ∈ [ti−1, ti), which thus ensures that
Assumption 1 holds. In fact, by the choice of αi(δi) = κiδi,
we can select κi > −ζi

δi
such that this is the case.

VII. CORRECTNESS

In this section, we analyze the properties of collision
avoidance and probabilistic completeness, and discuss how
our approach addresses Problem 1.

Theorem 1 (Collision avoidance). The proposed approach
ensures collision avoidance with obstacles.
Proof. Assume a system (1) under a time-bounded MITL
mission φ (2) is controlled using the approach proposed in
Sec. III. The motion planner presented in Sec. IV creates
a tree G = (V,E) whose edges’ projections on Wfree are
enclosed by obstacle-free, convex polytopes. The control law
(7) designed in Sec. VI ensures the trajectory of the system
on the workspace W to be restricted to a subset formed by
only the union of these polytopes

⋃
π ⊂Wfree ⊆W .

Let ε(x) define a ball of radius ε centered in x. As-
sume the timed path (p, t) = (x0, t0)(x1, t1) . . . (x`, t`)
and the sequence of obstacle-free, convex polytopes π
solve Problems 2 and 3 for a mission specification φ in
bounded MITL. Also assume there exists a control law
u(x, t) that solves Problem 4. Such control law takes the
system from its initial configuration (x0, t0 = 0) and,
while maintaining it inside the obstacle-free workspace
defined by π1, drives it to (χ1, t1) with χ1 ∈ ε(x1).
Therefore, the actual resulting timed path of the system is
(x0, t0)(χ1, t1)(χ2, t2)(χ3, t3) . . . (χ`, t`) for χi ∈ ε(xi). In
fact, ε can be chosen to be arbitrarily small so that the actual
timed path is almost equal to (p, t).

Theorem 2 (Probabilistic completeness). The motion plan-
ning approach proposed in Sec. IV is probabilistically com-
plete.
Proof. The proof follows the probabilistic completeness
proof of the RRT? algorithm [8] with a minor modification.
Let δ > β

√
2 be a real number, where β is directly related to

the size of the polytopes as in (3). If the problem is robustly
feasible, i.e. there exists a path with strong δ-clearance, a
solution is found with probability one as the number of
vertices in the tree reaches infinity. Note that δ > 0 in [8];
modifying it to δ > β

√
2 ensures that if there exists a path

with strong δ-clearance, a sequence of polytopes as in (3)
will fit in it, i.e.

⋃
π ⊂Wfree ⊆W .

VIII. SIMULATIONS

We demonstrate our approach in an illustrative case
study, implemented in Python 2.7, and performed on an
Intel R©CoreTM i7-7700HQ CPU with 2.8GHz clock speed
and 16GB RAM under Ubuntu 16.04.

Consider a dynamical system with coupled-input given by

ẋ1 = u1 − 0.5u2, ẋ2 = u2

deployed in an office-like environment, with obstacles that
resembles tables and walls and two goal regions A and B,
that is subject to two different mission specifications

φ1 = F[5,10]A ∧ F[15,20]B; φ2 = G[20,30]A ∧ G[45,60]B.

Figure 2a shows the resulting trajectory of the system on
the workspace when subject to φ1, with the corresponding
waypoints and polytopes. Due to the fact that the control
law minimizes the control effort (10), two waypoints are not
connected by straight lines in the resulting trajectory of the
system. Figure 2b presents the evolution of such trajectory
in relation to time. The same is presented for mission φ2 in
Figures 2c and 2d.

We ran MITL-RRT? for 3000 iterations, with β = 0.2
and ε = 0.001, in both φ1 and φ2; the former took 481s
to compute, generated a tree with 1019 nodes, from which
30 nodes form the satisfying path; the latter took 430s to
compute, generated a tree with 952 nodes, and a path with
32 nodes. The LP (6) took 23ms to calculate time stamps
for φ1, and 122ms for φ2. On average, a control loop (10)
took 0.711ms.

Although the specifications φ1 and φ2 might look similar
as they both require the system to first reach A, then B (Figs.
2a and 2c), comparing them highlights how our approach is
capable of generating correct timed paths (Figs. 2b and 2d).

IX. CONCLUSION

This paper presented an approach to integrate motion
planning and control in order to enforce a system to sat-
isfy a mission specification defined using Metric Interval
Temporal Logic (MITL). Such specification is translated into
Timed Automaton and then to its Zone automaton, which is
used in the sampling-based algorithm MITL-RRT? to find
a path on the obstacle-free workspace that is accepted by
the Zone automaton. A sequence of time-stamps, calculated
via Linear Program, and of obstacle-free, convex polytopes
are associated with the optimal path and fed into a hybrid
feedback control law based on Time-varying Control Barrier
Functions, which in turn guarantees the system “almost”
satisfies the mission.

Future work comprises of (i) replacing MITL formalism
with Signal Temporal Logic (STL) so that more complex
missions can be easily described, e.g. “Visit region A within
10 to 20 time units while always maintaining at least 50cm
away from any obstacle”; and (ii) supporting multi-agent
systems.
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