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Dual Quaternion Cluster-Space Formation Control
Juan I. Giribet1, Leonardo J. Colombo2, Patricio Moreno3, Ignacio Mas4, and Dimos V. Dimarogonas5

Abstract—We present a tracking controller for mobile multi-
robot systems based on dual quaternion pose representations
applied to formations of robots in a leader-follower configuration,
by using a cluster-space state approach. The proposed controller
improves system performance with respect to previous works
by reducing steady-state tracking errors. The performance is
evaluated through experimental field tests with a formation of
an unmanned ground vehicle (UGV) and an unmanned aerial
vehicle (UAV), as well as a formation of two UAVs.

Index Terms—Cluster-space control, leader-follower formation,
dual-quaternions, mobile robots, multi-robot systems.

I. INTRODUCTION

Extending the concept of a single autonomous mobile robot
performing a task to a group of robots has been an area
of active research in last decades. One of the key elements
in the operation of groups of mobile robots that require a
specific spatial configuration is the control method used to
coordinate the behavior of each robot [1]. Formation control
strategies, where spatial constraints are defined among agents,
are a powerful tool in multi-robot systems, as surveyed by [2].

A commonly used technique in the robot formation control
literature is the leader-follower configuration [3]. It provides
a simple and intuitive definition where a robot is designated
as leader and directly follows a specified path. The rest of the
robots are defined as followers and their positions are described
in reference to the leader or to other follower robots that are
ultimately specified with respect to the leader. This architecture
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Fig. 1: Multirotor UAV testbed used for formation control
experiments.

lends itself to distributed schemes, as only information relative
to neighboring robots is needed to define the formation. An-
other formation control strategy for coordination of groups of
robots is the cluster-space specification introduced in [4]. This
provides a simple specification and monitoring of the motion of
a mobile multi-robot system allowing a suitable framework to
develop formation control algorithms. This strategy is based on
considering the multi-robot system as a single entity, a cluster,
and specifying motions with respect to cluster attributes,
such as position, orientation, and geometry. In particular, this
approach allows to guide the selection of a set of independent
system state variables suitable for specification, control, and
monitoring. This collection of state variables constitutes the
system’s cluster-space and can be related to robot-specific state
variables, actuator state variables, etc., through a formal set
of kinematic transforms. A supervisory operator or real-time
pilot specifies and monitors system motion, and centralized
control computations are executed with respect to the cluster-
space variables. Kinematic transforms allow compensation
commands to be derived for each individual robot, and they
also allow data from a variety of sensor packages to be
converted to cluster-space state estimates.

Rigid body kinematics have typically been represented in
terms of rotation matrices, unit quaternions, or local coor-
dinates, such as Euler angles. Formation control strategies
for multi-robot systems on the special Euclidean group have
been extensively studied in the last decades and are still
an active strategy in formation control for the representation
of rigid body kinematics and dynamics [5]–[7]. Due to the
coordinate singularities associated with local coordinate charts,
it is common in mobile robots to adopt the dual quaternion
representation.

In particular, in the last years, dual quaternion-based def-
initions that include both attitude and position of robots,
as well as their associated controllers were proposed [8]–
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[11]. This formalism also provides the most compact and
computationally efficient screw algebra and lends itself to be
used as a representation of the motions of rigid bodies as
it simultaneously describes positions and orientations relying
only on eight parameters with an underlying 6-dimensional
manifold structure [12]. In the same way as homogeneous
transformations, dual quaternions can describe complete body
motions with one single mathematical object without repre-
sentation singularities. They form one of the smallest Lie
groups that represent rigid motions [13] where any sequence
of rigid body motions can be represented as a sequence of
dual quaternion operations, making this formalism a tool that
has been proven to be useful in several applications in robotics
for control and navigation [14]–[16]. Thus, some advantages
of dual quaternions over other formulations are: singularity-
free, shortest path interpolation, computational efficiency and
compact form, and the unified representation of translations
and rotations in a single invariant coordinate, among others
[14], [17].

In [10] a proportional-derivative controller for body trans-
formations using dual quaternions was proposed. The work
included simulations using a single robot and the tracking
control problem was developed. More recently, multi-robot
formation control approaches based on dual-quaternion rep-
resentations for pose consensus have been developed for
robotic manipulation tasks [11]. In [18], the idea of extending
dual quaternions from position and attitude representations to
their use in describing position, shape, and size of a robot
formation was introduced. The application of this notion to
a leader-follower configuration was presented in [19]. These
articles developed error-driven proportional controllers limited
to tracking constant references. In this work we use dual
quaternions to define the pose of the robots by relative transfor-
mations on the cluster-space variables. We design and provide
theoretical guarantees together with experimental validations
for a new leader-follower controller using a dual quaternion
representations of the formation state. The proposed setting
for cluster control advance on the state-of-the-art by extending
[18] to a controller which allows to reduce steady-state errors
caused by a proportional controller by adding an integral
term with a forgetting factor. This also generalizes the leader-
follower scheme given in [19] and improves its performance
limitations.

The main contributions of this work are: (a) A new tracking
control law for the pose of a single mobile robot based on
a dual quaternion representation, as stated in Theorem 1.
This control law compensates the steady-state tracking error.
(b) Its extension to a dual quaternion representation of the
leader-follower formation pose, based on cluster-space control
specification, and (c) the validation of the proposed control
law with simulations and experimental results.

The rest of the paper is organized as follows. The topic
background is presented in Section II, where the cluster-
space formulation is described, and dual quaternion errors and
dynamics are introduced. In Section III, a novel controller
based on dual quaternions that improves on previous works
[18], [19] is proposed. This controller compensates steady-state
tracking errors with an integral term and a forgetting factor,

improving overall performance.
Section IV presents the cluster-state formulation, the pro-

posed formation control approach, and convergence results.
Section V shows simulations results of the controller as well
as experiments on a hardware testbed, using as case examples
the task of aerial escorting of a ground vehicle and a flying
formation of two UAVs (see Figure 1).

II. BACKGROUND

A. Cluster-Space formulation

The cluster-space approach [4], [20], considers a group of
robots as a single entity, a cluster, defined by state variables
that capture relevant information for the application. Consider
an N -robot cluster where, without loss of generality, each
robot has p degrees of freedom, then the robot-space state
vector is r ∈ Rm, where m = Np. Let c ∈ Rm be a state
vector corresponding to the cluster variables. The appropriate
selection of cluster state variables may be a function of the
application, the system’s design, and other criteria such as
operator preferences (see [20] for details). These states are
related to the robot space states through m forward kinematic
transformations fwdk(r), with k = 1, . . . ,m. The m inverse
position kinematic transformations, denoted invk(c), relate the
k-th robot-state parameter to the cluster parameters. These
equations can be written as

c = FWD(r) =
[
fwd1(r) · · · fwdm(r)

]T
, (1)

r = INV(c) =
[
inv1(c) · · · invm(c)

]T
. (2)

Now, let J(r) be the jacobian matrix obtained from (1), and
J−1(c), the one obtained from (2), the mappings between the
velocities are, ċ = J(r)ṙ and ṙ = J−1(c)ċ, respectively.
For a given cluster definition, configurations may exist for
which the Jacobian J or its inverse J−1 become singular.
As expected, when the formation reaches a singular pose,
the system becomes unstable. We refer to [4] for a detailed
discussion about singularities in the cluster-space control for-
mulation. Following [18], we will see in Section IV the use of
dual quaternions will allow us to avoid such situation. We first
introduce dual quaternions to describe agents’ kinematics.

B. Dual quaternions

The skew-symmetric matrix function S(·) : R3 → R3×3

is the matrix such that S(v)w = v×w, for every v,w ∈ R3,
where × gives the vector product.

Let p ∈ R3 represent the vehicle position, and let a be
a frame of reference. Then pa denotes the vehicle position
expressed in frame a.

Let H be the set of quaternions with the standard opera-
tions [14], [17]. The set H can be identified with R4 and its
operations can be written in matrix form. In fact, every q ∈ H
can be decomposed in its vector component q ∈ R3 and real
component q0 ∈ R. Then, given p, q ∈ H, with p = (p, p0)
and q = (q, q0), the quaternion product, ◦, can be written as

p ◦ q =

[
S(p) + Ip0 p
−pT p0

](
q
q0

)
, (3)
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where I ∈ R3×3 is the identity matrix. Every vector p ∈ R3

can be identified with a quaternion p ∈ H by p = (p, 0).
Given q = (q, q0) ∈ H, the quaternion conjugate q∗ ∈ H,
is defined as q∗ = (−q, q0). The quaternion norm is given
by ‖q‖2 = q ◦ q∗ = q∗ ◦ q. It is well known that the unit-
norm quaternion represents rotations on the real 3-sphere S3.
In fact, q ∈ H and −q represent the same rotation. The unit
norm quaternion and corresponding rotation matrix are related
by R(q) = (q20 − qTq)I + 2qqT + 2q0S(q).

Suppose that q ∈ H is a unit-norm quaternion representing
the rotation between vehicle-frame b and inertial-frame i, then
pb and pi are related as pi = q◦pb◦q∗. Let ω = ωbib(t) ∈ R3

be the angular velocity of frame b with respect to frame i, in
frame b. Then, the dynamics of unit quaternion q, representing
the rotation from frame b to frame i is given by

q̇ =
1

2
q ◦ ω =

1

2

[
S(q) + Iq0
−qT

]
ω. (4)

A dual number is defined as α̂ = a + εb where a and b
are real numbers, called real part or principal part, and the
dual part, respectively, with ε being an element having the
following property: ε 6= 0 and ε2 = 0. ε is a mathematical
construct with a defined property and is not to be confused
as having a small value close to 0. The same can be done to
define dual quaternions, which have been proved to be useful
for vehicle position and attitude representation [14], [17].

In what follows, given a unit quaternion q ∈ H (which
represents the vehicle attitude) and p ∈ H with real part zero
(which represents the vehicle position), dual quaternions are
defined as Q = q+ε 12 (p◦q), where P(Q) = q is the principal
part and D(Q) = 1

2 (p ◦ q) is the dual part of Q. From now
on, lowercase letters with upper bars are used to represent unit
quaternions and uppercase letters with upper bars to represent
dual quaternions.

The sum, product, and conjugation of dual quaternions can
be extended from H, taking into account that ε2 = 0. The dual
quaternion conjugate is given by Q∗ = P(Q)∗ − εD(Q)∗.

Observe that given Q, it is possible to recover vehicle
attitude and position as follows: q = P(Q), and p = 2D(Q)◦
P(Q)

∗. The time derivative of Q can be obtained with the
derivatives of the principal and dual parts. In fact,

Ṗ(Q) = q̇ =
1

2
q ◦ ω, 2Ḋ(Q) = D(Q) ◦ ω + v ◦ P(Q) (5)

where the notation v = ṗ was introduced and the last equality
follows from equation (4). The time evolution of Q, hence
vehicle pose, is given by the commanded angular velocity ω
(in vehicle frame) and linear velocity v (in inertial frame).

C. Dual quaternions error dynamic

We wish to design a control law that improves performances
in [18] by acting on the steady-state tracking errors by in-
corporating an integral term with a forgetting factor to the
compensation signal to achieve pose stabilization, based on
dual quaternion representations, to be suitable for the multi-
robot cluster-space representation in Section IV. To do that,
first it is needed to compute the corresponding expression for
the error dynamics.

Let Q be the dual quaternion representing the current
attitude and position of vehicle and let Qd be the desired dual
quaternion, i.e., the desired vehicle pose. The dual quaternion
error is defined as δQ = Q∗d ◦Q = δq + ε 12δp

b ◦ δq, where
δq = q∗d ◦ q = (δq, δq0) and δp = p − pd = (δp, 0). The
term δp

b
= q∗d ◦ δp ◦ qd = (δpb, 0) can be interpreted as the

position error respect to the desired vehicle frame. Observe
that P(δQ) = δq and D(δQ) = 1

2 (δp
b ◦ δq). In order to

simplify notation, d := (d, d0) = D(δQ) is used.

Lemma 1. Let ω = (ω, 0), v = (v, 0) ∈ H, ωd =
(ωd, 0), vd = (vd, 0) ∈ H, such that equation (5) is
satisfied for Q and Qd, respectively. Let δω = ω − ωd and
δv

b
= (δvb, 0) = q∗d ◦ δ̇p ◦ qd. Then, the error δQ satisfies

˙δQ =
1

2


S(δq) + Iδq0 0
−δqT 0

S(d) + Id0 −S(δq) + Iδq0
−dT −δqT

[δωδvb
]

+

S(δq)
0

S(d)
0

ωd,
Proof. By equation (4) it follows that

Ṗ(δQ) = δ̇q = q̇d
∗ ◦ q + q∗d ◦ q̇ =

1

2

(
−ωd ◦ δq + δq ◦ ω

)
Taking δω = ω − ωd, and applying equation (3),

δ̇q =
1

2
δq ◦ δω +

[
S(δq)ωd

0

]
. (6)

In order to calculate the derivative of the dual part of δQ,
notice that ˙δpb = S(δpb)ωd + δv

b. Then

ḋ := Ḋ(δQ) =
1

2

(
˙
δp

b ◦ δq +
1

2
δp

b ◦ δq ◦ δω + δp
b ◦
[
S(δq)ωd

0

])
=

1

2

(
δv

b ◦ δq + d ◦ δω
)

+
1

2

[
Σ(δp, δq)

0

]
ωd,

where
[
Σ(δp, δq)

0

]
ωd = δp

b ◦
[
S(δq)ωd

0

]
+

[
S(δpb)ωd

0

]
◦ δq, fol-

lows from (3). Applying equation (3) to ḋ = Ḋ(δQ), and
d = 1

2 (S(δp)δq + δpδq0), the proof is completed.

III. CONTROL ALGORITHM

In [19], an algorithm based on dual quaternions was pro-
posed for a leader-follower problem, where the dynamics
involved showed a behavior similar to equation (6). The
proposed algorithm was a proportional controller, which took
into account the structure of the dual quaternion dynamics. The
main drawback of that strategy was the steady-state tracking
error, which was evidenced in the experimental results [19].

In order to overcome this limitation, a new control algorithm
for the dual quaternion dynamics is here proposed. For this
purpose, unit norm quaternion η = (η, η0) ∈ H and ξ ∈ R3

are introduced,

η̇ =
1

2

[
S(η) + Iη0
−ηT

]
(−|δq0|Kω,iδq + sgn(η0)Kηη) , (7)

ξ̇ = −Kv,iδp
b +Kξξ, (8)

where Kω,i,Kη,Kv,i,Kξ ∈ R3×3 are negative definite and
sgn(x) is the sign function such that sgn(0) = 1. These ad-
ditional terms compensate the tracking error, with a forgetting
factor given by gain matrices Kξ,Kη . The following theorem
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states the angular velocity and linear velocity that must be
applied to the vehicle in order to achieve the desired attitude
and position, i.e., (δq, δp)→ 0.

Theorem 1. Let Kω,p,Kv,p ∈ R3×3 be negative definite
matrices, ξ ∈ R3 and η ∈ H with kinematics as in
equations (7) and (8). Given ωd,vd and the (desired) dual
quaternionQd satisfying (5), suppose that the dual quaternion
Q is given by equation (5) with

ω = (ω, 0) = (ωd + sgn(δq0)(Kω,pδq + η0Kω,iη), 0) (9)

v = (v, 0) = (vd +R(qd) (Kv,pδp
b +Kv,iξ), 0). (10)

Then (δq, δp, ξ,η)→ 0, with error given by δQ = Q∗d ◦Q.

Proof. Being V = V (δq,d, ξ,η) ≥ 0 the Lyapunov function
given by V = 1

2δq
T δq+ 1

2 (1−δq
2
0)+2dTd+2d20+

1
2η

Tη+
(1− η20)+ 1

2ξ
T ξ, observe that it satisfies V = 0 if and only if

δq = d = ξ = η = 0 and 1− δq0 = d0 = 1− η0 = 0. Taking
the time derivative, by Lemma 1 and equation (7) it follows
that

V̇ =
1

2
δqT ((S(δq) + Iδq0)δω + 2S(δq)ωd)

+
1

2
δqT δωδq0 + 2dT ((S(d) + d0I)δω

+ (−S(δq) + δq0I)δv
b) + 4dTS(d)ωd

− 2d0(d
T δω + δqT δvb) +

1

2
ξTωξ

+
1

2
ηT (S(η) + η0I)ωη +

1

2
ηTωηη0,

where ωξ = −Kv,iδp
b +Kξξ and ωη = −|δq0|Kω,iδq +

sgn(η0)Kηη. Since xTS(x) = 0 for every x ∈ R3 and
canceling out some terms, it follows that V̇ = δqT δω δq0 +
2(dT (−S(δq) + δq0I) − d0δq

T ) δvb + ξTωξ + η0 η
Tωη .

Now, observe that δp
b

= 2d ◦ δq∗, by equation (3)
δpb = 2 (S(δq)d+ dδq0 − d0δq) then, V̇ = δqT δω δq0 +

δpb
T

δvb + ξT (−Kv,iδp
b +Kξξ) + η0 η

T (−|δq0|Kω,iδq +
sgn(η0)Kηη).

By definition of ω = ωd+δω, v = vd+R(qd)δv
b and can-

celing out some terms, it follows that V̇ = |δq0|δqTKω,pδq+

δpb
T

Kv,pδp
b + ξTKξξ + |η0|ηTKηη ≤ 0.

Notice that, if V̇ = 0, then δpb = |η0|η = ξ = |δq0|δq =
0. However, if δq0 = 0, by equation (6), it follows that 0 =
−δqTKω,pδq, and this is not possible because Kω,p < 0 and
‖δq‖ = 1, then δq = 0. Similarly it can be shown that η0 = 0
cannot satisfy V̇ = 0, then (δq, δp, ξ,η)→ 0.

IV. DUAL QUATERNION FORMATION DEFINITION

In this section, we adopt a cluster-space control-based
methodology for the specification of the robot formation.
A new space of cluster variables can be specified based
on geometric characteristics of the formation. Then, a con-
troller that operates on this new space —reducing the errors
accordingly— is proposed. Compensation signals generated by
the controller are then transformed to the space of the vehicles
to be applied to the system. Figure 3 shows the architecture
of the controller. To illustrate this, consider the following
example where three robots are flying in a given plane with

a prescribed configuration, as shown in Figure 2. Here, the
idea is to specify the position of a leader p1 (robot 1), the
angle ϕ with respect to its followers (robots 2 and 3), and the
relative position between them. The orientation of the robot
formation is given by the vector pointing from the center of
mass of the formation (cm) to the leader robot. A desired
orientation is given by the unit vector m. For this particular
application, instead of working in the robot space, it would
be more appropriated to define the cluster variables in term of
geometric characteristics of the formation. This can be done in
terms of dual quaternions as follows. The flying plane Π can
be defined with the normal unit vector n and the position of the
leader robot p1, by defining the dual quaternion Qc1 = qc1 +
ε
2 (p1 ◦ qc1), where qc1 = (n sin(φ/2), cos(φ/2)). This dual
quaternion gives geometric characteristics of the formation. We
can compute this dual quaternion based on robots positions,
in fact: qc1 = ( S(r1)r3

‖r2+r3‖ ,
1+rT

2 r3

‖r2+r3‖ ), where rk = pk−p1

pk−p1
,

k = 2, 3. To complete the formation specification, we need
the dual quaternion Qc2 = qc2 + ε

2 ((p3 − p2) ◦ qc2), where
qc2 = (n sin(α/2), cos(α/2)), and qc2 = ( S(u)m

‖u+m‖ ,
1+uTm
‖u+m‖ ),

where u = p1 − pcm. Notice that Qc1 contains information
of the flying plane and relative angle between leader and
followers, while Qc2 captures the formation orientation and
relative position between follower robots.

p1

pcm

cm

n

p2

p3

φ

α

m

Π

Fig. 2: Dual quaternion-based cluster definition.

As an alternative definition of a robot cluster, the leader-
follower strategy can be included within the same formulation,
where the space is composed of the pose (position and attitude)
of the leader and the relative pose of the followers with respect
to the leader.

Cluster-Space control

Reference
(dual quaternion)

Dual Quaternion
based

controller

Formation to
robot space
transform

Robot to
formation space

transform

UGV

UAV1

UAVn
Q̇ck

Q̇i

Qi

Qckd

k ∈ {1, . . . , n}

δQck

Qck

Fig. 3: Cluster-space dual quaternion controller block diagram.

From this perspective, and given a dual quaternion repre-
sentation of the ith robot’s position and orientation: Qi =
qi + ε 12pi ◦ qi where qi ∈ H is the quaternion representing
the orientation and pi = (xi, yi, zi, 0) represents its position.
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xG

yGzG

xL

yL

xFk
zFk

QL = qL + ε 12pL ◦ qL

QFk
= qFk

+ ε 12pFk
◦ qFk

Fig. 4: Proposed leader-follower formation definition based on
dual quaternions.

Without loss of generality, designating robot 1 as a leader and
robot k = 2, . . . , N as a follower, it is possible to define the
relative leader-follower pose,

QL = Q1, QFk
= Qk ◦Q∗1 for every k = 2, . . . , N. (11)

Equations (11) can be seen as a kinematic transformation

FWD(Q1, . . . ,QN ) =


QL
QF2

...
QFN

 =


f1(Q1,Q2, . . . ,QN )
f2(Q1,Q2, . . . ,QN )

...
fN (Q1,Q2, . . . ,QN )

 (12)

that relates the representation in the space of the robots to the
ones in the space of the formation. Here FWD denotes the
forward transformation (1) and r = (Q1, . . . ,QN ). Figure 4
show these relations. The relation between the velocities is
given by the Jacobian matrix J(Q1, . . . ,QN ) associated to
FWD. Additionally, an inverse kinematic relation is defined
as Q1 = QL, Qk = QFk

◦QL, for every k = 2, . . . , N .
One advantage of working with the space of the formation

is that if the formation or the task change, the same control
architecture can be used, modifying the state definition accord-
ingly. More specifically, in [18] the formation was defined as
an alternative robot cluster instead of a leader-follower scheme.
That is, in [18], a formation of two robots is represented as
a segment that can be rotated, moved and scaled over time,
which can be considered as an alternative definition to the
leader-follower specification when the task at hand makes
it more convenient. The results presented here can therefore
be extended to any robot cluster definition, such as the two
presented above. The main reason to develop common schemes
for different robot formation definitions is that it simplifies
the development of the software needed for deployment and
facilitates switching between different strategies. Of course, for
each cluster definition, the function FWD(Q1,Q2, . . . ,QN )
must be defined, as well as the associated Jacobian matrix

˙FWD = J(Q1,Q2, . . . ,QN )[Q̇1, Q̇2, . . . , Q̇N ]
T

. These ex-
pressions are used in the dual quaternion formation block
diagram shown in Figure 3.

In [18] a control algorithm was developed for a cluster-
space architecture, later in [19] the same idea was proposed
for a leader-follower strategy, both based on dual quaternions.
Next, we derive the leader-follower formation controller on

dual quaternions, based on the previous cluster-space definition
for compensation of the steady state tracking error observed in
[19]. In order to do that, a new term compensating steady-state
tracking errors that includes an integral term with a forgetting
factor is introduced. The idea follows Theorem 1. The dual
quaternion error is defined as

δQ
m
= Q∗m ◦Qmd

; m = {L,Fk}, (13)

where Qmd are the desired leader position and orientation and
followers relative position and orientations. Theorem 2 gives
stability guarantee on the pose error of the leader vehicle, and
the relative position of the followers with respect to the leader.

Theorem 2. For each m = {L,Fk}, k = 2, . . . , N , assume
that the desired dual quaternion Qmd

, angular velocity ωmd

and linear velocity vmd
are given. Suppose that Kω,pm ,

Kω,im , Kv,pm , Kv,im ∈ R3×3 are strictly negative definite
matrices, and let δQ

m
= (δq

m
, δq0m , δdm

, δd0m) be the track-
ing error defined in equation (13). If the control commands
(Qmc) defined for the leader and the followers are

Q̇mc =
1

2


S(qmc) + Iq0mc 0

−qTmc 0
S(dmc) + Id0mc −S(qmc) + Iq0mc

−dTmc −qTmc

[ωmcvbmc

]

ωmc = ωmd + sgn(δq0m )(Kω,pmδqm + η0mKω,imηm),

vmc = vmd +R(qmd
) (Kv,pmR(q∗md

)δpm +Kv,imξm).

η̇m =
1

2

[
S(ηm) + Iη0m

−ηTm

]
(−|δq0m |Kω,imδqm + sgn(η0m )Kηmηm),

(14)

ξ̇m = −Kv,imR(q∗md
)δpm +Kξmξm (15)

then, limt→∞(δqm, δdm) = (0, 0), for every m = {L,Fk}.
The proof is omitted for space limitations. It follows the

same reasoning as Theorem 1 but using the Lyapunov function

V =
∑

m={L,Fk}

1

2
δqTmδqm +

1

2
(1− δq20m ) + 2δdTmδdm

+ 2d20m +
1

2
ηTmηm + (1− η20m ) +

1

2
ξTmξm.

V. EXPERIMENTAL RESULTS

In this section, results from numerical simulations and real
experimental data are shown. First, the proposed algorithm
is implemented and executed under the same conditions and
with the same trajectories on both the simulation and the
experimental setup. This not only allows for the verification
of the algorithms and the simulator, but it also enables its use
to predict the behaviour of the real system. Then, results with
the proposed controller are presented.

In [19], the need of an algorithm capable of compensating
the steady-state error was shown. Using numerical simulations,
it is possible to see how the controller proposed in this work
improves the tracking performance. To test the advantage of the
proposed controller with the same conditions and disturbances,
we first run numerical simulations using ROS and Gazebo.
The UAV model was the IRIS from PX4 gazebo SITL. For
the UGV model, the MIT RACECAR plugin for Gazebo was
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Fig. 5: Simulation results of a UGV following a rectilinear
trajectory and a UAV flying above it at a constant relative
altitude of 10m. Main figure: XY plane top view. Insets:
Isometric view (bottom), XZ plane side view (top).

used. The host operating system was Ubuntu, running on a
laptop computer. A port of the PX4 autopilot firmware was
compiled on host and the communication with the IRIS model
was done with a mavros interface.

To validate the numerical simulator, a ROS/Gazebo sim-
ulation recreates experimental results previously reported in
[19], with the same references and controller used with the
real vehicles. In this first experiment, a quadcopter UAV and a
1/16th scale RC buggy chassis UGV were used. Both vehicles
had a Pixhawk Flight Controller with autopilot firmware PX4
v1.6.5. Both vehicles were connected to the host and interfaced
using mavros. The new controller proposed in Theorem 2 was
implemented using the computational library DQ Robotics [21]
for dual quaternion algebra and connected to the ROS envi-
ronment [22].

A. Validation of the Simulation Environment

The first simulation consists of the UGV (formation leader)
following a rectilinear trajectory while the UAV flies over it,
keeping the relative position constant and a fixed orientation
in the global frame. The UAV flies at a distance of 10m and
an elevation angle of 90°, meaning 10 meters right over the
UGV. In this simulation, a dual quaternion-based proportional
controller is used to control all the vehicles in the formation.
Control gains are set to Kw,pm = 0.3I3 and Kv,pm = 0.3I3
and Kω,i = Kv,i = 0, in order to consider only the propor-
tional effect. Figure 5 shows the vehicles’ motion through the
test, from different perspectives.

It can be seen that both vehicles track their references. It
can also be noted a lag between the position of the UGV and
that of the UAV. This lag is produced by the steady-state error,
as expected for a pure proportional controller.
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Fig. 6: Experimental result from [19] of a UGV following a
rectilinear trajectory and a UAV flying above it at a constant
relative altitude of 10m. Comparable with Fig. 5. Main figure:
XY plane top view. Insets: Isometric view (bottom), XZ plane
side view (top).

In the corresponding field experiment, reproduced here in
Figure 6 for direct comparison, the controller gains used were
the same as those used in simulation. Figure 5 shows the path
followed by the UGV and the UAV. Figures 7a and 7b show the
vehicles’ position errors and the UAV yaw error, for the field
experiment and the simulation. Yaw error for the UGV is not
estimated, as its orientation is computed from the commanded
motion, due to nonholonomic constraints, therefore, there’s no
desired yaw angle.

One of the advantages of having a good numerical simulator
is that we can evaluate the performance of our algorithms in a
controlled environment. Additionally, this numerical simulator
can be used to adjust controller gains prior to field experiments.

B. Steady-state error mitigation

To validate the effectiveness of the algorithm proposed
in this work, a numerical simulation is presented where the
integral part of the controller is activated at a certain point in
time to highlight its impact on the control system performance.
Performing a simulation of this scenario allows to maintain
disturbances constants throughout the experiment. Figure 8a
shows the position and orientation errors for a simulation result
in the ROS/Gazebo environment where the additional term
improves the performance of the controller presented in [19].

In the simulation, a formation of a leader UGV and two
follower UAV performs a position and orientation regulation,
where the vehicles track a constant reference. From t = 0 s to
t = 1000 s only the proportional term of the controller is active.
A bias in the position error of the two UAV is evident during
this period. At t = 1000 s the integral term of the controller is
also activated, effectively reducing the error bias as expected.
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Fig. 7: Simulation (dashed) and experimental (solid) results
of a UGV following a rectilinear trajectory and a UAV flying
above it at a constant relative altitude of 10m.

Position errors benefit significantly from the addition of
the integral term. It should also be noted that although a
non-negligible transient is seen when the control algorithm
is switched, this phenomenon is an artifact that would not be
seen in normal operation, as the integral part of the controller
would be active at all times. It is also worth noting that the
high frequency components of the signals decrease as it would
be expected from the low-pass filter nature of integral control.

C. Experimental validation

In order to validate the control algorithm in a more inter-
esting scenario, we performed experiments with two UAV in a
leader-follower configuration, as Figure 1 shows. The reference
trajectory for the leader robot is an 8-shape (lemniscate of
Gerono). The follower robot is trying to maintain a constant
relative position with respect to leader, as seen in Figure 9.
The parameters of the controller were established based on
simulations, resulting the following values: Kv,p = −1.3I3,
Kv,i = −1.2I3, Kξ = −10−3I3, Kω,p = −0.6I3, Kω,i =
−0.2I3, Kη = −10−3I3.

Figure 10 shows the error between the leader robot and
the commanded trajectory, and also the relative position error
between the follower and the leader. Over green background
is the time when the closed-loop control is activated, and over
blue background when the vehicles are manually controlled
by the pilot, during take-off and landing. Figure 11 shows the
yaw angle tracking error for both UAVs. When the control
algorithm is activate, it takes about 5 seconds for the follower
vehicle to follow the reference. After this transient, both
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Fig. 8: Simulation results of a formation of one UGV and two
UAV regulating their positions with the proposed controller.
At t = 1000 s the control algorithm is switched.

vehicles follow the reference with an error below 1.5◦ during
the experiment.

VI. FINAL DISCUSSION

Formation control of multi-robot systems is an area of re-
search with potential for several applications. Different control
schemes, such as cluster control, are proposed as a method to
simplify the control vehicles. One of the most used strate-
gies for formation control of vehicles is the leader-follower
approach, which facilitates the control of the formation com-
manding relative vehicle poses. In this work we have shown
that it is possible to establish a common scheme that treats the
leader-follower strategy and cluster control strategies within
the same framework. This may be attractive when developing
software for formation flying control that can switch from one
strategy to another in mission time. This is why the leader-
follower strategy was presented as a kinematic transformation
with its associated Jacobian matrices.

On the other hand, the dual quaternions are a useful tool for
implementing control software —in spite of the complexity in
extracting physical information from these variables— since,
from the implementation point of view, these are very suitable,
because the computations are cheaper than for rotation matri-
ces, and also have a simpler type invariant structure making it
easier to detect numerical errors.
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Fig. 10: Position error. UAV1 with respect to the reference
trajectory (Top) and UAV2 with respect to the leader vehicle
UAV1 (Bottom).

Notice that, with the control algorithm proposed in this
paper, we can achieve a good performance by reducing the
steady-state tracking error that was noticed in the experimental
results in [19]. In terms of system architecture, the choice of
the hardware/software suite used to develop the testbed as well
as the numerical simulator permits to validate the algorithms in
a very simple way, allowing to move from the computational
simulations to a real application without requiring important
modifications.
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