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Inverse agreement protocols with application to

distributed multi-agent dispersion

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos, Member, IEEE .

Abstract

We propose a distributed inverse agreement control law for multiple kinematic agents that forces

the team members to disperse in the workspace. Both the cases of an unbounded and a circular, bounded

workspace are considered. In the first case, we show that the closed-loop system reaches a configuration

in which the minimum distance between any pair of agents is larger than a specific lower bound. It is

proved that this lower bound coincides with the agents’ sensing radius. In the case of a bounded circular

workspace, the control law is redefined to force the agents to remain within the workspace boundary.

Moreover the proposed control design guarantees collision avoidance between the team members in all

cases. The results are supported through relevant computer simulations.

I. INTRODUCTION

The emerging use of large-scale multi-robot/vehicle systems in various applications has raised

recently the need for the design of control laws that force a team of multiple vehicles/robots

(from now on called “agents”) to achieve various goals. As the number of agents increases,

centralized designs fail to guarantee robustness and are harder to implement than decentralized

ones, which also provide a reduce in the computational complexity of the feedback scheme.

Among the various objectives of the control design, convergence of the team to a common

configuration, also known as the agreement problem, is a design specification that has been

extensively pursued. Many distributed control schemes that achieve multi-agent agreement are
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found in literature; see [1],[2],[15],[4],[9], [14],[16],[8] for some recent results. In this paper, we

propose an algorithm for swarm dispersion which can be considered as an inverse agreement

problem. Each agent follows a flow, whose inverse leads the multi-agent team to agreement. The

design is distributed, since each agent only knows the relative positions of agents located within

its sensing zone at each time. The sensing zone is a circular area around each agent whose

radius is common for all agents. The application of this inverse agreement strategy is dispersion

of the team members in the workspace, i.e., convergence to a configuration where the minimum

distance between the swarm members is bounded from below by a controllable lower bound. It

is shown that this lower bound coincides with the radius of the sensing zone of the agents in

the case of an unbounded workspace. Furthermore, the results are extended in order to take into

account the workspace boundary for the case of a circular bounded workspace.

Applications of the dispersion algorithm include coverage control [5],[12], [11], and optimal

placement of a multi-robot team in small areas [17], [3]. The paper uses inverse agreement for

kinematic agents and this results in swarm dispersion. This behavior is similar to [5], however, the

technique used here is different than the geometric optimization technique of the aforementioned

paper. Moreover, as stated above, the driving force behind our effort was to provide a first step to

a framework that uses inverse potential field based control laws for various multi-agent control

tasks. In summary, in this paper it is shown that inverse consensus/agreement algorithms can be

used to provide solutions to various problems in multi-agent control. This is a topic of future

research directions. We finally note that a conference version of the paper appeared in [6], while

an extension that takes into account nonholonomic constraints in [7].

The rest of the paper is organized as follows: Section II describes the problem treated in this

paper. The swarm dispersion methodology is presented in Section III. The case of a bounded

workspace is discussed in Section IV, while relevant computer simulations are included in Section

V. Section VI summarizes the results of this paper and indicates current research efforts.

II. SYSTEM AND PROBLEM DESCRIPTION

Consider a system of N point agents operating in the same workspace W ⊂ R2. Let qi ∈ R2

denote the position of agent i. The configuration space is spanned by q = [qT
1 , . . . , qT

N ]T . The

motion of each agent is described by the single integrator:

q̇i = ui, i ∈ N = {1, . . . , N} (1)
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where ui denotes the velocity (control input) for each agent.

We assume that each agent has sense of agents within a circle of radius d around the agent.

This circle is called the sensing zone of each agent i and d its sensing radius, assumed common

for all agents. We denote by Ni the subset of N that includes the agents that agent i can sense

at each time instant, i.e., Ni = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d}. For the dispersion objective, we

equip each agent with a repulsive potential with respect to each other agent within its sensing

zone. No global knowledge is imposed to any of the swarm members. The main result states

that the closed-loop system converges to a configuration where the sensing zone of each agent

is empty, i.e., every agent is located at a distance no less than d from every other. In addition,

collision avoidance is guaranteed. We assume first an unbounded and then a bounded workspace.

The dispersion potential between agents i and j is given by γij (βij) =
1

2
βij , for 0 ≤ βij ≤ c2,

γij (βij) = φ(βij), for c2 ≤ βij ≤ d2, and γij (βij) = h, for d2 ≤ βij , where βij = ‖qi − qj‖2

is the squared distance between agents i and j. The positive scalars c, d, h and the function φ

are chosen in such a way so that γij is everywhere continuously differentiable. In this paper, we

use a polynomial function: φ(x) = a2x
2 + a1x + a0. The parameters of φ satisfy the differen-

tiability requirement for γij , provided that they fulfil the following relations: a2 = 1
4(c2−d2)

, a1 =

d2

2(d2−c2)
, a0 = c4

4(c2−d2)
, h = d2+c2

4
. The gradient and the partial derivative of γij are computed

by ∇γij = 2ρijDijq and ∂γij

∂qi
= 2ρij (Dij)i q, where ρij

∆
=

∂γij

∂βij
, and the matrices Dij ,(Dij)i, for

i < j, are given by Dij = D̃ij ⊗ I2, where
(
D̃ij

)
ii

=
(
D̃ij

)
jj

= 1,
(
D̃ij

)
ij

=
(
D̃ij

)
ji

= −1

and
(
D̃ij

)
kl

= 0 for k, l 6= i, j, and (Dij)i =
[

O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

]
⊗ I2

where ⊗ denotes the Kronecker product between two matrices [10]. The definition of Dij ,(Dij)i,

for i > j is straightforward. It can easily be shown that ρij > 0 for 0 < βij < d2 and

ρij = 0 for βij ≥ d2. We would like to note that the choice of φ is not restricting. Any

function φ fulfilling the desired properties can be used. Specifically, φ should be a continuously

differentiable function that renders γij continuously differentiable (in particular, it should satisfy

φ (c2) = lim
βij→(c2)−

γij (βij),φ′ (c2) = lim
βij→(c2)−

γ′ij (βij), and φ (d2) = lim
βij→(d2)+

γij (βij) , φ′ (d2) =

lim
βij→(d2)+

γ′ij (βij) ) and should fulfil ρij > 0 for c2 ≤ βij < d2. The choice of this function was

made to provide the means for the design procedure.
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III. SWARM DISPERSION CONTROL DESIGN

A. Tools from Matrix Theory

For an undirected graph G = (V,E) with n vertices we denote by V its set of vertices and by

E its set of edges. If there is an edge connecting two vertices i, j, i.e. (i, j) ∈ E, then i, j are

called adjacent. A path of length r from a vertex i to a vertex j is a sequence of r + 1 distinct

vertices starting with i and ending with j such that consecutive vertices are adjacent. If there

is a path between any two vertices of the graph G, then G is called connected (otherwise it is

called disconnected). The undirected graph G = (V,E) corresponding to a real symmetric n×n

matrix M is a graph with n vertices indexed by 1, . . . , n such that there is an edge between

vertices i, j ∈ V if and only if Mij 6= 0, i.e. (i, j) ∈ E ⇔ Mij 6= 0.

A n×n real symmetric matrix with non-positive off-diagonal elements and zero row sums is

called a symmetric Metzler matrix. It is shown in [13] that all the eigenvalues of a symmetric

Metzler matrix are non-negative and zero is a trivial eigenvalue. The multiplicity of zero as an

eigenvalue of a symmetric Metzler matrix is one if and only if the corresponding undirected

graph is connected. The trivial corresponding eigenvector is the vector of ones,
−→
1 .

B. Swarm Dispersion with collision avoidance

We propose the following control law

ui = −
∑
j∈Ni

∂ (1/γij)

∂qi

⇒ ui = −
∑
j∈Ni

(
− 1

γ2
ij

)
∂γij

∂qi

=
∑
j∈Ni

2ρij

γ2
ij

(Dij)i q

which can be rewritten as

ui =
∑

j 6=i

2ρij

γ2
ij

(Dij)i q (2)

since ρij = 0 for βij > d2. It should be noted that each agent takes into account only the agents

within its sensing zone at each time instant. We then have q̇ = 2 (R2 ⊗ I2) q, where the matrix

R2 is given by (R2)ii =
∑
j 6=i

ρij

γ2
ij

, and (R2)ij = −ρij

γ2
ij

for i 6= j. We consider V =
∑
i

∑
j 6=i

1
γij

as a

candidate Lyapunov function. Its gradient is computed by

∇V =
∑

i

∑

j 6=i

(
− 1

γ2
ij

)
∇γij = −

∑
i

∑

j 6=i

2ρij

γ2
ij

Dijq = −2 (R1 ⊗ I2) q
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where the matrix R1 is given by (R1)ii =
∑
j 6=i

ρij

γ2
ij

+
∑
j 6=i

ρji

γ2
ji

, and (R1)ij = −ρij

γ2
ij

− ρji

γ2
ji

for i 6= j.

We have
ρij

γ2
ij

=
ρji

γ2
ji

⇒ R1 = 2R2. The time derivative of V is now calculated as follows

V̇ = (∇V )T · q̇ = (−2 (R1 ⊗ I2) q)T · 2 (R2 ⊗ I2) q
R1=2R2⇒ V̇ = −8 ‖(R2 ⊗ I2) q‖2 ≤ 0

(3)

The first result of this section establishes collision avoidance between the swarm members:

Lemma 1: Consider the system of multiple kinematic agents (1) driven by the control law (2)

and starting from a feasible set of initial conditions I (q) = {q| ‖qi − qj‖ > 0,∀i, j ∈ N , i 6= j}.

Then the set I (q) is invariant for the trajectories of the closed-loop system.

Proof: For every q(0) ∈ I(q), the time derivative of V remains non-positive for all t ≥ 0, by

virtue of (3). Hence V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0. Since V → ∞ if and only if

‖qi − qj‖ → 0 for at least one pair i, j ∈ N , we conclude that q(t) ∈ I (q), for all t ≥ 0. ♦
Remark 1: We note here that the control law can be modified to guarantee that the distance

between any two agents remains larger than any positive threshold c, i.e., that ‖qi−qj‖ > c for a

fixed c > 0. To achieve this, the function βij would have to be redefined as βij = ‖qi− qj‖− c2.

The rest of the analysis would be the same with the set I(q) defined accordingly.

Thus, collision avoidance is guaranteed. The control design however is also related to the final

configurations of the swarm members. The main result of this section is stated as:

Theorem 2: Consider the system (1) driven by the control (2) and starting from a set of

initial conditions I (q) ∩ F (q) where F (q) = {q| ‖qi − qj‖ ≤ (N − 1) d∗,∀i, j ∈ N , i 6= j},

where d∗ > d is chosen arbitrarily, and I (q) was defined in Lemma 1. Then the agents reach a

static configuration (all agents eventually stop) which satisfies ‖qi − qj‖ ≥ d, ∀i, j ∈ N , i 6= j.

Proof: Since the set of initial conditions is included in I(q), we have qi(t) 6= qj(t), for all

i, j ∈ N , i 6= j, and for all t ≥ 0, by virtue of Lemma 1. We take V as a candidate Lyapunov

function. V is continuously differentiable within I. Its time derivative is given by (3): V̇ =

−8 ‖(R2 ⊗ I2) q‖2 ≤ 0. Pick d∗ > d. It is easy to see that since ρij = 0 whenever βij > d,

the set ‖qi − qj‖ ≤ (N − 1) d∗ for all i, j ∈ N is positively invariant for the trajectories of the

closed loop system. By virtue of Lemma 1, I (q) ∩F (q) is also positively invariant. Since this

set is closed and bounded, we can apply LaSalle’s invariance principle.

By LaSalle’s Invariance Principle, the trajectories of the closed loop system converge to the

largest invariant subset of the set S =
{

q|V̇ = 0
}

= {q| (R2 ⊗ I2) q = 0}. Note that within S,
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we have q̇ = u = 2 (R2 ⊗ I2) q = 0 ⇒ ui = 0, for all i ∈ N , i.e., all agents eventually stop.

We show next that the largest invariant subset of S is the set S0 = {q|ρij = 0,∀i, j ∈ N , i 6= j}.

Clearly, S0 is a subset of S which is invariant for the trajectories of the closed-loop system.

Suppose now that ρij > 0 for some pairs of the swarm members. We denote the undirected graph

corresponding to the matrix R2 by G(R2). The assumption that ρij > 0 for some pairs of the team

members guarantees that G(R2) has at least one edge. The graph G(R2) can now be decomposed

into its connected components, and let m be their number. Since the graph is undirected, no vertex

can belong to two different components simultaneously. Ignoring the connected components

containing only one vertex (i.e. vertices k for which ρkj = 0 for all j 6= k), and rearranging

the agent indices accordingly, equation (R2 ⊗ I2) q = 0 can be decomposed into m different

equations, each of which corresponds to a different connected component of G(R2). Specifically

for the connected component containing agents/vertices {i1, i2, . . . , il} , ij ∈ N , j = 1, . . . l with

l ≤ n we have
(
R̃2 ⊗ I2

)
q̃ = 0, where q̃ =

[
qT
i1

. . . qT
il

]T

and the l × l matrix R̃2 has the

same form as R2 taking into account the set of agents {i1, i2, . . . , il}. By denoting x̃, ỹ the stack

vectors of q̃ in the x, y directions, we have
(
R̃2 ⊗ I2

)
q̃ = 0 ⇒ R̃2x̃ = R̃2ỹ = 0. The symmetric

matrix R̃2 has zero row sums and non-positive off-diagonal elements, i.e., it is a symmetric

Metzler matrix. As mentioned in Section IIIA, the eigenvalues of R̃2 are nonnegative and zero

is the smallest eigenvalue. Furthermore, since R̃2 corresponds to a connected graph (a connected

component of G(R2)), zero is a simple eigenvalue of R̃2 with corresponding eigenvector the

vector of ones,
−→
1 . Equations R̃2x̃ = R̃2ỹ = 0 now guarantee that both x̃, ỹ are eigenvectors of

R̃2 belonging to span{−→1 }. Hence all elements of q̃ assume the same value, implying that all

agents converge to a common configuration at steady state. However this is impossible, since,

due to the invariance of I(q), no trajectory of the closed loop system starting from I(q) can

ever leave this set, i.e., qi(t) 6= qj(t) for all t ≥ 0. We conclude that the largest invariant subset

of S is S0. Since ρij = 0 only for ‖qi − qj‖ ≥ d, the proof is complete. ♦
Hence the system converges to a configuration in which each agent is located at a distance

no less than d from every other agent in the group. Thus, since any pair of agents is located at

least at a distance d from each other, each agent occupies a disc of radius d/2 in which no other

agent is present. In other words, the agents are dispersed to N disjoint discs of radius d/2.
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IV. THE BOUNDED WORKSPACE CASE

The previous case involved a dispersion algorithm for multiple agents in an unbounded

workspace. In practical applications such as coverage control and sensor deployment the problem

is to redefine the algorithm in order to take into account the workspace boundary. In this paper,

we consider the case of a circular boundary of radius RW . The purpose is to construct an inverse

agreement control law that forces the dispersing agents to remain within the workspace limits.

The same potential to the one for the inter-agent dispersion potential is used for the agent-

boundary repulsion potential. Copying with the limited sensing capabilities of the agents, the

repulsive potential of each agent with respect to the boundary of the workspace is given by

γib (βib) = 1
2
βib, for 0 ≤ βib ≤ c2

b , γib (βib) = ϕb (βib), for c2
b ≤ βib ≤ d2

b , and γib (βib) = hb, for

d2
b ≤ βib, where βib = ‖qi − qi,min‖2, db < d and qi,min = arg min

q∈∂W
‖qi − q‖2. Note that qi,min is

continuous for all i due to W being circular. The positive scalars hb, cb and the function ϕb are

defined so that γib is rendered everywhere continuously differentiable. Each agent has to have

knowledge of the workspace boundary only when located at a distance smaller than db from it.

The control law for agent i is now redefined as ui = − ∑
j∈Ni

∂ (1/γij)

∂qi

− ∂ (1/γib)

∂qi

. Using the

notation ρib =
∂γib

∂βib

, the control law can be rewritten as

ui =
∑

j 6=i

2ρij

γ2
ij

(Dij)i q + 2
ρib

γib

(qi − qi,min) (4)

since
∂ (1/γib)

∂qi

= − 1

γ2
ib

∂γib

∂qi

= −2
ρib

γib

(qi − qi,min). Note that ρib = 0 for βib > d2
b and ρib > 0

for βib ≤ d2
b . In stack vector form we then have q̇ = 2 (R3 ⊗ I2) q − 2 (R4 ⊗ I2) qmin, where

R3 = R2+diag
{

ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

}
and R4 = diag

{
ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

}
. We also denote by qmin the stack

vector of all qi
min. Similarly to the case of an unbounded workspace, using Vb =

∑
i

∑
j 6=i

1
γij

+
∑
i

1
γib

as a candidate Lyapunov function and computing its gradient with respect to q we get∇Vb =

−4 (R3 ⊗ I2) q + 4 (R4 ⊗ I2) qmin. The time derivative of Vb is now given by

V̇b = (∇Vb)
T · q̇ = −8 ‖(R3 ⊗ I2) q − (R4 ⊗ I2) qmin‖2 ≤ 0 (5)

We show next that the workspace interior is invariant:

Lemma 3: Consider the system (1) driven by the control law (4) and starting from the set

I(q) ∩ J (q) where J (q) =
{

q|q ∈ int (W )
∆
= W\∂W

}
is the interior of W and I(q) was

defined previously. Then I(q)∩J (q) is invariant for the trajectories of the closed-loop system.
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Proof: The invariance of I(q) was shown in Lemma 1. For every q(0) ∈ I(q)∩J (q), the time

derivative of Vb remains non-positive for all t ≥ 0, by virtue of (5). Hence Vb(q(t)) ≤ Vb(q(0)) <

∞ for all t ≥ 0. Since Vb → ∞ whenever qi → qi,min for at least one agent i ∈ N , and the

latter implies q → ∂W , we conclude that q(t) ∈ J (q), for all t ≥ 0. ♦
Thus, if the agents start within int (W ), they are forced to remain within it. Also, Lemma

1 holds and hence collisions are avoided. Similar results can now be derived from the analysis

held previously. We first state that the agents reach a configuration where ui = 0 for all i:

Corollary 4: Consider the system of multiple kinematic agents (1) driven by the control law

(4) and starting from the set of initial conditions I(q) ∩ J (q). Then the system reaches a

configuration in which u = 0, where u is the stack vector of ui’s, i.e., ui = 0 for all i ∈ N .

Proof: By Lemma 3, the set J (q) is closed and bounded for the trajectories of the closed-

loop system. Equation (5) guarantees that V̇b is negative semidefinite. By LaSalle’s Invariance

Principle, the trajectories of the closed-loop system reach the largest invariant subset of the

set Sb =
{

q|V̇b = 0
}

= {q| (R3 ⊗ I2) q − (R4 ⊗ I2) qmin = 0}. Within Sb, we have q̇ = u =

2 (R3 ⊗ I2) q − 2 (R4 ⊗ I2) qmin = 0. Hence ui = 0 for all i ∈ N . ♦
From the proof of Corollary 4, the system converges to the largest invariant subset of the set

Sb. Note that Lemma 3 holds for arbitrarily small cb, db. We now show that the control law is

related to the final relative positions of the agents in a manner similar to the unbounded case,

whenever the parameters cb, db tend to zero. For cb, db → 0, we have that either qi → qi,min, or

ρib → 0, for those agents that do not satisfy the condition qi → qi,min. Thus, in this case

(R3 ⊗ I2) q − (R4 ⊗ I2) qmin =

= (R2 ⊗ I2) q − (R4 ⊗ I2) (q − qmin)

= (R2 ⊗ I2) q −
((

diag
{

ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

})
⊗ I2

)
(q − qmin)

= (R2 ⊗ I2) q −
[

ρ1b

γ2
1b

(q1 − q1,min) . . . ρ1b

γ2
1b

(qN − qN,min)
]T

= (R2 ⊗ I2) q

since for each i ∈ N , we have either qi → qi,min, or ρib → 0, for cb, db → 0 as discussed above.

Therefore the set Sb coincides with the set S of the proof of Theorem 2. As proved in that

Theorem, the largest invariant subset within S is the set S0 = {q|ρij = 0,∀i, j ∈ N , i 6= j} =

{q| ‖qi − qj‖ ≥ d,∀i, j ∈ N , i 6= j}. Hence the system reaches a configuration it which all agents

remain within the workspace bounds and each agent is located at a distance no less than d from
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every other agent in the group, provided that such configuration exists within the workspace

bounds. This result is stated as follows:

Theorem 5: Consider the system (1) driven by (4) and starting from I(q)∩J (q) and assume

that B (q) = {q ∈ int (W ) | ‖qi − qj‖ ≥ d, ∀i, j ∈ N , i 6= j} 6= ∅. Then the system reaches a

configuration in which all agents remain within int(W ), and ‖qi − qj‖ ≥ d,∀i, j ∈ N , i 6= j.

Remark 2: Similarly to the unbounded case, B(q) being non-empty corresponds to a situation

where each agent occupies a d/2-disc at steady state. Whenever B(q) is empty, i.e. there does not

exist a configuration in the interior of the workspace such that ‖qi − qj‖ ≥ d,∀i, j ∈ N , i 6= j,

the workspace is not large enough to fulfill the above condition, and the system converges to

a configuration that minimizes Vb, respecting the constraint that agents remain within int(W ).

Thus, some of the d/2-discs may overlap. This is visualized via an example in the next section.

Remark 3: The equilibrium property of Theorem 5 holds only as cb, db tend to zero. However,

the effect of the boundary is included in the control, even for arbitrarily small values of cb, db,

and provides the geometric property of Theorem 5. Thus, although in realistic situations cb, db

have larger values, the analysis presented is still important since it provides the geometric result

taking into account the workspace boundary, albeit in the limiting case when cb, db tend to zero.

V. SIMULATIONS

To support the results of the previous paragraphs, we provide a series of computer simulations.

In the first simulation, nine agents navigate under the control law (2). Screenshots I-III in

Figure 1 show the evolution of the closed-loop system in time. The agents are located at their

initial positions in the first screenshot. Collision avoidance is fulfilled, due to the proposed control

design. The agents disperse in the workspace and eventually stop in screenshot III. Screenshot

IV depicts the final positions of the swarm members. Each agent occupies a disc of radius

d/2. These discs are visualized in the last screenshot by the large discs whose center is the

corresponding agent. By virtue of Theorem 2, the large discs are disjoint.

In the second simulation of Figure 2, agents navigate under the control (4). The workspace

radius is RW = 18d. The agents start from an initial condition where they are aggregated near

the workspace center. Some agents approach the workspace boundary and are forced to remain

within it due to the existence of the repulsive potential on the boundary. The workspace is large

enough to allow the agents to occupy nine disjoint discs of radius d/2 at steady state, i.e., the set
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Fig. 1. Swarm dispersion for nine single integrator agents. The agents disperse in the workspace and eventually occupy nine

disjoint discs of radius d/2, one for each agent.

B of Theorem 5 is nonempty. This is depicted in the last screenshot of Figure 2. By reducing the
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Fig. 2. Swarm dispersion for nine single integrator agents in a bounded workspace. The workspace is large enough to allow the

agents to occupy nine disjoint discs of radius d/2 at steady state. Agents are forced to remain within the workspace boundary.

workspace radius of the previous example, the set B of Theorem 5 is rendered empty, i.e. there

does not exist a configuration in int(W ) such that the condition ‖qi − qj‖ ≥ d, ∀i, j ∈ N , i 6= j
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is fulfilled. This is the case in Figure 3, where we have RW = 16d. The agents disperse again

within the limits of the workspace, avoiding collisions with each other. In the last screenshot,

some of the circles of radius d/2 surrounding the agents overlap, since the set B is now empty.
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Fig. 3. Swarm dispersion for nine single integrator agents in a bounded workspace. The workspace is not large enough to

allow the agents to occupy nine disjoint discs of radius d/2 at steady state. These discs are overlapping in screenshot IV.

VI. CONCLUSIONS

We proposed a distributed inverse agreement control strategy for multiple kinematic agents that

forces the agents to disperse. Both the cases of an unbounded and a circular, bounded workspace

were considered. In the first case, we showed that the closed-loop system reaches a configuration

in which the minimum distance between any pair of agents is larger than a specific lower bound.

This lower bound was proven to coincide with the agents’ sensing radius. In the case of a circular

workspace, the control law was redefined to force the agents to remain within the workspace

boundary throughout the closed-loop system evolution. Moreover the control design guaranteed

collision avoidance. The results were supported through computer simulations.

Current research involves exploring the relation of the sensing radius, the number of agents

and the radius of the workspace with the emptiness of the set B. Considering arbitrary convex

boundaries and not only the circular ones treated here is another current research endeavor. The

results should also be extended to tackle with dynamic and nonholonomic constraints.
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