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Abstract— In this work, we propose a distributed imple-
mentation framework for control barrier functions induced
quadratic programs for multi-agent systems. The quadratic
program aims at minimally modifying nominal local con-
trollers, which relate to the underlying system tasks, while
always respecting a single coupling constraint which re-
lates to system safety. Unlike previous implementations, no
approximation or pre-allocation of the coupling constraint
over the agents is needed. Instead, to solve the quadratic
problem exactly, an auxiliary variable is assigned to each
agent and then locally updated and transmitted among
agents. The proposed distributed implementation ensures
that the control barrier function constraint is enforced at
every time instant, and the optimal to the quadratic program
control signal is achieved in finite time. The efficacy of our
method is demonstrated through two numerical examples.

Index Terms— Decentralized control, Constrained con-
trol, Control barrier functions

I. INTRODUCTION

ENSURING safety for dynamical systems has been under
discussion for a long time in the literature. One inter-

pretation of system safety is through the notion of set forward
invariance, i.e., the system state should always remain in a safe
set once it starts inside. Control barrier functions (CBF), ini-
tially proposed by [1] and later developed in [2]–[4], provide
a point-wise linear constraint on the input, and by enforcing
this constraint at every state, the forward invariance of the
safety set is guaranteed. In order to enforce this constraint, a
computationally efficient, modular implementation leveraging
quadratic programs is introduced that aims to modify a pre-
designed nominal controller to be safe in a minimal invasive
manner. This methodology has been widely investigated and
applied with practical success.

There are many works extending the CBF framework to
multi-agent systems, with various safety criteria including
inter-collision avoidance [5]–[7], connectivity maintenance
[7], [8], and temporal logic tasks [9]. However, in all these
works, the CBF induced quadratic program is either solved in
a centralized manner [6], [8], i.e, by a central module that has
access to the states of every agent, or using a pre-allocation
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scheme [5], [9] that distributes the linear constraint among the
agents involved. While the obtained solution is feasible with
the empirically designed allocation scheme, the optimality of
the original quadratic program is generally lost.

In essence, one can view the CBF-induced quadratic pro-
gram (QP) among agents as a special case of a distributed
optimization problem with time-varying coupling constraints
among them. In [10], the authors propose an online ADMM-
based distributed optimization scheme that solves a relaxed
optimization problem with synchronized updates. Other dis-
tributed optimization algorithms [11], [12] could also be
applied to this problem. Although all these optimization-based
algorithms converge to the optimal solution fairly quickly, no
theoretical guarantees can be asserted regarding the satisfac-
tion of the safety-certifying constraints during the solution
iterations. This can potentially lead to the system trajectory
moving out of the safe set.

Moreover, [5], [9], [10] assume that each agent has access
to (part of) the states of the other agents that share a same
coupling constraint. [13], instead, does not assume any specific
communication structure; however, it can only deal with a
certain form of CBF candidates and only an approximate
solution is obtained.

In this work, we consider the CBF-induced quadratic pro-
gram for multi-agent systems with a general connected com-
munication graph, and propose a distributed implementation
scheme such that the modified control signal is optimal to this
QP. To achieve this goal, we introduce an equivalent quadratic
program with an auxiliary decision variable. The optimality
condition of this auxiliary variable to the equivalent QP is
characterized. The distributed implementation scheme consists
of a local quadratic program and a local adaptation of the
auxiliary variable such that the optimality condition is satisfied
in finite time. We show that, with our proposed implementation
scheme, 1) the optimal solution to the CBF-induced QP is
achieved in finite time, and 2) the CBF constraint is satisfied
for all time. To our best knowledge, this is the first paper
that simultaneously achieves the optimal to the CBF-induced
QP control signal and guarantees system safety for a multi-
agent system in a distributed way. Applications to a static
quadratic program problem and a consensus task with a
stacked state boundedness safety criterion are demonstrated
in the simulation.



II. PRELIMINARY AND PROBLEM FORMULATION

Notation: The operator ∇ : C1(Rn) → Rn is defined
as the gradient ∂

∂x of a scalar-valued differentiable function
with respect to x. The Lie derivatives of a function h(x)
for the system ẋ = f(x) + g(x)u, where f : Rn → Rn,
g : Rn → Rn×m, are denoted by Lfh = ∇h⊤f(x) ∈ R
and Lgh = ∇h⊤g(x) ∈ R1×m, respectively. The interior
and boundary of a set A are denoted Int(A ) and ∂A ,
respectively. A continuous function α : [0, a) → [0,∞) for
a ∈ R>0 is a class K function if it is strictly increasing and
α(0) = 0. A continuous function α : (−b, a) → (−∞,∞)
for a, b ∈ R>0 is an extended class K function if it is
strictly increasing and α(0) = 0. blk(g1, g2, ..., gn) denotes a
block diagonal matrix with its diagonal blocks g1, g2, ..., gn,
where gi, i = 1, .., n, can be either a vector or a matrix.

For x ∈ R, sign(x) :=

{
1, x>0;
0, x=0;
−1, x<0.

For any x,y ∈ Rn,

sign(x) := (sign(x1), sign(x2), ..., sign(xn)) and x ⋆y means
that xi ⋆ yi, i ∈ {1, 2, ..., n} for ⋆ ∈ {>,≥, <,≤}. 1n is a
vector in Rn with all entries to be one.

Consider a multi-agent system with N agents indexed by
I = {1, 2, 3, ..., N}. The dynamics of agent i ∈ I is
given by ẋi = fi(xi) + gi(xi)ui, where the state xi ∈
Rni , and the control input ui ∈ Rmi , fi(xi), gi(xi) are
locally Lipschitz functions in xi. We denote the stacked state
x := (x⊤

1 ,x
⊤
2 , ...,x

⊤
N )⊤ ∈ Rn, n :=

∑
i∈I ni, the stacked

control input u := (u⊤
1 ,u

⊤
2 , ...,u

⊤
N )⊤ ∈ Rm,m =

∑
i∈I mi,

the stacked vector fields f = (f⊤1 , f
⊤
2 , ..., f

⊤
N )⊤ and g =

blk(g1,g2, ...,gN ). Thus, the stacked dynamics is obtained
as

ẋ = f(x) + g(x)u. (1)

In this work, we assume that the communication graph
G = (I, E) among the N agents is connected and undirected.
(i, j) ∈ E represents that the agents i, j can communicate
with each other. The associated Laplacian matrix [14] is
denoted as L and the neighborhood set of agent i is defined
as Ni := {j ∈ I : (i, j) ∈ E}. Thus, the stacked locally
available state xloc,i := (x⊤

i ,x
⊤
j1
, ...,x⊤

j|Ni|
)⊤, jk ∈ Ni, for

k ∈ {1, 2, ..., |Ni|}, i.e., xloc,i stores the states of agent i and
all it neighboring agents j ∈ Ni.

In many applications, the stacked state x needs to be
constrained due to safety concerns. Denote the safety set C ,
where the system state x is expected to evolve within, as a
superlevel set of a differentiable function h : Rn → R:

C = {x ∈ Rn : h(x) ≥ 0}. (2)

Definition 1 (CBF). Let set C be defined by (2). h(x) is a
control barrier function (CBF) for the stacked system (1) if
there exists a locally Lipschitz extended class K function α
such that:

sup
u∈Rm

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ Rn. (3)

It has been shown [2]–[4] that any locally Lipschitz control
input u that satisfies the CBF constraint (3) renders the set C
forward invariant and, if C is compact, asymptotically stable.

Assumption 1. The parameters in the CBF condition (3) are
locally obtainable, i.e, the argument of (3) can be written in
the form of ∑

i∈I
a⊤
i (xloc,i)ui +

∑
i∈I

bi(xloc,i) ≤ 0, (4)

where the functions ai(xloc,i), bi(xloc,i) can be evaluated
based on locally available information to agents.

The constraint form in (4) encodes a variety of constraints
including, but not limited to, the examples below:

1) h(x) =
∑

i∈I hi(xi) with hi differentiable. One example
in this case is the stacked state boundedness constraint,
which is given by h(x) =

∑
i∈I(r

2 − ∥xi∥2) for some
constant r > 0.

2) h(x) =
∑

l∈L hl(xli ,xlj ), L ⊂ N with hl(·, ·) differ-
entiable, (li, lj) ∈ E. This could encode, for example,
a least collective interaction level among all connected
agents h(x) =

∑
(i,j)∈E(e

−r0∥xi−xj∥2 − r1) for some
constants 0 < r0, 0 < r1 < 1.

In the following, only a single safety constraint is consid-
ered, and we assume that Assumption 1 holds. Extensions to
the multiple safety constraints case will be a future work.

A. Problem formulation
In this work, we assume that nominal controllers are

obtained by some distributed coordination protocol, i.e,
unom,i(xloc,i). The control barrier function condition (4)
serves as the safety constraint in the following quadratic
program (QP).

min
u∈Rm

∑
i∈I

1

2
∥ui − unom,i(xloc,i)∥2

s.t.
∑
i∈I

a⊤
i (xloc,i)ui +

∑
i∈I

bi(xloc,i) ≤ 0.
(5)

In the following we denote for brevity ai, bi,unom,i when
no ambiguity occurs. Here we note that for agent i, only
ai,unom,i, bi is known. The intuition behind this QP is that the
control signal is obtained by minimally modifying the nominal
controller subject to the safety constraint.

A similar QP formulation has been widely applied in a
single agent setting [2]–[4]. However, it remains unanswered
how to properly extend this formulation to multi-agent systems
since every agent has only local information. In essence,
how to design an algorithm that yields the optimal solution
to this QP, in a distributed manner, while always enforcing
the coupling constraint that certifies system safety remains
unsolved. We note that although many distributed optimization
algorithms with coupling constraints have been proposed in
the literature, few account for the satisfaction of the coupling
constraints during the iterations. In the following, we aim at
deriving a distributed implementation of the quadratic program
in (5) while always satisfying the coupling constraint.

Note that ai, bi,unom,i are defined along the system trajec-
tory, thus their values evolve with time. In the following we
start from the analysis of the frozen-time optimality condition
and later on provide a scheme that converges to the time-
varying optimal solution in finite time while always enforcing
the coupling constraint.



III. MAIN RESULT

In this section, we will analyze the explicit solutions to
the QP in (5) and a distributed, yet equivalent QP, and then
propose a distributed implementation that solves the original
QP online while always enforcing the coupling constraint.

A. Explicit solution analysis
Defining ā = (a⊤

1 ,a
⊤
2 , ...,a

⊤
N )⊤, b̄ =

∑
i∈N bi and

unom = (u⊤
nom,1,u

⊤
nom,2, ...,u

⊤
nom,N )⊤, we can rewrite the

centralized QP in (5) in a compact form as

min
u∈Rm

1

2
∥u− unom∥2

s.t. ā⊤u+ b̄ ≤ 0.
(6)

Assumption 2. We assume that the QP is feasible, i.e., b̄ ≤
0 whenever ā = 0.

If ā⊤unom + b̄ ≤ 0, then u⋆ = unom with the optimal
cost 0; otherwise, the linear constraint is active, and from
Assumption 2, ā ̸= 0. Based on the least-norm solution, we
obtain u⋆ = unom−(ā⊤unom+ b̄)/∥ā∥2ā. Thus, the explicit
solution is given as

u⋆
i = unom,i − µai (7)

with µ given by

µ =

{
0, if ā⊤unom + b̄ ≤ 0;
(ā⊤unom + b̄)/∥ā∥2, Otherwise.

(8)

Although unom,i and ai in (7) only require local information,
the calculation of µ requires global information.

B. An equivalent QP
The QP problem in (5) can be equivalently given by

min
(u,y)∈Rm+N

∑
i∈I

1

2
∥ui − unom,i∥2

s.t. a⊤
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0, ∀i ∈ I,
(9)

where y = (y1, y2, ..., yN ) ∈ RN is an auxiliary decision
variable. One could relate yi with agent i and view (xi, yi)
as an extended state of agent i. The equivalence is shown as
follows: for any feasible solution (u′,y′) to (9), by summing
up all the constraints, we obtain that u′ also satisfies the
constraint in (5); for any feasible solution u′ to (5), let
A = blk(a⊤

1 ,a
⊤
2 , ...,a

⊤
N ), b = (b1, b2, ..., bN ), and define

v = Au′ + b, w =
1⊤
Nv
N 1N . Thus, wi ≤ 0 for all i =

1, 2, ..., N and there exists a y such that Ly + v = w since
Range(L) = {x ∈ RN : 1⊤

Nx = 0} for a connected undirected
graph. This implies that such a (u′,y) is also feasible to the
QP in (9). Thus, they share the same set of feasible solutions
with respect to u. Noting that they also share the same cost
function, we conclude that the two QPs are equivalent.

One nice property of (9) is that, for each constraint, the
agent only needs the extended state information from itself
and its connected agents. However, the QP in (9) cannot be

implemented in a straightforward manner as the following
local QPs for each agent i

min
(ui,y)∈Rmi+N

1

2
∥ui − unom,i∥2

s.t. a⊤
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0.

Here (ui,y) is the decision variable for agent i. Note that
the ys obtained by each agent may not be consistent. In what
follows we first analyze the solution to (9), and the distributed
implementation is discussed later.

By stacking the constraints in (9) together, we rewrite (9)
as

min
(u,y)∈Rm+N

1

2
∥u− unom∥2

s.t. Au+ Ly + b ≤ 0.

(10)

Here A = blk(a⊤
1 ,a

⊤
2 , ...,a

⊤
N ), b = (b1, b2, ..., bN ), L is the

Laplacian matrix. Let li be the ith row of the matrix L.
The Lagrangian is thus L(u,y,λ) = ∥u − unom∥2/2 +∑

i∈I λi(a
⊤
i ui+ liy+bi). Note that this is a convex problem

and the Slater’s condition holds, so the optimal solution satis-
fies the Karush–Kuhn–Tucker (KKT) condition, given below

Au+ Ly + b ≤ 0 (11)
λ ≥ 0, (12)

λi(a
⊤
i ui + liy + bi) = 0, ∀i ∈ I, (13)

(
∂L
∂u

)⊤ = u− unom + (λ1a1, ..., λNaN ) = 0, (14)

∂L
∂y

=
∑
i∈I

λili = λ⊤L = 0. (15)

From (15) and that the communication graph is connected
and undirected, we know λ ∈ Null(L⊤) = Null(L) = {v ∈
RN : v = k1N , k ∈ R}. From (12), we further obtain that
λ = k1N for some k ≥ 0. Substituting this to (14), we have

ui = unom,i − kai, ∀i ∈ I. (16)

We now show that k = µ with µ given in (8) in the
following two cases.

1) If ā⊤unom + b̄ ≤ 0, then there exists a vector w ∈
{x ∈ RN : xi ≤ 0, i = 1, 2, ..., N} such that

∑
i∈I wi =

ā⊤unom + b̄, which gives 1⊤
N (w− (Aunom + b)) = 0. Thus,

w − (Aunom + b) ∈ Range(L), i.e, there exists a y ∈ RN

such that Ly + Aunom + b = w ≤ 0. By choosing such a
y, we thus know (unom,y) is a feasible solution to (10) with
zero cost, which further implies that it is an optimal solution.
Considering that the optimal ui, i ∈ I is given in the form of
(16), we obtain k = 0.

2) If ā⊤unom + b̄ > 0, we first show that k > 0. Assume
that k = 0, then we have ui = unom,i. From (11), it implies
a⊤
i unom,i + liy + bi ≤ 0,∀i ∈ I. Summing up over i ∈ I,

we obtain ā⊤unom + b̄ ≤ 0, which yields a contradiction.
Thus k > 0. From (13), we have a⊤

i ui + liy + bi = 0.
Substituting ui = unom,i−kai, we have a⊤

i (unom,i−kai)+
liy + bi = 0 ⇔ ka⊤

i ai = a⊤
i unom,i + liy + bi. Summing up

over i ∈ I, we obtain kā⊤ā = ā⊤unom + b̄, which gives
k = (ā⊤unom + b̄)/∥ā∥2.



Thus

k =

{
0, if ā⊤unom + b̄ ≤ 0;
(ā⊤unom + b̄)/∥ā∥2, Otherwise.

(17)

C. Distributed Implementation
In this subsection we propose a distributed implementation

scheme that combines an adaptive law that locally updates yi
and a local QP with only the decision variable ui. Specifically,
for each agent i, ∀i ∈ I, we solve the following local QP

min
ui∈Rmi

1

2
∥ui − unom,i∥2

s.t. a⊤
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0,
(18)

and yi is updated locally according to some adaptation law
ẏi = v(xloc,i,yloc,i) that will be derived later. Here yloc,i =
(yi, yj1 , yj2 , ..., yj|Ni|

), for jk ∈ Ni, k = {1, 2, ..., |Ni|}, i.e.,
each agent i shares (xi, yi) with agent j ∈ Ni.

Proposition 1. If the local QPs given in (18) are feasible,
i.e,

∑
j∈Ni

(yi − yj) + bi ≤ 0 whenever ai = 0,∀i ∈ I, then
the solution ū⋆ = (u⋆

1,u
⋆
2, ...,u

⋆
N ) to the local QPs satisfies

ā⊤ū⋆ + b̄ ≤ 0 for any value of y.

Proof. This is evident by summing up all the constraints in
the local QPs in (18).

This property is of interest because it states that whatever y
is chosen, the safety guarantee is enforced whenever the local
QPs are feasible.

Now we examine the conditions for the optimal y⋆ cor-
responding to (9). Based on our previous analysis (17), we
know that if ā⊤unom + b̄ ≤ 0, then u⋆

i = unom,i, and from
(11), a⊤

i unom,i + liy
⋆ + bi ≤ 0, for all i ∈ I; if otherwise

ā⊤unom + b̄ > 0, then u⋆
i = unom − kai, k = (ā⊤unom +

b̄)/∥ā∥2; substituting u⋆
i to (11), a⊤

i unom,i + liy
⋆ + bi =

ka⊤
i ai, for all i ∈ I. Thus for all i ∈ I, y⋆ needs to satisfy{
a⊤
i unom,i + liy

⋆ + bi ≤ 0, if ā⊤unom + b̄ ≤ 0;
a⊤
i unom,i + liy

⋆ + bi = ka⊤
i ai, if ā⊤unom + b̄ > 0,

(19)
with k = (ā⊤unom + b̄)/∥ā∥2.

One sufficient condition on y⋆ satisfying (19) is

a⊤
i unom,i + liy

⋆ + bi = ca⊤
i ai, ∀i ∈ I (20)

with c = (ā⊤unom+ b̄)/∥ā∥2. Note that (20) can be rewritten
in a compact form as Ly⋆ = c(a⊤

1 a1,a
⊤
2 a2, ...,a

⊤
NaN ) −

Aunom − b. This condition on y⋆ is feasible since
rank(L) = n − 1,Range(L) = {x : 1⊤

Nx =
0} and 1⊤

N (c(a⊤
1 a1,a

⊤
2 a2, ...,a

⊤
NaN ) − Aunom − b) =∑

i∈I(ca
⊤
i ai−a⊤

i unom,i−bi) = 0. The sufficiency is evident
as it poses the same conditions in (19) when ā⊤unom+ b̄ > 0
and when ā⊤unom + b̄ ≤ 0, we have c ≤ 0, which further
implies a⊤

i unom,i + liy
⋆ + bi ≤ 0.

Assume that ai ̸= 0 for all i ∈ I. For a given y, we define
local variables ci, i ∈ I as

ci =
1

a⊤
i ai

(liy + a⊤
i unom,i + bi). (21)

We denote c = (c1, c2, ..., cN ).

Proposition 2. Assume that ai ̸= 0 for all i ∈ I. If y is
chosen such that ci = cj for any i, j ∈ I, then the condition
in (19) is satisfied.

Proof. Since ai ̸= 0, and the input set is unbounded, the
local QPs given in (18) are feasible. From (21), a⊤

i aici =
liy + a⊤

i unom,i + bi. Noting ci = cj and summing up over
I, we obtain ci = cj = (ā⊤unom + b̄)/∥ā⊤∥2= c,∀i, j ∈ I.
Thus, if y is chosen such that ci,∀i ∈ I reach a consensus,
then the condition in (19) is satisfied.

From (21), we have

KAc = Ly +Aunom + b (22)

with KA := blk(∥a1∥2, ∥a2∥2, ..., ∥aN∥2). In the following
we derive an adaptive law for y such that c reaches a
consensus in finite time.

Note that ai,unom,i, bi are state-dependent and thus evolve
with time. In the following a finite time consensus law that is
inspired by [15] is designed and analyzed.

Proposition 3. Assume that ai,unom,i, bi are slowly time-
varying in the sense that ∥K̇Ac(t) +

d
dt (Aunom + b)∥1≤ D

for some D > 0 and amin ≤ a⊤
i ai ≤ amax for some positive

constants amin, amax for all i ∈ I. If the discontinuous
adaptive law

ẏ = −k0sign(Lc), (23)

is applied, where c is defined in (21) and the gain k0 satisfies

k0 ≥ amax(2δmaxD/amin + ϵ), (24)

where δmax := maxi∈I |Ni|, ϵ is a positive constant, then c
achieves a consensus, i.e., ci = cj ,∀i, j ∈ I, within a finite
time tr ≤ ∥Lc(0)∥1

ϵ .

Proof. Differentiating (22), we obtain ċ = K−1
A (Lẏ +

d
dt (Aunom + b) + K̇Ac). For simplicity, denote d :=
d
dt (Aunom + b) + K̇Ac. Substituting (23), we have

ċ = K−1
A (−k0Lsign(Lc) + d). (25)

In this proof we will interpret the solution to this differential
equation in the sense of Filippov and use tools from non-
smooth analysis. The existence of such solution is guaranteed
by the boundedness of the right hand side. For more details
about the non-smooth analysis, see [15], [16].

Define the disagreement vector δ = c− 1
N 1N1⊤

Nc, z = Lδ,
and the function σ : x 7→ sign(Lx). The following properties
hold:

1) σ(c) = sign(Lc) = sign(Lδ) = σ(δ);
2) If c has not reached a consensus, then ∥Lσ(c)∥≥ 1.

Property 2 can be verified in a similar manner as [15, Prop.
2.1] and omitted here for brevity. Consider the locally Lip-
schitz Lyapunov function V (z) = ∥z∥1. For z1 ̸= 0, z2 ̸=
0, ..., zN ̸= 0, the time derivative is calculated by d

dtV (z) =∑
i∈I sign(zi)żi = sign(z)⊤ż. If any of the variables zi is



zero, let I0 = {i ∈ I : zi = 0} and I ̸= = {i ∈ I : zi ̸= 0}.
We can compute the generalized time derivative as

d

dt
V (z) ∈

∑
i∈I ̸=

sign(zi)żi +
∑
i∈I0

SIGN(zi)żi,

where SIGN(z) :=

{
1, z>0;

[−1,1], z=0;
−1, z<0.

Since we are dealing with

Filippov solutions, we can disregard the case which zi = 0
holds for isolated time instants of measure zero. If zi = 0
holds along an interval of time of positive measure, then, in the
sense of Filippov, żi exists at those time instants and żi = 0.
Based on this fact, we have that for almost all t, d

dtV (z) =∑
i∈I ̸= sign(zi)żi +

∑
i∈I0 sign(zi)żi, Thus the generalized

time derivative d
dtV (z(t)) is now a well-defined function for

almost all t and is given by

d

dt
V (z) =

∑
i∈I

sign(zi)żi = σ(δ)⊤ż. (26)

In view of Property 1 and the fact that ż = Lδ̇ = Lċ −
1
NL1N1⊤

N ċ = Lċ, we get d
dtV (z) = σ(c)⊤Lċ. Thus from

(25),
d

dt
V (z) = σ(c)⊤LK−1

A (−k0Lσ(c) + d) (27)

Note that ∥L∥1= maxj∈I
∑

i∈I |lij |= 2δmax since the graph
G is connected and undirected, ∥K−1

A ∥1= 1/amin, ∥d∥1≤ D,
we have

|σ(c)⊤LK−1
A d| ≤ ∥LK−1

A d∥1≤ ∥L∥1∥K−1
A ∥1∥d∥1

≤ 2δmaxD/amin.
(28)

When c has not reached a consensus, we note that

− k0(Lσ(c))
⊤K−1

A Lσ(c) ≤ −k0/amax (29)

in view of Property 2. Substituting (24), (28) and (29) into
(27), we have d

dtV (z) ≤ −ϵ < 0. When c reaches a consensus,
i.e, c = α1N , α ∈ R, we get z = Lδ = 0, V (z) = 0.
Summarizing, it holds

V (z) > 0 and
d

dt
V (z(t)) ≤ −ϵ, for c ̸= α1N , α ∈ R;

V (z) = 0 and
d

dt
V (z(t)) = 0, for c = α1N , α ∈ R.

(30)

Therefore c(t) achieves consensus in finite time, with the
transient time tr ≤ V (z(0))/ϵ = ∥Lc(0)∥1/ϵ.

Now we summarize our main results in the following
theorem.

Theorem 1. Consider the CBF-induced quadratic program in
(5). Assume that the conditions in Proposition 3 hold. Then
the solution to the local QPs in (18) with y locally updated
according to (23) is identical to the solution to the QP (5) in
finite time. Moreover, the coupling constraint in (5) is satisfied
for all time.

Proof. In view of the fact that a⊤
i ai ≥ amin, and that the

input set is unbounded, the local QPs given in (18) are feasible.
Applying Proposition 1, we know that the coupling constraint
is thus satisfied for all time. From Proposition 3, the variable
c defined in (21) achieves a consensus in finite time. Since

a⊤
i ai ≥ amin,∀i ∈ I, Proposition 2 is applicable and y

converges to the optimal y⋆ in finite time. Thus, the local
QPs in (18) solve the original QP problem in finite time.

IV. SIMULATIONS

In this section we will demonstrate our results for
a multi-agent system with N = 9 agents. The com-
munication graph (I, E) is defined and depicted in
Fig.1. Firstly we consider a static distributed QP prob-
lem in the form of (5), where (a⊤

1 ,a
⊤
2 , ...,a

⊤
9 ) =

(0.745,−1.03, 0.004, 0.509, 0.987,−2.70, 2.405, 2.164,
0.426, 0.347, 2.130, 1.439,−2.467,−0.633, 0.889,−2.482,
− 0.425, 0.879), (b1, b2, ..., b9) = (0.242, 0.839,−1.91,
2.082, 2.972,−2.639, 0.141,−0.677, 1.198), and unom,i =
(0, 0) are constants. Here agent i ∈ I solves the local QP
(18) and adapts its yi value according to (23) with k0 = 10,
yi(0) = 0. The results are shown in Fig. 2. In this case the
assumptions in Theorem 1 hold and we see that 1) c reaches
a consensus (and thus the optimal solution to this static QP is
obtained) in finite time; 2) the coupling constraint is always
enforced.

1
2

3
4

5

6

7

8

9

Fig. 1: Communication topology of the multi-agent system.

Now we apply our results to the same multi-agent system for
a consensus control problem with a stacked state boundedness
constraint given below. For i ∈ I,xi ∈ R2 denotes the agent
state, the agent dynamics is ẋi = ui, and its initial condition
xi(0) = (2 cos(2πi/10) + 2, 2 sin(2πi/10) + 1), for i ∈ I.
Define a nominal controller unom,i =

∑
j∈Ni

(xj − xi). It is
known [14] that the multi-agent system with this controller
achieves a consensus with each agent converging to (2, 1),
which is later verified in the simulation. In this example, we
specify that the agents should meet in {x ∈ R18 : h(x) = 9−
x⊤x ≥ 0}. With α(v) = v, v ∈ R, the induced CBF condition
in the form of (4) is thus

∑
i∈I 2x⊤

i ui+
∑

i∈I(x
⊤
i xi−1) ≤ 0.

Note that the constraint is initially violated h(x(0)) = −72.0.
We test the following 3 controllers for this task: Case 1

the nominal control unom,i; Case 2 the CBF-induced QP (5)
solved in a centralized manner; Case 3 the proposed distributed
method (18),(23) with y(0) = 0 and k0 = 100. The simulation
results are shown in Fig. 3. We see that 1) the final state in
Case 1 (Fig. 3(a)) does not fulfill the stacked state boundedness
constraint; 2) the trajectories in Case 3 are bounded away from
(0, 0), thus ai(t) = 2xi(t) is also bounded away from (0, 0);
3) although the trajectories in Case 3 are in general more
curly than that of Case 2, the final states in Case 2 and Case 3
are very close. Setting the simulation duration to 20s, we get
h(xf,2) = 0.0014, h(xf,3) = −0.00047, where xf,2,xf,3 are
the final states in Cases 2 and 3, respectively. The negativeness
of h(xf,3) could be caused by the smooth approximation of
sign function, or that the agent states are still evolving.

We acknowledge that although the proposed scheme works
well in the simulations, the condition on the lower bound of
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Fig. 2: Numerical results involving 9 agents solving the static QP with a coupling constraint.
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(a) Case 1: nominal controller.
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(b) Case 2: centralized CBF controller.
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(c) Case 3: distributed CBF controller.

Fig. 3: System trajectories of a multi-agent system under three different controllers. The black lines denote the communication
links among the agents, and the green dash lines are the state trajectories of each agent; the blue star is the final state.

a⊤
i ai, i ∈ I may be conservative and, if a⊤

i ai is too small,
the division by it (when obtaining ci as in (21)) may cause
numerical issues. As a future work, we plan to remove the
boundedness assumptions on ai. Another direction for future
work is to extend the result to the multiple safety constraints
case, where more general safety constraints can be tackled.

V. CONCLUSION

In this work, we proposed a distributed implementation
scheme for CBF-induced quadratic programs for multi-agent
systems, where each agent solves a local QP and locally
adapts an auxiliary variable. Under the assumption that the
parameters of the coupling constraint are slowly time-varying,
the proposed implementation solves the CBF-induced QP in
finite time and guarantees the satisfaction of the coupling
constraint for all time. These two properties are of interest
because they guarantee optimality of the control signal to the
CBF-induced QP and safety of the multi-agent system. We
also applied our results in a static QP problem and a consensus
control problem with a stacked state boundedness constraint.
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