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Abstract— In this short paper, a new Gersgorin-type
criterion for eigenvalue inclusion sets is used to derive
a new sufficient condition for the positive definiteness of
real symmetric matrices. The result is less conservative
than the classic strict diagonal dominance criterion
imposed by Gersgorin’s Theorem. We show that this
result can be applied to various classes of interconnected
systems, including systems consisting of subsystems with
linear and nonlinear interconnection terms. Numerical
examples as well as the intuition behind the derived
results are also provided.

I. I NTRODUCTION

The study of inclusion sets for the eigenvalues of
matrices with real or complex entries has a long history
in the area of Lineal Algebra. The most celebrated
result is Gersgorin’s Theorem [4] which provides spe-
cific bounds for the eigenvalues of a matrix based
on the difference of its diagonal elements with the
corresponding absolute sums of the corresponding off-
diagonal elements. Among the various applications of
this well-known result, is that it provides a sufficient
condition for the positive definiteness of real symmetric
matrices. In particular, a straightforward corollary of
Gersgorin’s Theorem is the fact that strict diagonal
dominance (a term that will be defined later) is a
sufficient condition for positive definiteness.

A direct application of the aforementioned results to
control theory is raised in the area of interconnected
systems. For systems consisting of subsystems with
linear interconnection terms, the positive definiteness
of the matrix encoding these interconnections is a suffi-
cient condition for the asymptotic stability of the whole
system. This result has been extensively examined
in [10]. Furthermore, for interconnected systems with
nonlinear interconnection terms but with linear bounds
on these interconnection terms, similar results have
been derived, see for example [6],[1]. String stability
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of interconnected systems with linear bounds on the
interconnection terms was also examined in [9],[11].
In addition, properties of positive-semidefinitematrices
have been used to derive sufficient conditions for the
class of interconnected systems that model the multi-
agent rendezvous or consensus problem. This problem
forces the agents to gather at a common point in the
state space in a distributed manner. Results include but
are not limited to [8], [7], [5].

The strict diagonal dominance property can be inter-
preted as follows. The diagonal elements are measures
of the stability “degree” of the individual subsystems
while the interconnection terms represent the perturba-
tion terms that might be the cause of destabilization. As
mentioned in [6], “if the degrees of stability for the iso-
lated subsystems are larger as a whole than the strength
of the interconnections, then the interconnected system
has an asymptotically stable equilibrium at the origin”.
It is evident that the diagonal dominance property is
only one interpretation of the above conclusion. In this
paper, we provide a less conservative result which is
based on a new Gersgorin-type theorem for eigenvalue
inclusion regions that appeared in [3], [2]. The result
is less conservative in the sense that the eigenvalue
inclusion sets that are defined in [2], are actually
subsets of the classic eigenvalue inclusion sets of Gers-
gorin’s Theorem. A similar interpretation is derived
which can be summarized as follows: “if at least one
subsystem overcomes the total degree of instability of
the other subsystems, then the interconnected system is
asymptotically stable”. This statement is made clear in
the numerical examples section.

The rest of the paper is organized as follows: Section
II includes the necessary background on Gersgorin’s
Theorem as well as the new Gersgorin-type theorem
that appeared in [2]. Section III provides a new result on
positive definiteness for real symmetric matrices which
is used in section IV to derive sufficient condition
for the stability of various classes of interconnected
systems. Section V provides some numerical examples
of the new approach to positive definiteness.



II. BACKGROUND

In this section the mathematical preliminaries needed
for the subsequent analysis are presented. The follow-
ing is based on [4].

Theorem 1:(Gersgorin’s Theorem) Given a matrix
A ∈ Rn×n then all its eigenvalues lie in the union of
n discs:

n⋃

i=1

{z ∈ C : |z − aii| ≤ ri (A)} ∆=
n⋃

i=1

Γi (A) ∆= Γ (A)

where

ri (A) ∆=
n∑

j=1
j 6=i

|aij |

Each of these discs is called a Gersgorin disc ofA.
¤
Another version of Gersgorin’s Theorem is given by
the following Theorem

Theorem 2:Given a matrixA ∈ Rn×n and n posi-
tive real numbersp1, . . . , pn then all its eigenvalues of
A lie in the union ofn discs:

n⋃

i=1





z ∈ C : |z − aii| ≤ 1
pi

n∑

j=1
j 6=i

pj |aij |





¤
A straightforward corollary of Gersgorin’s Theorem

involves the positive definiteness of a symmetric ma-
trix:

Theorem 3:Given a symmetric matrixA ∈ Rn×n

then a sufficient condition forA to be positive definite
is

aii > ri (A) , ∀i ∈ N

In this case the matrixA is called strictly diagonally
dominant.
¤
In this paper we exploit a less known result on eigen-
value inclusion sets that originally appeared in [3] and
was recently given a generalization in [2]. The result
of [2] that we use in this paper is summarized in the
following Theorem:

Theorem 4:Given a matrixA ∈ Rn×n then all its
eigenvalues lie in the intersection ofn discs:

D (A) ∆=
n⋂

i=1

Di (A)

where for eachi = 1, . . . , n,

Di (A) ∆=
n⋃

j=1
j 6=i

Vij (A)

where

Vij (A) ∆={
z : |z − aii| · (|z − ajj | − rj (A) + |aji|) ≤
≤ ri (A) · |aji|

}

¤
It is shown in [2] that the new inclusion theorem is

actually less conservative than the classic Gersgorin’s
Theorem, in the sense that

Di (A) ⊆ Γ (A)

for all i = 1, . . . , n.
The question that naturally arises is if we can draw a

conclusion similar to Theorem 3 regarding the positive
definiteness of a symmetric matrix in this case as well.
This is the topic of the next section.

III. M AIN RESULT

In this section we present the main result of this
paper. In particular, we provide a sufficient condition
for positive definiteness of a symmetric matrix based
on the extension of Gersgorin’s Theorem.

We assume that the matrixA has strictly positive
diagonal elements. Excluding the casez = aii, each
elementz in the setVij(A) satisfies by definition:

|z − aii| · (|z − ajj | − rj (A) + |aji|) ≤ ri (A) · |aji|
z 6=aii⇒ |z − ajj | ≤ ri (A) · |aji|

|z − aii| +rj (A)−|aji| ∆= fij (z)

We then have

|z − ajj | ≤ fij (z) ⇒ −fij (z) ≤ z − ajj ≤ fij (z)

Hence

z ≥ ajj−fij (z) = ajj−rj (A)+|aji|
(

1− ri (A)
|z − aii|

)

We note that the eigenvalues of a real symmetric
matrix are real numbers. Being interested in the positive
definiteness of the matrixA we take into account the
worst case in whichz < aii. For z < aii we have

z ≥ ajj − rj (A) + |aji|
(
1 + ri(A)

z−aii

)
⇒ z (z − aii) ≤

≤ (ajj − rj (A)) (z − aii) + |aji| (z − aii + ri (A))

The last equation yields

z2 − ρijz + πij ≤ 0



where
ρij

∆= aii + ajj − rj (A) + |aji|
and

πij
∆= aii (ajj − rj (A)) + |aji| (aii − ri (A))

From elementary calculus we now have

z2 − ρijz + πij ≤ 0 ⇒

⇒ z ≥
ρij −

√
ρ2

ij − 4πij

2
since the termρ2

ij−4πij is always non-negative. Indeed,
simple calculations yield

ρ2
ij − 4πij = (aii + ajj)

2 + (rj (A)− |aji|)2 +
+2 (aii + ajj) · (|aji| − rj (A))− 4aii (ajj − rj (A))
−4 |aji| (aii − ri (A)) =
= a2

ii + a2
jj − 2aiiajj + |aji|2 + r2

j (A)+
+2rj (A) · (aii − ajj)− 2 |aji| · (aii − ajj) =
= (aii − ajj)

2 + r2
j (A) + |aji|2 +

+2 (rj (A)− |aji|) · (aii − ajj) =
= (aii − ajj)

2 + (rj (A)− |aji|)2 +
+2 (rj (A)− |aji|) · (aii − ajj) + 2 |aji| · rj (A) =
= (aii − ajj + rj (A)− |aji|)2 + 2 |aji| · rj (A) ≥ 0

From Theorem 4, we have that

σ (A) ⊆
n⋂

i=1

n⋃

j=1
j 6=i

Vij (A)

whereσ(A) is the spectrum ofA. Hence a sufficient
condition for the positive definiteness of the matrixA
is given by

max
i=1,...,n



 min

j=1,...,n
j 6=i





ρij −
√

ρ2
ij − 4πij

2







 > 0

The result is summarized in the following Theorem:
Theorem 5:Suppose that the elements of a symmet-

ric matrix A ∈ Rn×n satisfy the following conditions:

aij =
{

> 0, ifi = j
aji, ifi 6= j

Then a sufficient condition for the positive definiteness
of A is given by

max
i=1,...,n



 min

j=1,...,n
j 6=i





ρij −
√

ρ2
ij − 4πij

2







 > 0

where
ρij

∆= aii + ajj − rj (A) + |aji|

and

πij
∆= aii (ajj − rj (A)) + |aji| (aii − ri (A))

¤
The result can be also expressed as follows: there

existsat least onei = 1, . . . , n for which the condition

min
j=1,...,n

j 6=i





ρij −
√

ρ2
ij − 4πij

2



 > 0

holds. It is clear that this result is less conservative than
the classic Gersgorin’s Theorem, something expected,
since each subsetDi(A) is a subset of the Gersgorin
regionΓ(A).

IV. A PPLICATION TO INTERCONNECTED SYSTEMS

In the next paragraphs, we present two classes of
interconnected systems in which the new results pre-
sented previously can be applied to ensure asymptotic
stability.

A. Subsystems with linear interconnection terms

We first consider interconnected systems of the form

ẋi = −aiixi −
∑

j 6=i

aijxj , i = 1, . . . , N (1)

where, without loss of generality, we assume thatxi ∈
R for all i = 1, . . . , n. The coefficientsaij are assumed
to satisfy the following properties:

aii > 0, aij = aji

for all i, j = 1, . . . , n with j 6= i. The stack vector of
the subsystems’ state is denoted by

x =
[

x1 . . . xn

]T

Equation (1) is now written as

ẋ = −Ax (2)

whereA = [aij ] ∈ Rn×n.
Elementary linear control theory states that the inter-

connected system (2) is asymptotically stable, provided
that the matrixA is positive definite. A test for the
positive definiteness ofA can be provided by Theorem
5.



B. Linearly bounded nonlinear interconnection terms

Consider now interconnected systems of the form

ẋi = fi (xi) +
∑

j 6=i

gij (xj), i = 1, . . . , N (3)

where for eachi, j = 1, . . . , N , fi and gij are suffi-
ciently smooth to assure local existence and uniqueness
of solution in the domain of interest, andfi (0) =
0, gij (0) = 0, so that0 is an equilibrium point of
the interconnected system. Assuming that the “isolated”
subsystem, i.e. the system

ẋi = fi (xi)

is asymptotically stable to the origin for eachi, the
terms gij can be interpreted as disturbance elements
on thei-th subsystem, induced by the existence of the
other subsystems.

In the vein of [6], we consider

V =
∑

i

Vi

as a composite Lyapunov function for the whole sub-
system, where eachVi is a suitable positive definite
smooth Lyapunov function for each isolated subsystem,
i.e. satisfies

∂Vi

∂xi
fi (xi) ≤ −aiiφ

2
i (xi)

whereaii are positive constants, andφ(xi) is a continu-
ous positive definite function. Furthermore, assume that
the interconnection terms satisfy the following relation:

∑

j 6=i

∂Vi

∂xi
gij (xj) ≤ −aijφi (xi)φj (xj)

for all i = 1, . . . , n. We further assume that the
interconnection terms satisfyaij = aji for all i, j =
1, . . . , N . Please note that no assumptions are made
regarding the sign definiteness of the interconnection
terms.

Computing now the time derivative of the composite
Lyapunov functionV we get

V̇ =
∑
i

(
∂Vi

∂xi
fi (xi) +

∑
j 6=i

∂Vi

∂xi
gij (xj)

)
≤

≤ ∑
i

(−aiiφ
2
i (xi)− aijφi (xi) φj (xj)

)
=

= −φT Aϕ

whereA = [aij ] and

φ =
[

φ1 (x1) . . . φN (xN )
]T

The positive definiteness ofA is a sufficient condi-
tion for the asymptotic stability of the interconnected
system in this case as well and it can be tested via
Theorem 5.

V. NUMERICAL EXAMPLES

In this section we consider two numerical examples
of a matrix who has the form of theA matrices of the
previous paragraphs and apply the result of Theorem 5.
The results will help us in extracting an intuitive result
regarding the stability of interconnected systems based
on this Theorem.

We consider an interconnected linear system of the
form

ẋ1 = −ax1 − 3x2 + 10x3 + 6x4

ẋ2 = −3x1 − 3x2 − x3

ẋ3 = 10x1 − x2 − 5x3 + 3x4

ẋ4 = 6x1 + 3x3 − 4x4

Writing the system in the stack vector forṁx = −Ax,
we have

A =




a 3 −10 −6
3 3 1 0
−10 1 5 −3
−6 0 −3 4




Note that the condition

min
j=1,...,n

j 6=i





ρij −
√

ρ2
ij − 4πij

2



 > 0

can only hold forρij > 0. This yields

ρij −
√

ρ2
ij − 4πij > 0 ⇔ πij > 0

Computing now in the above example the termsπ1j for
j = 2, 3, 4 we get

π12 = 2a− 57, π13 = a− 190, π14 = a− 114

Based on the result of Theorem 5, a sufficient condition
for the positive definiteness of the matrixA is a > 190.
Indeed for a = 191, we haveλmin(A) = 0.5071.
Please note that the eigenvalue inclusion regions in-
duced by Theorems 1, 2 do not guarantee that the
eigenvalues ofA are positive.

The above example provides the following intuition
for the result of this paper. First of all, the diagonal
element corresponding to the subsystem on which the
minimization procedure of Theorem 5 takes place,
should be relatively large. Moreover, the absolute val-
ues of the interconnection terms of this subsystem with
the other subsystems should also be relatively large



with respect to the interconnection terms between the
other subsystems. In summary, the following statement
is derived based on the result of Theorem 5:“if at least
one subsystem overcomes the total degree of instability
of the other subsystems, then the interconnected system
is asymptotically stable”.

The second example involves a3 × 3 matrix which
might represent the interconnection terms of both cases
examined in the previous section . Suppose that this
matrix has the form

A =




a −3 4
−3 2 1
4 1 3




Note again that this matrix does not satisfy the condi-
tions of Gersgorin’s Theorems 1,2.

Computing now in the above example the termsπ1j

for j = 2, 3 we get

π12 = a− 21, π13 = 2a− 28

Based on the result of Theorem 5, a sufficient condition
for the positive definiteness of the matrixA is a > 21.
Indeed fora = 22, we haveλmin(A) = 0.3328.

VI. CONCLUSIONS

In this short paper, a new Gersgorin-type criterion
for eigenvalue inclusion sets was used to derive a new
sufficient condition for the positive definiteness of real
symmetric matrices. The result is less conservative than
the classic strict diagonal dominance criterion imposed
by Gersgorin’s Theorem. We showed that this result can
be applied to various classes of interconnected systems,
including systems consisting of subsystems with linear
and nonlinear interconnection terms. Numerical exam-
ples were also provided to support the derived results.
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