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Abstract— For a vehicle moving in an n-dimensional Eu-
clidean space, we present a construction of a hybrid feedback
that guarantees both global asymptotic stabilization of a ref-
erence position and avoidance of an obstacle corresponding
to a bounded spherical region. The proposed hybrid control
algorithm switches between two modes of operation: stabiliza-
tion (motion-to-goal) and avoidance (boundary-following). The
geometric construction of the flow and jump sets of the hybrid
controller, exploiting a hysteresis region, guarantees robust
switching (chattering-free) between stabilization and avoidance.
Simulation results illustrate the performance of the proposed
hybrid control approach for a 3-dimensional scenario.

I. INTRODUCTION

The obstacle avoidance problem is a long lasting problem
that has attracted the attention of the robotics and control
communities for decades. In a typical robot navigation
scenario, the robot is required to reach a given destina-
tion while avoiding to collide with obstacle regions in the
workspace. Since the pioneering work by Khatib [1] and
the seminal work by Koditscheck and Rimon [2], artificial
potential fields and navigation functions have been widely
used in the literature, see, e.g., [1]–[4], to deal with the
obstacle avoidance problem. The idea is to generate an
artificial potential field that renders the goal attractive and
the obstacles repulsive. Then, by considering trajectories that
navigate along the negative gradient of the potential field, one
can ensure that the system will reach the desired target from
all initial conditions except from a set of measure zero. This
is a well known topological obstruction to global asymptotic
stabilization by continuous time-invariant feedback when
the free state space is not diffeomorphic to a Euclidean
space, see, e.g., [5, Thm. 2.2]. This topological obstruction
occurs then also in the navigation transform [6] and (control)-
barrier-function approaches [7]–[10].

To deal with such a limitation, the authors in [11] have
proposed a hybrid state feedback controller to achieve ro-
bust global asymptotic regulation, in R2, to a target while
avoiding an obstacle. This approach has been exploited in
[12] to steer a planar vehicle to the source of an unknown
but measurable signal while avoiding an obstacle. In [13], a
hybrid control law has been proposed to globally asymptot-
ically stabilize a class of linear systems while avoiding an
unsafe single point in Rn.
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In this work, we propose a hybrid control algorithm for
global asymptotic stabilization of a single-integrator sys-
tem that guarantees the avoidance of a non-point spher-
ical obstacle. Our approach considers trajectories in an
n−dimensional Euclidean space and we resort to tools from
higher-dimensional geometry [14] to provide a construction
of the flow and jump sets where the different modes of
operation of the hybrid controller are activated. Our proposed
hybrid algorithm employs a hysteresis-based switching be-
tween the avoidance controller and the stabilizing controller
in order to guarantee forward invariance of the obstacle-
free region (related to safety) and global asymptotic stability
of the reference position. The parameters of the hybrid
controller can be tuned so that the hybrid control law
matches the stabilizing controller in arbitrarily large subsets
of the obstacle-free region. Preliminaries are in Section II,
the problem is formulated in Section III, and our solution
is in Sections IV-V, with a numerical examplification in
Section VI.

II. PRELIMINARIES

Throughout the paper, R denotes the set of real numbers,
Rn is the n-dimensional Euclidean space and Sn is the n-
dimensional unit sphere embedded in Rn+1. The Euclidean
norm of x ∈ Rn is defined as ‖x‖ :=

√
x>x and the geodesic

distance between two points x and y on the sphere Sn is
defined by dSn(x, y) := arccos(x>y) for all x, y ∈ Sn. The
closure, interior and boundary of a set A ⊂ Rn are denoted
by A,A◦ and ∂A, respectively. The relative complement of
a set B ⊂ Rn with respect to a set A is denoted by A\B
and contains the elements of A which are not in B. Given a
nonzero vector z ∈ Rn\{0}, we define the maps:

π‖(z) := zz>

‖z‖2 , π
⊥(z) :=In− zz>

‖z‖2 , ρ
⊥(z) =In−2 zz

>

‖z‖2 (1)

where In is the n× n identity matrix. The map π‖(·) is the
parallel projection map, π⊥(·) is the orthogonal projection
map [14], and ρ⊥(·) is the reflector map (also called House-
holder transformation). Consequently, for any x ∈ Rn, the
vector π‖(z)x corresponds to the projection of x onto the line
generated by z, π⊥(z)x corresponds to the projection of x
onto the hyperplane orthogonal to z and ρ⊥(z)x corresponds
to the reflection of x about the hyperplane orthogonal to z.
For each z ∈ Rn\{0}, some useful properties of these maps
follow:

π‖(z)z = z, π⊥(z)π⊥(z) = π⊥(z), (2)

π⊥(z)z = 0, π‖(z)π‖(z) = π‖(z), (3)
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Fig. 1. The helmet region (dark grey) defined in (14).

ρ⊥(z)z = −z, ρ⊥(z)ρ⊥(z) = In, (4)

π⊥(z)π‖(z) = 0, π⊥(z) + π‖(z) = In, (5)

π‖(z)ρ⊥(z) = −π‖(z), 2π⊥(z)− ρ⊥(z) = In, (6)

π⊥(z)ρ⊥(z) = π⊥(z), 2π‖(z) + ρ⊥(z) = In. (7)

We define for z ∈ Rn\{0} and θ ∈ R the parametric map

πθ(z) := cos2(θ)π⊥(z)− sin2(θ)π‖(z). (8)

In (9)–(14), we define for v ∈ Rn\{0} some geometric
subsets of Rn, which are described below (14):

Bε(c) := {x ∈ Rn : ‖x− c‖ ≤ ε}, (9)
L(c, v) := {x ∈ Rn : x = c+ λv, λ ∈ R}, (10)

P4(c, v) := {x ∈ Rn : v>(x− c)4 0}, (11)

C4(c, v, θ) := {x ∈ Rn : (x− c)>πθ(v)(x− c)40} (12)

= {x ∈ Rn : cos2(θ)‖v‖2‖x− c‖24(v>(x− c))2}
C45(c, v, θ) := C4(c, v, θ) ∩ P5(c, v), (13)

H(c, ε, ε′, µ) := Bε′(c)\Bε(c)\B‖µc‖(µc), (14)

where the symbols 4 and 5 can be selected as 4 ∈ {=, <
,>,≤,≥} and 5 ∈ {<,>,≤,≥}. The set Bε(c) in (9) is the
ball centered at c ∈ Rn with radius ε. The set L(c, v) in (10)
is the 1−dimensional line passing by the point c ∈ Rn and
with direction parallel to v. The set P=(c, v) in (11) is the
(n−1)−dimensional hyperplane that passes through a point
c ∈ Rn and has normal vector v. The hyperplane P=(c, v)
divides the Euclidean space Rn into two closed sets P≥(c, v)
and P≤(c, v). The set C=(c, v, θ) in (12) is the right circular
cone with vertex at c ∈ Rn, axis parallel to v and aperture
2θ. The set C4(c, v, θ) in (12) with ≤ as 4 (or ≥ as 4,
respectively) is the region inside (or outside, respectively) the
cone C=(c, v, θ). The plane P=(c, v) divides the conic region
C4(c, v, θ) into two regions C4≤ (c, v, θ) and C4≥ (c, v, θ)
in (13). The set H(c, ε, ε′, µ) in (14) is called helmet and
is obtained by removing from the spherical shell (annulus)
Bε′(c)\Bε(c) the portion contained in the ball B‖µc‖(µc), see
Fig. 1. The next geometric fact will be used.

Lemma 1 ([15]): Let c ∈ Rn and v1, v2 ∈ Sn−1 be some
arbitrary unit vectors such that dSn−1(v1, v2) = θ for some
θ ∈ (0, π]. Let ψ1, ψ2 ∈ [0, π] such that ψ1 + ψ2 < θ <
π − (ψ1 + ψ2). Then

C≤(c, v1, ψ1) ∩ C≤(c, v2, ψ2) = {c}.
Finally, we consider in this paper hybrid dynamical systems
[16], described through constrained differential and differ-

ence inclusions for state X ∈ Rn:{
Ẋ ∈ F(X), X ∈ F ,
X+ ∈ J(X), X ∈ J .

(15)

The data of the hybrid system (15) (i.e., the flow set F ⊂ Rn,
the flow map F : Rn ⇒ Rn, the jump set J ⊂ Rn, the jump
map J : Rn ⇒ Rn) is denoted by H = (F ,F,J ,J).

III. PROBLEM FORMULATION

We consider a vehicle moving in the n-dimensional Eu-
clidean space according to the single integrator dynamics:

ẋ = u (16)

where x ∈ Rn is the state of the vehicle and u ∈ Rn is the
control input. We assume that in the workspace there exists
an obstacle considered as a spherical region Bε(c) centered
at c ∈ Rn and with radius ε > 0. The vehicle needs to
avoid the obstacle while stabilizing its position to a given
reference. Without loss of generality, we consider n ≥ 2 1

and take our reference position at x = 0 (the origin).
Assumption 1: ‖c‖ > ε > 0.

Assumption 1 requires that the reference position x = 0
is not inside the obstacle region, otherwise the following
control objective would not be feasible. Our objective is
indeed to design a control strategy for the input u such that:

i) the obstacle-free region Rn\Bε(c) is forward invariant;
ii) the origin x = 0 is globally asymptotically stable;

iii) for each ε′ > ε, there exist controller parameters such
that the control law matches, in Rn\Bε′(c), the law u =
−k0x (k0 > 0) used in the absence of the obstacle.

Objective i) guarantees that all solutions of the closed-loop
system are safely avoiding the obstacle by remaining outside
the obstacle region. Objectives i) and ii), together, can not be
achieved using a continuous feedback due to the topological
obstruction discussed in the introduction. Objective iii) is
the so-called semiglobal preservation property [13]. This
property is desirable when the original controller param-
eters are optimally tuned and the controller modifications
imposed by the presence of the obstacle should be as
minimal as possible. Such a property is also accounted for in
the quadratic programming formulation of [17, III.A.]. The
obstacle avoidance problem described above is solved via a
hybrid feedback strategy in Sections IV-V.

IV. PROPOSED HYBRID CONTROL ALGORITHM FOR
OBSTACLE AVOIDANCE

In this section, we propose a hybrid controller that
switches suitably between an avoidance controller and a
stabilizing controller. Let m ∈ {−1, 0, 1} be a discrete
variable dictating the control mode where m = 0 corresponds
to the activation of the stabilizing controller and |m| = 1
corresponds to the activation of the avoidance controller,
which has two configurations m ∈ {−1, 1}. The proposed

1 For n = 1 (i.e., the state space is a line), global asymptotic stabilization
with obstacle avoidance is infeasible.



control input, depending on both the state x ∈ Rn and the
control mode m ∈ {−1, 0, 1}, is given by the feedback law

u=κ(x,m):=

{
−k0x, m = 0

−kmπ⊥(x− c)(x− pm), m ∈ {−1, 1}
(17)

where km > 0 (with m ∈ {−1, 0, 1}) and pm ∈ Rn
(with m ∈ {−1, 1}, see (18) below) are design parameters.
During the stabilization mode (m = 0), the control input
in (17) steers x towards x = 0. During the avoidance mode
(|m| = 1), the control input in (17) minimizes the distance to
the auxiliary attractive point pm while maintaining a constant
distance to the center of the ball Bε(c), thereby avoiding to
hit the obstacle. This is done by projecting the feedback
−km(x − pm) on the hyperplane orthogonal to (x − c).
This control strategy resembles the well-known path planning
Bug algorithms (see, e.g., [18]) where the motion planner
switches between motion-to-goal and boundary-following
objectives.

For the sets we now introduce, the reader is referred to
Fig. 2 for the rest of the section. For θ > 0 (further bounded
in (22)), the points p1, p−1 are selected to lie on the cone2

C=≤(c, c, θ)\{c}:

p1 ∈ C=≤(c, c, θ)\{c} and p−1 := −ρ⊥(c)p1. (18)

Note that, by (18), p−1 opposes p1 diametrically with respect
to the axis of the cone C=≤(c, c, θ) and also belongs to
C=≤(c, c, θ)\{c} as per the next lemma.

Lemma 2 ([15]): p−1 ∈ C=≤(c, c, θ)\{c}.
The logic variable m is selected according to a hybrid
mechanism that exploits a suitable construction of the flow
and jump sets. This hybrid selection is obtained through the
hybrid dynamical system{

ẋ = κ(x,m)

ṁ = 0
(x,m) ∈

⋃
m∈{−1,0,1}

Fm × {m} (19a){
x+ = x

m+ ∈M(x,m)
(x,m) ∈

⋃
m∈{−1,0,1}

Jm × {m}. (19b)

The flow and jump sets for each mode m ∈ {−1, 0, 1} are
defined as (see (14) for the definition of the helmet H):

J0 := H(c, ε, εs, 1/2), (19c)

F0 := Rn\(J0 ∪ Bε(c)), (19d)

Fm := H(c, ε, εh, µ) ∩ C≥≤(c, pm − c, ψ), |m| = 1, (19e)

Jm := Rn\(Fm ∪ Bε(c)), |m| = 1, (19f)

see Fig. 2. The (set-valued) jump map is defined as

M(x, 0) :=
{
m′∈{−1, 1} : x ∈ C≥(c, pm′− c, ψ̄)

}
(19g)

M(x,m) := {0}, for |m| = 1, (19h)

where εs, εh, µ, ψ, ψ̄, θ are design parameters selected later

2Following the remark in Footnote 1, note that the set C=≤(c, c, θ)\{c}
is nonempty for all n ≥ 2.
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Fig. 2. 2D illustration of flow and jump sets considered in Sections IV-V.

as in Assumption 2. Before we state our main result, we
motivate the above construction of flow and jump sets.

During the stabilization mode m = 0, the closed-loop
system should not flow when x is close enough to the surface
of the obstacle region Bε(c) and the vector field −k0x points
inside Bε(c). Indeed, by computing the derivative of ‖x−c‖2
along solutions to ẋ = −k0x, we can obtain the set where
the stabilizing vector field −k0x causes a decrease in the
distance ‖x− c‖2 to the centre of the obstacle region Bε(c).
This set is characterized by the inequality

−k0x>(x− c) ≤ 0⇐⇒ ‖x− c/2‖2 ≥ ‖c/2‖2 . (20)

The closed set in (20) corresponds to the region outside the
ball B‖c/2‖(c/2). Therefore, to keep the vehicle safe during
the stabilization mode, we define around the obstacle the
helmet region H(c, ε, εs, 1/2) used as the jump set J0 in
(19c). In other words, if during the stabilization mode the
vehicle hits this safety helmet, then the controller jumps to
avoidance mode. The amount εs− ε represents the thickness
of the safety helmet defining the jump set J0.

During the avoidance mode |m| = 1, we want our con-
troller to slide in the helmet H(c, ε, εh, µ) while maintaining
a constant distance to the center c. Note that, with εh > εs



and µ < 1/2, the helmet H(c, ε, εh, µ) (see also Fig. 1)
is an inflated version of the helmet H(c, ε, εs, 1/2) and
creates a hysteresis region useful to prevent infinitely many
consecutive jumps (Zeno behavior). Let us then characterize
in the next lemma the equilibria of the avoidance vector field
κ(x,m) = −kmπ⊥(x− c)(x− pm), |m| = 1.

Lemma 3 ([15]): For each x ∈ Rn\{c} and m ∈ {−1, 1},
π⊥(x− c)(x− pm) = 0 if and only if x ∈ L(c, pm − c).
Since we want the solutions to leave the set Fm during the
avoidance mode, it is necessary to select the point pm and
the flow set Fm such that L(c, pm − c) ∩ Fm = ∅ for each
m ∈ {−1, 1}, otherwise solutions can stay in the avoidance
mode indefinitely. This motivates both the intersection with
the conic region in (19e) and Lemma 4, in view of which
we pose the next assumption.

Assumption 2: The parameters in (19) are selected as:

εh ∈
(
ε,
√
ε‖c‖

)
εs ∈ (ε, εh) µ ∈ (µmin, 1/2) (21)

θ ∈ (0, θmax) ψ ∈ (0, ψmax) ψ̄ ∈ (ψ,ψmax) (22)

where µmin, θmax and ψmax are defined as

µmin :=
1

2

ε2h + ‖c‖2 − 2ε‖c‖
‖c‖2 − ε‖c‖

∈ (0, 1/2), (23)

θmax := arccos

(
ε2h + ‖c‖2(1− 2µ)

2ε‖c‖(1− µ)

)
∈ (0, π/2), (24)

ψmax := min(θ, π/2− θ) ∈ (0, π/4). (25)
The intervals in (21)–(25) are well defined. They can be
checked in this order. The intervals of εh and εs are well
defined by Assumption 1. Then, those of µmin, µ, θmax

(θmax > 0 directly from µ > µmin), θ, ψmax and, finally,
those of ψ and ψ̄ (equivalent to 0 < ψ < ψ̄ < ψmax) are
also well defined.

Lemma 4 ([15]): Under Assumption 2, Fm ∩ L(c, pm −
c) = ∅, for m ∈ {−1, 1}.

V. MAIN RESULT

In this section, we state and prove our main result, which
corresponds to the objectives discussed in Section III. We
first write compactly the flow/jump sets and maps of (19):

F :=
⋃

m∈{−1,0,1}

Fm × {m}, J :=
⋃

m∈{−1,0,1}

Jm × {m} (26)

(x,m) 7→ F(x,m) := (κ(x,m), 0), (27)
(x,m) 7→ J(x,m) := (x,M(x,m)). (28)

The mild regularity conditions satisfied by the hybrid sys-
tem (19), as in the next lemma, guarantee the applicability
of many results in the proof of our main result.

Lemma 5 ([15]): The hybrid system (F ,F,J ,J) satisfies
the hybrid basic conditions in [16, Ass. 6.5].
Let us define the obstacle-free set K and the attractor A as:

K := Rn\Bε(c)× {−1, 0, 1}, A := {0} × {0}. (29)

Our main result is given in the next theorem.
Theorem 1: Consider the hybrid system (19) under As-

sumptions 1-2. Then,

Set to which x belongs TF0
(x)

∂Bε(c) ∩ B◦‖c/2‖(c/2) P≥(0, x− c)
∂Bεs (c)\B‖c/2‖(c/2) P≥(0, x− c)
(∂B‖c/2‖(c/2) ∩ B◦εs (c))\Bε(c) P≤(0, x− c/2)
∂Bε(c) ∩ ∂B‖c/2‖(c/2) P≥(0, x− c) ∩ P≤(0, x− c/2)
∂B‖c/2‖(c/2) ∩ ∂Bεs (c) P≥(0, x− c) ∪ P≤(0, x− c/2)

Set to which x belongs TFm (x)

∂Bε(c)\B‖µc‖(µc)\C
≤
≤(c, pm−c, ψ) P≥(0, x− c)

∂Bεh(c)\B‖µc‖(µc)\C
≤
≤(c, pm−c, ψ) P≤(0, x− c)

∂B‖µc‖(µc) ∩ B◦εh (c)\Bε(c) P≥(0, x− µc)
C=≤(c, pm − c, ψ) ∩ B

◦
εh

(c)\Bε(c) P≥(0, nm(x))

∂Bε(c) ∩ ∂B‖µc‖(µc) P≥(0, x−c)∩P≥(0, x− µc)
∂Bεh (c) ∩ ∂B‖µc‖(µc) P≤(0, x−c)∩P≥(0, x− µc)
∂Bε(c) ∩ C=≤(c, pm − c, ψ) P≥(0, x−c)∩P≥(0, nm(x))

∂Bεh (c) ∩ C
=
≤(c, pm − c, ψ) P≤(0, x−c)∩P≥(0, nm(x))

TABLE I
TANGENT CONES TO F0 AND Fm AT x, WITH m EITHER −1 OR 1

(nm(x) := πψ(pm − c)(x− c)).

i) all maximal solutions do not have finite escape times,
are complete in the ordinary time direction, and the
obstacle-free set K in (29) is forward invariant (as
in [19, Def. 3.3]);

ii) the set A in (29) is globally asymptotically stable;
iii) for each ε′ > ε, it is possible to tune the hybrid con-

troller parameters so that the resulting hybrid feedback
law matches, in Rn\Bε′(c), the law u = −k0x.

Theorem 1 shows that the three objectives discussed in
Section III are fulfilled.

A. Proof of Theorem 1

To prove item i), we resort to [19, Thm. 4.3]. We first
establish for H in (19) the relationships invoked in [19,
Thm. 4.3], and we refer the reader to Fig. 2 for a two-
dimensional visualization. In particular, the boundaries of the
flow sets F0 and Fm,m ∈ {−1, 1}, are

∂F0 =
(
∂Bε(c) ∩ B‖c/2‖(c/2)

)
∪
(
∂Bεs(c)\B‖c/2‖(c/2)

)
∪
(
(∂B‖c/2‖(c/2) ∩ Bεs(c))\Bε(c)

)
, (30)

∂Fm=
(
(∂Bε(c) ∪ ∂Bεh(c))\B‖µc‖(µc)\C≤≤(c, pm−c, ψ)

)
∪
(
(∂B‖µc‖(µc)∪C=≤(c, pm−c, ψ))∩Bεh(c)\B◦ε (c)

)
. (31)

The tangent cone (see [16, Def. 5.12 and Fig. 5.4]), evaluated
at the boundary of these sets, is given in Table I.

Consider m = 0 and let z := κ(x, 0) = −k0x. If x ∈
∂Bε(c)∩B◦‖c/2‖(c/2), then (x− c)>z = −k0x>(x− c) > 0

(since x ∈ B◦‖c/2‖(c/2), see (20)), i.e., z ∈ P>(0, x − c).
If x ∈ (∂B‖c/2‖(c/2) ∩ B◦εs(c))\Bε(c), then one has (x −
c/2)>z = −k0x>(x − c/2) = −k0x>c/2 = −k0‖x‖2/2 ≤
0 since x>(x − c) = 0 from ‖x − c/2‖ = ‖c/2‖. Then,
z ∈ P≤(0, x − c/2). If x ∈ ∂Bε(c) ∩ ∂B‖c/2‖(c/2) or
x ∈ ∂B‖c/2‖(c/2) ∩ ∂Bεs(c), then z>(x − c) = 0 and
z>(x − c/2) = −k0‖x‖2/2 ≤ 0 showing, respectively,



that z ∈ P≥(0, x − c) ∩ P≤(0, x − c/2). Finally, if x ∈
∂Bεs(c)\B‖c/2‖(c/2), then (x− c)>z = −k0x>(x− c) < 0
(since x /∈ B‖c/2‖(c/2)), i.e., z ∈ P<(0, x − c). Let
L0 := ∂Bεs(c)\B‖c/2‖(c/2). Therefore, by all the previous
arguments, (30) and Table I:

x ∈ L0 =⇒ κ(x, 0) ∩TF0(x) = ∅
x ∈ ∂F0\L0 =⇒ κ(x, 0) ⊂ TF0(x).

(32)

Consider then m ∈ {−1, 1} and let now z := κ(x,m) =
−kmπ⊥(x − c)(x − pm). If x ∈ ∂Bε(c) or x ∈ ∂Bεh(c)
then one has (x − c)>z = −km(x − c)>π⊥(x − c)(x −
pm) = 0, which implies that both z ∈ P≥(0, x − c) and
z ∈ P≤(0, x − c). Define nm(x) := πψ(pm − c)(x − c),
which is a normal vector to the cone C=(c, pm − c, ψ) at x.
If x ∈ C=≤(c, pm − c, ψ), then3

nm(x)>z = −kmnm(x)>π⊥(x− c)(x− pm)
(3)
= km(x− c)>πψ(pm − c)π⊥(x− c)(pm − c)
(8),(5)
= km(x− c)>(π⊥(pm − c)−sin2(ψ)In)π⊥(x− c)(pm − c)

(3)
= km(x− c)>π⊥(pm − c)π⊥(x− c)(pm − c)
(5)
= km(x− c)>π⊥(pm − c)

(
In − π‖(x− c)

)
(pm − c)

(3)
= −km(x− c)>π⊥(pm − c)π‖(x− c)(pm − c)
(1)
= −km

(x− c)>π⊥(pm − c)(x− c)
‖x− c‖2

(x− c)>(pm − c) ≥ 0

where the last bound follows from π⊥(pm − c) positive
semidefinite and (x−c)>(pm−c) ≤ 0 (since x ∈ C=≤(c, pm−
c, ψ) ⊂ P≤(c, pm − c)). Hence, z ∈ P≥(0, nm(x)). Finally,
let x ∈ ∂B‖µc‖(µc) ∩ Bεh(c)\B◦ε (c). With θmax in (24) and
µ < 1/2, we have

0 ≤c>(c−x)=
‖x− c‖2+(1− µ)2‖c‖2−‖x− µc‖2

2(1− µ)

=
‖x− c‖2 + ‖c‖2(1− 2µ)

2(1− µ)
≤ ε

2
h + ‖c‖2(1− 2µ)

2(1− µ)

= cos(θmax)ε‖c‖ ≤ cos(θmax)‖x− c‖‖c‖.

(33)

From c>(pm−c) = − cos(θ)‖c‖‖pm−c‖ (pm ∈ C=≤(c, c, θ)
by (18) and Lemma 2) and (33), we get the first bound in

(x− µc)>z = −km(x− µc)>π⊥(x− c)(x− pm)
(3)
= km(c− µc)>π⊥(x− c)(pm − c)
(1)
= km(1− µ)(c>(pm − c)

+ c>(c− x) · (x− c)>(pm − c)/‖x− c‖2)

≤ km(1− µ)(− cos(θ) + cos(θmax))‖c‖‖pm − c‖ < 0,

and km > 0, 1 − µ > 0 (from (21)), θ < θmax (from (22))
yield the second bound. (x − µc)>z < 0 implies then
z ∈ P<(0, x− µc). Let Lm := ∂B‖µc‖(µc)∩Bεh(c)\B◦ε (c).
Therefore, by all the previous arguments, (31) and Table I:

x ∈ Lm =⇒ κ(x,m) ∩TFm
(x) = ∅

x ∈ ∂Fm\Lm =⇒ κ(x,m) ⊂ TFm
(x).

(34)

3Each (in)equality is obtained thanks to the relationship reported over it.

We can now apply [19, Thm. 4.3]. With K in (29), let F̂ :=
∂(K ∩ F)\L with L = ∪m=−1,0,1Lm × {m}. By (32) and
(34) and K∩F = F , we have F̂ = ∪m=−1,0,1(∂Fm\Lm)×
{m}. It follows from (32) and (34) that for every (x,m) ∈ F̂ ,
F(x,m) ⊂ TF (x,m). Also, J(K ∩ J ) ⊂ K, F is closed,
the map F satisfies the hybrid basic conditions as proven
in Lemma 5 and it is, moreover, locally Lipschitz since it
is continuously differentiable. We conclude then that the set
K is forward pre-invariant [19, Def. 3.3]. In addition, since
L0 ⊂ J0 and Lm ⊂ Jm with m ∈ {−1, 1}, one has L ⊂ J .
Besides, finite escape times can only occur through flow, and
since the sets F−1 and F1 are bounded by their definitions
in (19e), finite escape times cannot occur for x ∈ F−1 ∪F1.
They can neither occur for x ∈ F0 because they would
make x>x grow unbounded, and this would contradict that
d
dt (x

>x) ≤ 0 by the definition of κ(x, 0) and by (19a).
Therefore, all maximal solutions do not have finite escape
times. By [19, Thm. 4.3] again, the set K is actually forward
invariant [19, Def. 3.3], and solutions are complete. Finally,
we anticipate here an immediate corollary of completeness of
solutions and Lemma 6 below: since the number of jumps is
finite by Lemma 6, all maximal solutions to (19) are actually
complete in the ordinary time direction.

To prove item ii), we proceed in two steps. First, we prove
that the set A is globally asymptotically stable for the system
without jumps. To this end, the jumpless system has data
H 0 = (F,F , ∅, ∅) with flow map F and flow set F defined
in (19). We emphasize that H 0 is obtained in accordance
to [20, Eqs. (38)-(39)] by identifying all jumps with events.
Consider the Lyapunov function

V(x,m) := m2/2 + ‖x− pm‖2/2, (35)

with p0 := 0 and pm (m ∈ {−1, 1}) defined in (18). One has
V(x,m) = 0 for all (x,m) ∈ A in (29), V(x,m) > 0 for
all (x,m) /∈ A, and is radially unbounded relative to F ∪J .
Straightforward computations show that

〈∇V(x, 0),F(x, 0)〉 = −k0x>x < 0 ∀x ∈ F0\{0}
〈∇V(x,m),F(x,m)〉 = −km(x− pm)>π⊥(x− c)(x− pm)

=−km‖π⊥(x− c)(x− pm)‖2<0 ∀m ∈ {−1, 1}, x ∈ Fm.

The last inequality follows from projection matrices being
positive semidefinite and Lemma 3, which implies that it
cannot be 〈∇V(x,m),F(x,m)〉 = 0 for m ∈ {−1, 1} and
all x ∈ Fm since L(c, pm − c) is excluded from Fm by
Lemma 4. All the above conditions satisfied by V suffice to
conclude global asymptotic stability of A for H 0 since A
is compact and H 0 satisfies [16, Ass. 6.5].

Second, the next lemma establishes that the number of
jumps is finite for the given hybrid dynamics in (19).

Lemma 6 ([15]): For H in (19), each solution starting in
K experiences no more than 3 jumps.
Consequently, global asymptotic stability of A follows from
the first and second step by [20, Thm. 31], since the hybrid
system in (19) satisfies the Basic Assumptions [20, p. 43],
as proven in Lemma 5, the set A is compact and has empty
intersection with the jump set.



Lastly, to prove item iii), let ε′ > ε. Select the parameter
εh ∈ (ε,min(ε′,

√
ε‖c‖)) while all other hybrid controller

parameters are selected as in Assumption 2. Then this implies
that the flow sets Fm,m ∈ {−1, 1}, of the avoidance mode
are entirely contained in Bε′(c). Therefore, as long as the
state x remains in Rn\Bε′(c), solutions are enforced to flow
only with the stabilizing mode m = 0, which corresponds to
the feedback law u = −k0x.

VI. NUMERICAL EXAMPLE

We illustrate our results through a three-dimensional ex-
ample. The hybrid system in (19) is fully specified by the
following parameters. The obstacle has center c = (1, 1, 1)
and radius ε = 0.700. The controller gains are km = 1 for
m ∈ {−1, 0, 1}. The parameters used in the construction
of the flow and jump sets are εh = 0.901, εs = 0.800,
µ = 0.444, θ = 0.276, which satisfy Assumption 2. To
select a point p1 ∈ C=≤(c, c, θ)\{c}, we proceed as follows.
Select v ∈ Sn such that v>c = 0 and consider R(v, θ) ∈
SO(3), i.e., an orthogonal rotation matrix specified by axis
v and angle θ. Then, we can verify that the point p1 =
(I3−R(v, θ))c is a point on the cone C=≤(c, c, θ). By letting
v = (0, 1,−1), we determine p1 = (0.424,−0.155,−0.155)
and p−1 = (−0.348, 0.231, 0.231) as in (18). We also select
ψ = 0.249 and ψ̄ = 0.266, which satisfy Assumption 2.
Fig. 3 shows that the objectives posed in Section III and
proven in Theorem 1 are fulfilled. The top part of the
figure illustrates the relevant sets. The middle part shows that
the origin is globally asymptotically stable, and the control
law matches the stabilizing one sufficiently away from the
obstacle. The bottom part shows that the solutions are safe
since they all stay away from the obstacle set Bε(c).

VII. CONCLUSIONS

We have proposed a hybrid feedback law for the avoidance
of a spherical obstacle in Rn. This law guarantees forward
invariance of the obstacle-free space and global asymptotic
stability of the reference. Future work includes generalizing
this control strategy to multiple, nonspherical obstacles.
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[8] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings, vol. 40, no. 12, pp. 462–467, 2007.

[9] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control Lyapunov–barrier function,” Automatica, vol. 66,
pp. 39–47, 2016.

2 

1.5 

1 

0.5 

2.5 

2.5 

0

Fig. 3. Top left: sets F−1 (green) and J0 (red) surrounding Bε(c)
(grey). Top center: sets J0 (red), J−1 ∩ H(c, ε, εh, µ) (green), and
J1 ∩ H(c, ε, εh, µ) (blue) surrounding Bε(c) (grey). Top right: sets F1

(blue) and J0 (red) surrounding Bε(c) (grey). Middle: phase portrait of
solutions with different initial conditions and Bε(c) (grey). Bottom: distance
to the obstacle for the solutions and radii εs, ε of H(c, ε, εs, 1/2), Bε(c).

[10] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Automat. Contr., vol. 62, no. 8, pp. 3861–3876, 2017.

[11] R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel, “Robust
hybrid controllers for continuous-time systems with applications to
obstacle avoidance and regulation to disconnected set of points,” in
Amer. Control Conf., 2006, pp. 3352–3357.

[12] J. I. Poveda, M. Benosman, A. R. Teel, and R. G. Sanfelice, “A hybrid
adaptive feedback law for robust obstacle avoidance and coordination
in multiple vehicle systems,” in Amer. Control Conf., 2018, pp. 616–
621.

[13] P. Braun, C. M. Kellett, and L. Zaccarian, “Unsafe point avoidance in
linear state feedback,” IEEE Conf. on Decision and Control, 2018.

[14] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000.
[15] S. Berkane, A. Bisoffi, and D. V. Dimarogonas, “A hybrid con-

troller for obstacle avoidance in an n-dimensional Euclidean space,”
arXiv:1903.04392 [cs.SY], 2019.

[16] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton University
Press, 2012.

[17] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33,
no. 3, pp. 661–674, 2017.

[18] V. J. Lumelsky and T. Skewis, “Incorporating range sensing in the
robot navigation function,” IEEE Trans. Syst., Man, Cybern., vol. 20,
no. 5, pp. 1058–1069, 1990.

[19] J. Chai and R. G. Sanfelice, “Forward invariance of sets for hybrid
dynamical systems (Part I),” IEEE Trans. Automat. Contr., 2019.

[20] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical
systems,” IEEE Control Syst. Mag., vol. 29, no. 2, pp. 28–93, 2009.


