
Noname manuscript No.
(will be inserted by the editor)

Resource-aware networked control systems
under temporal logic specifications

Kazumune Hashimoto · Dimos V.
Dimarogonas

Received: date / Accepted: date

Abstract Temporal logics for control of dynamical systems have the potential
to automatically synthesize controllers under complex goals expressed by tem-
poral logic formulas. In this paper, we are interested in the situation, where a
controller system that implements high and low level controllers is connected
to a plant over a communication network. In such control architecture, it is
known that the limited nature of computation and communication resources
should be explicitly taken into account. In view of this, we jointly provide con-
trol and communication strategies, such that the resulting state trajectories
satisfy the desired temporal logic formula, while at the same time the average
communication rate is below a certain threshold. The proposed strategies are
illustrated through numerical simulation examples.

Keywords Event and Self-Triggered Control · Temporal Logic Control

1 Introduction

Temporal logic motion/task planning and control of dynamical systems have
been receiving an increased attention in recent years (Kress-Gazit, Lahijanian,
and Raman 2018; Belta et al. 2007). In contrast to the standard control tasks
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that are formulated by well-known stability concepts or point-to-point nav-
igations, temporal logics allow us to automatically synthesize controllers for
more complicated specifications involving temporal constraints, such as “Sur-
vey the region A, B, C, D infinitely often, while making sure that the region E
is always avoided until C is visited”. The availability of treating such tempo-
ral constraints has led to a wide variety of applications, including cooporative
task planning of multi-robot systems (Guo, Johansson, and Dimarogonas 2013;
Guo and Dimarogonas 2015; Tumova and Dimarogonas 2016; Karimadini and
Lin 2011), manufacturing systems (Heddy et al. 2015; Antoniotti, Jafari, and
Mishra 1995; He et al. 2015; Morel, Petin, and Lamboley 2001), robot manip-
ulation (Chinchali et al. 2012; Verginis and Dimarogonas 2017), motion plan-
ning of dynamic robots (Filippidis et al. 2016; Wongpiromsarn, Topcu, and
Murray 2012; Kloetzer and Belta 2008; Livingston and Murray 2013; Fainekos
et al. 2009; Kress-Gazit, Fainekos, and Pappas 2009; Gol, Lazar, and Belta
2015; Kress-Gazit, Fainekos, and Pappas 2007), to name a few. In the tem-
poral logic control framework, such temporal tasks are generally expressed by
Linear Temporal Logic (LTL) or Computational Tree Logic (CTL) formulas.
The basic control synthesis algorithm is given in a hierarchical manner, as
briefly described below. First, we obtain a finite transition system that con-
sists of symbolic states and corresponding transitions, which represents an
abstracted behavior of the control system. The transition system may be ob-
tained by decomposing the state-space into a finite number of polytopes, and
the reachability for each pair of polytopes among them is analysed (Kloetzer
and Belta 2008; Fainekos et al. 2009; Coogan et al. 2016). Once the transition
system is obtained, a high level controller finds an accepting run to satisfy
the desired specifications through an implementation of, e.g., automata-based
model checking algorithms (Baier and Katoen 2008). If such accepting run is
found, a low level controller implements a feedback control strategy, such that
the generated state trajectory satisfies the desired specification.

In this paper, we are interested in the situation, where the plant aims at
achieving desired goals expressed by temporal logic formulas, but the high and
low level controllers need to be implemented over a communication network. In
general, control systems whose plants and controllers are interacted over the
communication network are referred to as Networked Control Systems (NCSs)
(Hespanha, Naghshtabrizi, and Xu 2007). Introducing the NCSs in tempo-
ral logics are beneficial, especially when the plant has a limited capacity of
memory and computational power, so that it needs to rely on the network to
implement both high and low level controllers. Moreover, such situation can be
met in emerging system architectures that are of great importance in current
and future control technologies. Consider, for example, cloud robotics (Kehoe
et al. 2015), where autonomous robots such as manufacturing robots or UAVs
interact with the clouds for supporting various tasks involving their decision
making and learning. In temporal logics, the temporal specification may be
obtained by interacting with collaborators such as humans, robots, etc., as
well as the remote operators that administrate the control system. The cloud
computing can be responsible for implementing the high level controller to
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obtain robot motion planning, and the low level controller to compute and
transmit control actions to operate the robot.

In NCSs, the increased popularity of integrating the communication net-
work has brought new control design and implementation challenges. For ex-
ample, network delays and packet losses are typically present while transmit-
ting control signals or sensor data over a communication channel. In view of
this, various results have been proposed to analyze the relation among network
uncertainties, control performance, and stability (see e.g., Zhang, Branicky,
and Phillips 2001; Zhang et al. 2005). Moreover, some approaches to obtain
symbolic models for NCSs under shared communication resources, commu-
nication delays or packet dropouts have been provided in recent years (see,
e.g., Borri, Pola, and Benedetto 2018; Pola, Pepe, and Benedetto 2018; Mazo,
Davitian, and Tabuada 2010).

Another main challenge lies in the fact that NCSs are subject to a limited
range of computation and communication resources, which will be the main
focus of this paper. For example, in sensor networks, sensor and relay nodes
are typically battery driven and are equipped with a frugal battery capacity.
Therefore, designing appropriate controllers to save the energy consumption
is a crucial problem that needs to be solved. Moreover, NCSs are typically
dealing with resource-limited embedded micro processors, which means that
the number of tasks that can be executed in real-time is limited. Hence, re-
ducing the amount of communication tasks allows to assign other network
tasks that are necessary to be executed in real time. Based on the above mo-
tivations, two resource-aware control schemes have been proposed in recent
years, namely, event-triggered control and self-triggered control (Heemels, Jo-
hansson, and Tabuada 2012). In both strategies, the objective is to reduce the
communication frequency between the plant and the controller. Specifically,
sensor data and control inputs are exchanged over a communication network
only when they are needed based on the prescribed control performances, such
as L2/L∞-gain stability (Wang and Lemmon 2009), so that communication
is given aperiodically. Such aperiodic scheme can potentially lead to energy
savings of battery powered devices, since the communication over the network
is known to be one of the main energy consumers.

The main contribution of this paper is to provide novel control and commu-
nication strategies under temporal logic specifications, which is in particular
inspired by the resource-aware control paradigm as described above. Specifi-
cally, given that the plant is described by a linear discrete-time system with
additive disturbances, we jointly design control and communication strategies,
such that: (i) the resulting state trajectory satisfies the LTL specification,
and (ii) the average communication rate, which represents how often control
packets are transmitted over the communication network, is below a given
threshold. The latter requirement is useful in practical implementation, since
it allows us to examine how much energy consumption is necessary for satis-
fying the LTL specifications. Moreover, it allows to examine the possibility to
assign additional network tasks if necessary to be executed in real time. To
achieve the goal of this paper, our control and communication synthesis frame-
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work has in particular the following technical contributions. First, we provide a
reachability analysis based on Rapidly-Exploring Random Trees (RRT), which
is adapted such that all state trajectories satisfy the requirements to achieve
reachability (in the sense of satisfaction relation of the “trace” definition of
the LTL formula), as well as that the corresponding communication strategy
can be designed. To design the communication strategy, we revise the original
RRT as follows: first, for each iterative step we draw a random sample in the
free state-space and pick the closest node to the sample in the tree. Then, we
pick the optimal pair of the control input and the inter-communication time
steps, such that the corresponding state becomes the closest to the sample.
As we will see later, such optimal node will be found by considering local
reachability from the dynamics of the plant with different selections of inter-
communication time steps. To deal with uncertainties due to initial states
and disturbances, we also expand a tree of uncertainties together with states,
which will be incorporated to check feasibility (collision avoidance to the ob-
stacles). The approach proceeds by constructing a transition system based on
the result of reachability analysis, and implementing both high and low level
controllers. In particular, in the high-level controller part we generate a plan
such that the LTL formula can be achieved and the average communication
rate is below a given threshold. As will be seen later, this is achieved by assign-
ing suitable (communication) costs for each edge of the transition system, and
finding an accepting run such that certain conditions on the assigned weights
are satisfied.

(Related works) : So far, a wide variety of controller synthesis algorithms
under temporal logic specifications have been proposed; in particular, our ap-
proach is related to Livingston, Wolff, and Murray 2015; Bhatia, Kavraki, and
Vardi 2010; Karaman and Frazzoli 2011a; Karaman and Frazzoli 2012, since
the reachabiliy analysis is based on sampling-based techniques. For example,
Livingston, Wolff, and Murray 2015 proposed probabilistic sampling schemes
to generate optimal state trajectories subject to LTL specifications. More-
over, Karaman and Frazzoli 2012 proposed sampling-based algorithms under
deterministic µ-calculus specifications for nonlinear control systems with the
integration of RRT* algorithms. When limiting our scope to the reachability
analysis, various sampling-based algorithms have been proposed; in particular,
the approach is related to B. Luders and How 2010; Pepy, Kieffer, and Walter
2009; Tedrake et al. 2010; Majumdar and Tedrake 2017; Agha-mohammadi,
Chakravorty, and Amato 2014, in the sense that they handle uncertainties of
the plant dynamics for the reachability analysis. For example, Tedrake et al.
2010 proposed a sampling-based motion planning scheme by designing both a
local LQR feedback control law and level sets that guarantee the reachability
towards the goal region. The main novelty of our approach with respect to
the above previous results is that, we design not only a control strategy but
also a communication strategy during the reachability analysis. As previously
mentioned, this is achieved by extending the RRT algorithm, in which a tree of
states is expanded with different selections of inter-communication time steps.
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Moreover, the approach is also novel in the sense that we provide a framework
to design a communication strategy such that the average communication rate
is guaranteed to be below a threshold.

The approach presented in this paper builds upon our previous work in
Hashimoto, Adachi, and Dimarogonas 2018. The approach presented in this
paper is advantageous over this previous result in the following sense. In the
previous approach, the communication strategy was designed in the low-level
controller, which dynamically assigns the communication time steps during
the online implementation. However, such approach makes it difficult to ana-
lyze the communication load; since the number of communication time steps
is unknown apriori, it is also unknown how often control packets should be
transmitted to satisfy the LTL specifications. On the other hand, the pro-
posed approach in this paper preliminarily assigns the communication time
steps during the reachability analysis (before the implementation). Thus, we
can evaluate how much communication frequency is needed to satisfy the LTL
specifications. As will be seen later, this allows us to design a communication
strategy such that the average communication rate is below a threshold during
high level controller implementation. The second drawback of the previous re-
sult is that the low-level controller needs to solve a finite horizon optimization
(feasibility) problem and transmit a (potentially large) sequence of control
inputs per each communication time. This formulation may not be suitable,
since network delays as well as network congestions may arise due to the load
of computing and transmitting control inputs to operate the plant. On the
other hand, the proposed approach in this paper considers a simple stabiliz-
ing control law that does not rely on any optimization problem, and only one
control sample is necessary to be transmitted for each communication time
step.

The rest of the paper is organized as follows. We describe some preliminar-
ies and the problem formulation in Section 2 and 3, respectively. In Section 4,
reachability analysis and an algorithm to obtain a finite transition system are
given. In Section 5, we propose the implementation algorithm involving both
high and low level strategies. In Section 6, a simulation example is given to
validate the effectiveness of the proposed approach. We finally conclude in
Section 7.

Notations. Let R, R+, N, N+, Na:b be the non-negative real, positive real,
non-negative integers, positive integers, and the set of integers in the interval
[a, b], respectively. For given two sets X ⊂ Rn, Y ⊂ Rn, denote by X ⊕ Y
the Minkowski sum: X ⊕ Y = {z ∈ Rn | ∃x ∈ X , y ∈ Y : z = x + y}. Given
A ∈ Rn×n and X ⊂ Rn, let AX = {Ax ∈ Rn | x ∈ X}. Given x ∈ Rn,
we denote by ‖x‖ and ‖x‖∞ the Euclidean norm and the infinity norm of x,
respectively. For simplicity, we denote the collection ofN sets X1, . . . ,XN ⊂ Rn
as X1:N = {X1, . . . ,XN}.
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2 Preliminaries

In this section, we review several useful notions and established results for tran-
sition systems, Linear Temporal Logic (LTL) formula, and Büchi Automaton.

(Transition System): A transition system is a tuple T = (S, sinit, δ,Π, g,W),
where S is a set of states, sinit ∈ S is an initial state, δ ⊆ S × S is a
transition relation, Π is a set of atomic propositions, g : S → Π is a la-
beling function, and W : δ → R is a weight function. A run of T is de-
fined as an infinite sequence of states sseq = s0s1 · · · such that s0 = sinit,
(si, si+1) ∈ δ, ∀i ∈ N. We denote by Run(T ) the set of all runs of T :
Run(T ) = {sseq | sseq is a run of T } . A trace of a run sseq = s0s1s2 · · · is
given by trace(sseq) = g(s0)g(s1)g(s2) · · · . Trace(T ) is defined as a set of all
traces generated by the runs of T ; Trace(T ) = {trace(sseq) | sseq ∈ Run(T )}.

(Linear Temporal Logic Formula): Throughout the paper, we consider that
the specification φ is described by an LTL formula (see e.g., Chapter 5 in
Baier and Katoen 2008) over a set of atomic propositions Π. LTL formulas
are constructed according to the following grammars:

φ ::= true | π | φ1 ∧ φ2 | ¬φ | φ1Uφ2, (1)

where π ∈ Π is the atomic proposition, ∧ (conjunction), ¬ (negation) are
Boolean connectives, and U (until) is the temporal operator. Other useful
temporal operators such as � (always), ♦ (eventually), R (release) can be ex-
pressed by combining the operators in (1) and how they are derived is omitted
for brevity. Note that in contrast to standard LTL formulas, the operator ©
(next) is not defined in (1) and will not be used to express the specification φ
in this paper. Such formulas are often called LTLX formulas (see, e.g., Kloet-
zer and Belta 2008). The semantics of LTL formula is inductively defined over
an infinite sequence of sets of atomic propositions πseq = π0π1 · · · ∈ (2Π)ω.
Roughly speaking, an atomic proposition π ∈ Π is satisfied if π holds true
at π0. The formula φ1 ∧ φ2 is satisfied if both φ1 and φ2 hold true. The
formula φ1Uφ2 is satisfied if φ1 is satisfied until φ2 is satisfied. For a given
πseq = π0π1 · · · ∈ (2Π)ω and an LTL formula φ, we denote by πseq |= φ if πseq

satisfies the formula φ. We further denote by Words(φ) the set of all words
that satisfy the formula φ. That is,

Words(φ) = {πseq ∈ (2Π)ω | πseq |= φ}. (2)

(Büchi Automaton): A Büchi Automaton is a tuple B = (Q,Qinit, Σ, δB , F ),
where Q is a set of states; Qinit ⊆ Q is a set of initial states; Σ is an input
alphabet; δB ⊆ Q×Σ ×Q is a non-deterministic transition relation; F is an
acceptance set. A word is defined as σseq = σ0σ1 · · · , with σi ∈ Σ, ∀i ∈ N. A
run of B over a word σseq is defined as an infinite sequence of states qseq =
q0q1 · · · generated such that q0 ∈ Qinit and (qi, σi, qi+1) ∈ δB , ∀i ∈ N. A run
qseq is called accepting if there exists a word σseq such that F is intersected
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Fig. 1 Networked Control System.

infinitely often. A word σseq is accepted by B if there exists an accepting run
for σseq. A language Lang(B) is defined as a set of all words accepted by B.
It is known that any LTL formula φ can be translated into the corresponding
Büchi Automaton B with Σ = 2Π , such that Words(φ) = Lang(B). Many
off-the-shelf tools for this translation algorithm have been proposed and can
be found online, e.g., LTL2BA (Oddoux and Gastin 2001).

3 Problem formulation

3.1 Plant dynamics

We consider a Networked Control System illustrated in Fig. 1, where the plant
and the controller are connected over a communication network. The con-
troller system is responsible for both implementing a high level controller that
generates symbolic and communication plans for a given LTL specification φ,
and a low level controller that generates (low level) control inputs to operate
the plant. How these controllers are designed will be formally given later in
this paper. Throughout the paper, we assume that the communication net-
work is ideal; it induces neither packet dropouts nor any network delays. The
dynamics of the plant is given by the following Linear-Time-Invariant (LTI)
systems:

xk+1 = Axk +Buk + wk, (3)

for k ∈ N, where xk ∈ Rn is the state, uk ∈ Rm is the control input, and
wk ∈ Rn is the additive disturbance. We assume that the pair (A,B) is con-
trollable, and that the disturbance is constrained as wk ∈ W, ∀k ∈ N, where
W is a given polytopic set. Regarding the state, we assume xk ∈ X , ∀k ∈ N,
where X is a polygonal set that can be either a convex or non-convex region.
The set X represents the free space, in which the state is allowed to move.
Inside X , we assume that there exist in total NI number of polytopic regions
R1,R2, . . . ,RNI

⊂ X , which represent the regions of interest in X . These
regions are assumed to be disjoint, i.e., Ri ∩Rj = ∅, ∀i, j ∈ N1:NI

with i 6= j.
Moreover, let xcent,i ∈ Ri, i ∈ N1:NI

denote the Chebyshev center (Borrelli,
Bemporad, and Morari 2017) of the polytope Ri. The Chebyshev center is
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the center of the maximum ball that is included in Ri and is obtained by
solving a linear program (for details, see Section 5.4.5 in Borrelli, Bemporad,
and Morari 2017). In addition, the initial state is assumed to be given and is
inside one of the regions of interest, i.e., x0 ∈ Rinit where Rinit ∈ R1:NI

.
Let πi, i ∈ N1:NI

be the atomic proposition assigned to the region Ri.
Namely, πi holds true if and only if x ∈ Ri. Also, denote by π0 an atomic propo-
sition associated to the regions of non-interest, i.e., π0 holds true if and only
if x ∈ X\(∪NI

i=1Ri). The atomic proposition π0 represents a dummy symbol,
which will not be used to describe the specification. Let Π = {π1, π2, . . . , πNI

}
and hX : Rn → Π be the mapping from the state to the corresponding atomic
proposition, i.e.,

hX(x) =

{
πi, if x ∈ Ri, i ∈ N1:NI

, (4)

π0, if x ∈ X\R, (5)

where X\R = X\(∪NI
i=1Ri).

3.2 Satisfaction relation over the state trajectory

Denote by x = x0x1x2 · · · a state trajectory in accordance to (3), with xk ∈ X ,
uk ∈ Rm, wk ∈ W, ∀k ∈ N. We next define the satisfaction relation of the
formula φ by the state trajectory x. Let us first define the trajectory of interest
as follows:

Definition 1 Given a state trajectory x = x0x1x2 · · · , the trajectory of in-
terest xI corresponding to x is defined as xI = x`0x`1x`2 · · · with `0 = 0,
`j < `j+1, ∀j ∈ N, such that: hX(x`j ) ∈ Π, ∀j ∈ N, and hX(xk) = π0,
∀k ∈ (`j , `j+1), ∀j ∈ N. �

Stated in words, the trajectory of interest is given by eliminating all states
that belong to the regions of non-interest. The trace of the state trajectory is
generated based on the trajectory of interest as defined next:

Definition 2 Given a state trajectory x = x0x1 · · · , the trace of x is given by
trace(x) = ρ0ρ1 · · · , which is generated over the corresponding trajectory of
interest xI = x`0x`1x`2 · · · , satisfying the following rules for all L ∈ N, i ∈ N:

(i) ρ0 = hX(x`0);
(ii) If ρL = hX(x`i) and there exists j > i such that hX(x`i) = hX(x`i+1) =
· · · = hX(x`j ), hX(x`j ) 6= hX(x`j+1), then ρL+1 = hX(x`j+1);

(iii) If ρL = hX(x`i), and hX(x`j ) = hX(x`i), ∀j ≥ i, then ρm = ρL, ∀m ≥ L.
�

For example, assume that xk ∈ R1 for k = 0, 1, 2, xk ∈ X\R for k = 4, 5 and
xk ∈ R2 for k = 6, 7, 8 · · · . This means that the state initially starts from R1,
leave R1 for entering R2, and remains there for all the time afterwards. The
trajectory of interest is given by x0x1x2x6x7x8 · · · . The trace of the trajectory
according to Definition 2 is ρ = ρ0ρ1ρ2 · · · with ρ0 = hX(x0) = π1 and ρL =
π2, ∀L ≥ 1.
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Definition 3 Given a state trajectory x = x0x1x2 · · · , we say that x satisfies
the formula φ if and only if the corresponding trace according to Definition 2
satisfies φ, i.e., πseq = trace(x) |= φ.

3.3 Communication strategy

To satisfy the formula φ, the plant interacts with the low level controller
over the communication network for obtaining control inputs in real time. To
indicate the communication times, let km,m ∈ N with km+1 > km,∀m ∈ N be
the communication time steps between the plant and the controller. That is, for
each km, m ∈ N the plant transmits the current state information xkm to the
controller, and the controller computes a suitable control input to be applied
and transmit it back to the plant. We assume that the control input is given
in a sample-and-hold implementation, i.e., ukm+` = ukm , ∀` ∈ N1:km+1−km−1,
∀m ∈ N. In what follows, we introduce the notion of average communication
rate:

Definition 4 Given km, m ∈ N, the average communication rate ρave ∈ [0, 1]
is given by

ρave = lim
m→∞

m

km
(6)

�

Intuitively, the average communication rate is an asymptotic ratio between the
number of communication time steps and the time steps. As we will see below,
the communication time steps km,m ∈ N are designed, such that the state
trajectory satisfies the LTL formula, as well as that a certain communication
constraint on ρave is satisfied.

Remark 1 Note that the actual number of communication time steps until
km is m + 1, instead of m. However, since km → ∞ as m → ∞, we have
limm→∞(m + 1)/km = limm→∞m/km. Hence, the lack of “plus one” term
does not affect our result provided in this paper. �

3.4 Problem formulation

We now describe the main problem to be solved in this paper:

Problem 1 Given x0 ∈ Rinit ∈ R1:NI
, φ and ρ̄ ∈ (0, 1], design both con-

trol and communication strategies in a sample-and-hold implementation (see
Section 3.3), such that:

(A.1) the resulting state trajectory satisfies φ;
(A.2) the average communication rate is below ρ̄, i.e., ρave < ρ̄. �
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That is, the goal of this paper is to design control and communication
strategies, such that the resulting state trajectory satisfies the desired LTL
formula φ, and the corresponding average communication rate is below a given
threshold ρ̄. In practice, ρ̄ can be provided in terms of the limited communi-
cation resources that are present in NCSs, such as the lifetime of the battery
powered devices, the number of network tasks that can be executed in real
time, and so on. For example, if the relationship between the frequency of
communication and the lifetime of the battery powered devices is known, we
may select ρ̄ in order to ensure that the battery powered devices can stay
alive longer than the desired period. As another example, suppose that the
embedded micro-processor is able to execute only one task for each k (i.e.,
there exists only one time slot that the micro-processor can assign the task
for each k), and that in addition to the communication task, another network
task should be executed within 60% of the total number of executions. In this
case, we may select ρ̄ as ρ̄ = 1 − 0.6 = 0.4, so that the rate of executing the
communication task is below 40%.

4 Constructing transition system

As a first step to solve Problem 1, we construct a finite transition system
that represents an abstracted model to describe the behavior of the control
systems in (3). Specifically, we aim at obtaining T = (S, sinit, δ,Π, g,W1,W2),
where S = {s1, . . . , sNI

} is a set of symbolic states, sinit ∈ S is an initial
state, δ ⊆ S × S is a transition relation, Π = {π1, . . . , πNI

} is a set of atomic
propositions, g : S → Π is a labeling function, and W1,W2 : δ → N are
weight functions. Roughly speaking, each symbol si ∈ S indicates the region
of interest Ri (i.e., the region having the same index i). To relate each symbol
to the corresponding region of interest, let Γ : S → R1:NI

be the mapping
given by

Γ (si) = Ri, ∀i ∈ N1:NI
. (7)

Conversely, let Γ−1 : R1:NI
→ S be the mapping from each region of interest

to the corresponding symbolic state. The symbol sinit ∈ S represents the
symbolic state associated with Rinit, i.e., sinit = Γ−1(Rinit). The labeling
function g outputs the atomic proposition assigned to Ri, i.e., g(si) = πi.
The weight functions W1,W2 are defined to output, as we will see later, the
number of communication time steps and the total number of time steps for
each transition in δ, respectively. The transition relation (si, sj) ∈ δ indicates
that every x ∈ Ri can be steered to Rj in finite time. A more formal definition
of δ is provided in the next subsection.

4.1 Definition of reachability

To characterize δ in the transition system, we next introduce the notion
of reachability among the regions of interest. To this end, consider a pair
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(Ri,Rj) ∈ R1:NI
× R1:NI

with i 6= j. For notational simplicity, let Xij ⊂ X
be given by

Xij = X\
⋃

n∈N\ij

Rn, (8)

where N\ij = {1, . . . , NI}\{i, j}. That is, Xij represents the free space that
we exclude all regions of interest other than Ri and Rj . Note that Xij is
a polygonal set that can be a non-convex region. Whether the transition is
allowed in T , from si = Γ−1(Ri) to sj = Γ−1(Rj) (i.e., (si, sj) ∈ δ), is
determined according to the following notion of reachability :

Definition 5 (Reachability) We say that the reachability holds from Ri
to Rj (i 6= j), which we denote by (si, sj) ∈ δ, if there exists kF ∈ N+

such that the following holds: for any x0 ∈ Ri and the disturbance sequence
w0, w1, . . . , wkF−1 ∈ W, there exist u0, u1, . . . , ukF−1 ∈ Rm such that the
resulting state trajectory x0, x1, . . . , xkF in accordance with (3) satisfies

(C.1) xkF ∈ Rj ,
(C.2) xk ∈ Xij , ∀k ∈ N0:kF ,
(C.3) If xk′ ∈ Rj for some k′ ∈ N1:kF , then xk /∈ Ri, ∀k ∈ Nk′:kF . �

Based on Definition 5, reachability holds from Ri to Rj if there exists a con-
troller such that any state in Ri can be steered to Rj in finite time. Moreover,
we require by (C.2) that the state needs to avoid any other region of interest
apart from Ri and Rj . Also, (C.3) implies that once the state enters Rj it
must not enter Ri afterwards. The conditions (C.2), (C.3) are essentially re-
quired to guarantee that the trace of the state trajectory satisfies the following
property:

Proposition 1 For every x0 ∈ Ri, the trace of the state trajectory x0, x1, . . .,
xkF satisfying (C.1)–(C.3) is πiπj.

Proposition 1 implies that the trace of the state trajectory satisfying (C.1)–
(C.3), which is generated according to the rules in Definition 2, is consistent
with the trace for the transition from si to sj (i.e., g(si)g(sj)). As will be
seen later, this leads to that the trace of T that satisfies φ implies that the
corresponding trace of the actual state trajectory also satisfies φ.

4.2 Reachability analysis from Ri to Rj

This section provides a way to analyze reachability fromRi toRj . The reacha-
bility analysis presented in this paper is based on the RRT algorithm (LaValle
2006), which is adapted such that the state trajectories satisfy all requirements
to achieve reachability (i.e., the conditions (C.1)–(C.3)), as well as that the
corresponding communication strategy can be designed. The overall algorithm
is illustrated in Algorithm 1 and the details are described below. As the in-
puts to the algorithm, we give Nmax ∈ N+ and Lmax ∈ N+ as the user-defined
parameters, which represent the total number of iterations for building a tree
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Algorithm 1: Reachability analysis from Ri to Rj .
input : Ri, Rj , Lmax ∈ N+, Nmax ∈ N+, K ∈ Rm×n

output: k0:M (communication time steps); x̂0:kM
, û0:kM−1,X0:kM

(nominal
states, inputs, and uncertain sets from Ri to Rj)

1 V ← {}; E ← {};
2 I(x, x′)← {}, ∀(x, x′) ∈ X × X ;
3 V ← V ∪ {(xcent,i,Ri)};
4 for N = 1 : Nmax do
5 xsamp ← Sample(Xij);
6 (xnearest,Xnearest)← FindNearest(V, xsamp);
7 x̂opt ← {}; Lopt ← {}; ûopt ← {};
8 for L = 1 : Lmax do
9 {x̂L, û} ← Steer(xnearest, xsamp, L);

10 if x̂opt is empty or IfClose(x̂L, x̂opt, xsamp) then
11 x̂opt ← x̂L; ûopt ← û;
12 Lopt ← L;

13 end

14 end
15 x̂0:Lopt ← GenTraj(xnearest, ûopt, Lopt);

16 {X0, . . . ,XLopt} ← UncertainSets(x̂0:Lopt , ûopt);

17 if IfFeasible(X0:Lopt ) then
18 V ← V ∪ {(x̂Lopt ,XLopt )};
19 E ← E ∪ {(x̂0,X0), ûopt, (x̂Lopt ,XLopt ))};
20 I(x̂0, x̂Lopt )← Lopt;

21 end

22 end

23 {x̃0:M , ũ0:M−1, X̃0:M} ← FindTraj(V, E);
24 {k0:M} ← UpdateTimes(x̃0:M , I);

25 {x̂0:kM
, û0:kM−1,X0:kM

} ← GenAllTraj(x̃0:M , ũ0:M−1, X̃0:M , k0:M );
26 if IfReachable(X0:kM

) then
27 return k0:M , x̂0:kM

, û0:kM−1,X0:kM
;

28 end

and the maximum inter-communication time steps, respectively. Moreover, we
give a matrix K ∈ Rm×n, where A + BK is stable, which will be used to
obtain (state feedback) control inputs and uncertainty propagations around
the nominal state trajectory. The algorithm starts by initializing the set of
nodes V and edges E as empty sets. In addition, we initialize the mapping
I : X × X → N+, which will be used to stack the inter-communication time
steps required to steer the states in X . As shown in the algorithm (Line 3),
we stack the pair (xcent,i,Ri) in V as the initial node. Intuitively, the set Ri
represents the uncertainty of the (actual) initial state, which is also stacked
together with xcent,i in V.

The algorithm proceeds by expanding a tree of states (Line 4–Line 22).
First, Sample(Xij) draws a state randomly chosen from Xij . For given V and
xsamp ∈ Xij , FindNearest(V, xsamp) finds the closest node in V to xsamp, i.e.,

FindNearest(V, xsamp) = arg min
(x,X )∈V

‖x− xsamp‖. (9)
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The function Steer(xnearest, xsamp, L) finds a control input and the correspond-
ing state by solving the following problem:

min
u∈Rm

∥∥∥∥∥ALxnearest +

L∑
`=1

A`−1Bu− xsamp

∥∥∥∥∥ . (10)

In (10), the term ALxnearest +
∑L
`=1A

`−1Bu represents the nominal state from
xnearest by applying u constantly for L time steps. Namely, the function finds
an L-step constant control input such that the corresponding state is close
to xsamp as much as possible from xnearest. Since the control input is applied
constantly for L time steps, we will utilize L as the inter-communication time
steps to steer the state from xnearest. Let û be an optimal control input by
solving (10) and let x̂L = ALxnearest +

∑L
`=1A

`−1Bû. Then, Steer returns x̂L
and û, i.e.,

Steer(xnearest, xsamp, L) = {x̂L, û} . (11)

The function IfClose(x̂L, x̂opt, xsamp) is defined as follows:

IfClose(x̂L, x̂opt, xsamp) =


True, if ‖x̂L − xsamp‖ < ‖x̂opt − xsamp‖

or ‖x̂L − xsamp‖ < ε,

False, otherwise, (12)

where ε > 0 is a given threshold. That is, it examines if xsamp is closer to
x̂L than to x̂opt or it is close enough to xsamp. If IfClose(x̂L, x̂opt, xsamp) =
True, then x̂opt is replaced by x̂L (Line 11). Note that if ‖x̂L − xsamp‖ <
ε is satisfied for several values of L, then x̂L with the largest L is chosen
(since the algorithm computes IfClose starting with L = 1). The function
GenTraj(xnearest, ûopt, Lopt) is executed to obtain the nominal state trajectory
by applying the optimal control input: GenTraj(xnearest, ûopt, Lopt) = x̂0:Lopt

,
where x̂0 = xnearest and x̂`+1 = Ax̂` + Bûopt, ∀` ∈ N0:Lopt−1. Then, the
function UncertainSets(x̂0:Lopt , ûopt) (Line 16) yields a sequence of polytopic
sets as follows:

UncertainSets(x̂0:Lopt
, ûopt) = {X0, . . . ,XLopt

}, (13)

where (x̂0,X0) ∈ V and X1, . . . ,XLopt
are given by

X` = x̂` ⊕

(
A` +

∑̀
`′=1

A`
′−1BK

)
(−x̂0 ⊕X0)⊕

`−1∑
`′=0

A`
′
W, (14)

for all ` ∈ N1:Lopt
. Intuitively, and as will be clearer later in this section (see in

particular Lemma 1), the sets X0, . . . ,XLopt
represent uncertainty propagations

of the actual state trajectory around the nominal one x̂0, . . . , x̂Lopt
, starting

from any initial state from X0 by applying a suitable control strategy. The
function IfFeasible(X0:Lopt) (Line 17) examines if all X0, . . . ,XLopt are inside
Xij , i.e.,

IfFeasible(X0:Lopt
) =

{
True, if X` ⊆ Xij ,∀` ∈ N0:Lopt

, (15)

False, otherwise. (16)
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If the feasibility holds, the pair (x̂Lopt ,XLopt), and the triple ((x̂0, X0), ûopt,
(x̂Lopt ,XLopt)) are stored in V and E , respectively. Moreover, we assign the
corresponding inter-communication time steps to the mapping I (Line 18–
Line 22).

Once a set of nodes and edges (V, E) are obtained, the function FindTraj
is executed to find nominal states, inputs and the corresponding uncertain sets
fromRi toRj in the following way: if there existM ∈ N+ and x̃0:M , ũ0:M−1, X̃0:M ,

where (x̃0, X̃0) = (xcent,i,Ri), and

((x̃m, X̃m), ũm, (x̃m+1, X̃m+1)) ∈ E , ∀m ∈ N0:M−1, (17)

X̃M ⊆ Rj , (18)

then we set FindTraj(V, E) = {x̃0:M , ũ0:M−1, X̃0:M}. The illustration of the
trajectory x̃0:M is shown in Fig. 2(a). Roughly speaking, the condition in (18)

indicates that the uncertainty around the terminal state (i.e., X̃M ) is small
enough such that the actual state trajectory is guaranteed to enter Rj . The
above sequences can be found by implementing a graph search from the initial
node (xcent,i,Ri) to some node in V, whose state and the set are both inside
Rj . If multiple feasible sequences satisfying (17) and (18) are found, we select
the one with the minimum value of the communication rate M/kM . Note that
to steer the state from x̃m to x̃m+1 (m ∈ N0:M−1), ũm needs to be applied

constantly for I(x̃m, x̃m+1) time steps, i.e., x̃m+1 = ALm x̃m+
∑Lm

`=1A
`−1Bũm,

where Lm = I(x̃m, x̃m+1).

The function UpdateTimes (Line 24) is defined as follows: UpdateTimes(x̃0:M ,
I) = {k0, k1, . . . , kM}, where k0 = 0 and

km = km−1 + I(x̃m−1, x̃m), ∀m ∈ N1:M . (19)

Intuitively, k0, k1, . . . , kM−1 indicate the time steps when control inputs are
updated, which, as will be seen below, represent the communication time steps
between the plant and the controller. In addition, kM indicates the termi-
nal time step when the state trajectory enters Xj . The function GenAllTraj
is defined to generate all nominal states, inputs and the corresponding un-
certain sets including the ones during the inter-communication time steps:
GenAllTraj(x̃0:M , ũ0:M−1, X̃0:M , k0:M ) = {û0:kM−1, x̂0:kM ,X0:kM }, where

ûkm = ũm, ∀m ∈ N0:M−1, (20)

ûkm+` = ûkm , ∀` ∈ N1:km+1−km−1,∀m ∈ N0:M−1, (21)

and

x̂k+1 = Ax̂k +Bûk, ∀k ∈ N0:kM−1. (22)

An example of the trajectory x̂0, . . . , x̂kM is illustrated in Fig. 2(b). Note that
from (20), (21) and (22), it follows that x̂km = x̃m, ∀m ∈ N0:M . The sequence
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(a) Trajectory of x̃ (b) Trajectory of x̂

Fig. 2 Illustration of x̃0, . . . , x̃M from (17) and (18) and x̂0, . . . , x̂kM
from (22).

X0:kM is given as follows: X0 = X̃0(= Ri) and

Xkm+` = x̂km+` ⊕

(
A` +

∑̀
`′=1

A`
′−1BK

)
(−x̂km ⊕Xkm)⊕

`−1∑
`′=0

A`
′
W, (23)

for all ` ∈ N1:km+1−km ,m ∈ N0:M−1. Note that from (23) and (14), it follows

that Xkm = X̃m, ∀m ∈ N0:M .
Finally, the function IfReachable examines if the reachability holds from Ri

to Rj in the following way: IfReachable(X0:kM ) = True if the following holds:

Xk′ ∩Rj 6= ∅, k′ ∈ N0:kM =⇒ Xk ∩Ri = ∅, ∀k ∈ Nk′:kM , (24)

and IfReachable(X0:kM ) = False otherwise. The condition in (24) indicates
that once some uncertain set intersects Rj , it does not intersect Ri after-
wards, which aims at fulfilling the condition (C.3) in Definition 5. Finally, if
IfReachable returns True, the algorithm returns the sequences k0:M , x̂0:kM ,
û0:kM−1, X0:kM .

The fact that the reachability holds based on the above is validated by the
following result:

Lemma 1 Suppose that IfReachable(X0:kM ) = True and Algorithm 1 returns
k0:M , x̂0:kM , û0:kM−1,X0:kM . Then, it follows that the reachability holds from
Ri to Rj . �

Proof : Suppose that IfReachable(X0:kM ) = True and Algorithm 1 returns
k0:M , x̂0:kM , û0:kM−1,X0:kM . For any x0 ∈ Ri, let xk, k ∈ N0:kM be the actual
state trajectory by applying uk, k ∈ N0:kM−1, i.e., xk+1 = Axk + Buk + wk,
∀k ∈ N0:kM−1, where

uk = K(xk − x̂k) + ûk, if k = km,m ∈ N0:M−1 (25)

uk = uk−1, otherwise. (26)

That is, the state feedback controller is utilized for the update times km,m ∈
N0:M−1, and the constant controller is utilized for all the other time steps. In



16 Kazumune Hashimoto, Dimos V. Dimarogonas

the following, we first show by induction that xk ∈ Xk, ∀k ∈ N0:kM . For the
initial time step k = k0 = 0, we have x0 ∈ Ri = X0. Assume that xkm ∈ Xkm
for some m ∈ N0:M−1. Then the difference between the actual state and the
nominal one for km + `, ` ∈ N1:km+1−km is given by

xkm+` − x̂km+` = A`xkm +
∑̀
`′=1

A`
′−1B (K(xkm − x̂km) + ûkm)

+
∑̀
`′=1

A`
′−1wkm+`′ −

(
A`x̂km +

∑̀
`′=1

A`
′−1Bûkm

)

=

(
A` +

∑̀
`′=1

A`
′−1BK

)
(xkm − x̂km) +

`−1∑
`′=0

A`
′
wkm+`′ ,

for all ` ∈ N1:km+1−km . Thus, from (23), it follows that xkm+` ∈ Xkm+`,
∀` ∈ N1:km+1−km . Therefore, we have xkm ∈ Xkm =⇒ xkm+` ∈ Xkm+`,∀` ∈
N1:km+1−km , and it is inductively shown that xk ∈ Xk, ∀k ∈ N0:kM . Moreover,
from the feasibility condition in (15), it follows that Xk ⊆ Xij , ∀k ∈ N0:kM .
Thus, we obtain xk ∈ Xij , ∀k ∈ N0:kM and the condition (C.2) in Definition 5

holds. Moreover, from (18), it follows that xkM ∈ XkM = X̃M ⊆ Xj . Hence, the
condition (C.1) in Definition 5 holds. Finally, from the definition of IfReachable,
it follows that

xk′ ∈ Rj , k′ ∈ N1:kM =⇒ xk /∈ Ri, ∀k ∈ Nk′:kM , (27)

which directly shows that the condition (C.3) in Definition 5 holds. Therefore,
it is shown that the reachability holds from Ri to Rj . �

From Lemma 1, if IfReachable returns True there exists a control strat-
egy, as shown in (25) and (26), such that the reachability holds from Ri to
Rj . Moreover, from (25) and (26), each ukm , m ∈ N0:M−1 is applied con-
stantly for all [km, km+1), which means that the control inputs are updated at
k0, k1, . . . , kM−1. In other words, the communication time steps when the plant
needs to transmit the current state information to the controller are given by
k0, k1, . . . , kM−1. For the notational use in the next section, let Lx0,Lx, Lu,
LI be the mappings given by

Lx0(Ri,Rj) = x̂0:kM , Lx(Ri,Rj) = x̂1:kM , (28)

Lu(Ri,Rj) = û0:kM−1, LI(Ri,Rj) = L0:M−1, (29)

where Lm = km+1 − km, ∀m ∈ N0:M−1. That is, the above mappings yield
the nominal state and control trajectories, and the inter-communication time
steps to achieve the reachability from Ri to Rj .

Some remarks on Algorithm 1 are in order as follows:

Remark 2 (On achieving the minimum communication frequency): In this
paper, we employ an extended version of the RRT algorithm, so that the com-
munication strategy can be designed while ensuring reachability. Note that
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the algorithm is not guaranteed to provide the optimal communication strat-
egy, which means the resulting communication scheduling may not provide the
minimum communication frequency. The minimum number of communication
times may be achieved by solving an appropriate optimal control problem for
the steering function and by employing the RRT* algorithm (Karaman and
Frazzoli 2011b) that integrates the rewiring procedure. Since we aim at reduc-
ing the number of control updates, one might attempt to solve the following
optimization problem for the steering function:

arg min
x̂0:N ,u0:N−1,N

N−1∑
`=0

‖u`+1 − u`‖0,

s.t. x̂`+1 = Ax̂` +Bu`, ∀` ∈ N0:N−1

x0 = xnearest

xN = xsample,

where ‖ · ‖0 denotes the `0-norm that represents the number of non-zero com-
ponents. In other words, we aim to find control inputs and the time step such
that the number of control updates is minimized. Using the above problem
for the steering function and by the rewiring procedure as in Karaman and
Frazzoli 2011b, one may obtain the reachable trajectory that minimizes the
number of control updates (i.e., the communication frequency). However, the
above optimization problem is a computationally expensive problem, as it in-
volves the `0-norm cost function. Since the steering function would be utilized
for both generating a new sample and the rewiring procedure, using the above
problem is clearly unrealistic. Although one may relax the problem by using
the `1-norm cost function, there is no guarantee how such relaxation results
in reducing the number of control updates. Therefore, while Algorithm 1 may
not minimize the communication frequency, it is more suitable for practical
implementations than the above approach in terms of the computation load.
�

Remark 3 (On the computational complexity of Algorithm 1) : The computa-
tional complexity of Algorithm 1 can be analyzed by looking at some primitive
procedures in Algorithm 1. The complexity of drawing a sample (Sample) is
constant. The complexity of finding the nearest neighbor FindNearest is O(N)
(N denotes the iteration number as in Algorithm 1) by using a naive brute-
force search, while other efficient but approximate solutions exist (see, e.g.,
Karaman and Frazzoli 2011b). The steering procedure (Steering) requires to
solve a quadratic programming, in which the computational complexity is poly-
nomial with the size of the variables (see, e.g., Monteiro and Adler 1989), which
is m in this case, i.e., the dimension of the control input. To analyze the com-
plexity of IfFeasible(X0:L), suppose that X = X\O1∪· · ·∪ONo

, where X ⊂ Rn
denotes a polytopic set, O1, . . .ONo

are the polytopic obstacles to be avoided

in X̃ , and No is the number of the obstacles. For given inter-communitation
time steps L ∈ N1:Lmax , IfFeasible examines if L polytopic sets are all inside
Xij , which can be done as follows: (i) compute the intersections between each
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X`, ` ∈ N1:L and each obstacle and check if these are all empty; (ii) compute
the intersections between each X`, ` ∈ N1:L and each region of interest except
Ri, Rj , and check if these are all empty. The complexity of computing the
intersection between each pair (X`,On), (`, n) ∈ N1:L × N1:No

(or each pair
(X`,Rn), (`, n) ∈ N1:L×N\ij) is O(Nver logNver), where Nver denotes the sum
of the number of verticies of X` and On (or X` and Rn), see, e.g., Monteiro and
Adler 1989. Hence, the computational complexity of IfFeasible depends on the
workspace environment, such as the number of obstacles in the state-space. �

4.3 Construction of T

Let us now go back to the beginning of Section 4 and consider constructing
the transition system T . Suppose that reachability holds from Ri to Rj (i.e.,
IfReachable(X0:kM ) = True) and Algorithm 1 returns k0:M , x̂0:kM , û0:kM−1,
X0:kM . Then, to construct the transition system T , we set (si, sj) ∈ δ and
assign the values for the weight functions W1,W2 as follows:

W1(si, sj) = M, W2(si, sj) = kM . (30)

That is, we assign for W1(si, sj) and W2(si, sj) the number of communication
time steps and the total number of time steps to achieve reachability from Ri
to Rj , respectively. The weight functionsW1 andW2 will be utilized to obtain
the accepting run of T , such that the corresponding average communication
rate is below the threshold ρ̄. Based on the above, by applying Algorithm 1 for
every pair of the regions of interest, we can characterize both the transition
relation δ and the functions W1, W2. As a consequence, the transition system
T can be constructed as an abstraction of the control system (3).

5 Implementation

Based on the transition system T given in the previous section, we now present
our control and communication strategies as a solution to Problem 1. Following
the hierarchical-based approach, the proposed algorithm consists of high and
low level controllers. The details of each implementation is described below.

5.1 High level controller

In the high level controller part, the controller produces an infinite sequence of
the regions of interest that the state should follow to satisfy the formula φ, as
well as that the average communication rate is below ρ̄. Since the reachability
among the regions of interest can be captured by the transition system T , this
can be done by finding a run sseq = s0s1 · · · of T , such that trace(sseq) |= φ
holds. Although there exist several methodologies to achieve this, this paper
adopts an automata-based model checking algorithm; we only describe the
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overview of the approach here and refer the reader to Chapter 5 in Baier and
Katoen 2008 for a more detailed explanation. The approach relies on the idea
that checking the existence of a run to satisfy φ is equivalent to checking the
non-emptiness of Trace(T ) ∩Words(φ). Since Words(φ) = Lang(Bφ), where
Bφ = (Q,Q0, 2

Π , δB , F ) denotes the Büchi Automaton corresponding to the
LTL formula φ, the above problem is also equivalent to checking the non-
emptiness of Trace(T ) ∩ Lang(Bφ), i.e., a language of the product automaton
between T and Bφ, which is defined below:

Definition 6 (Product Automaton) A product automaton between T =
(S, sinit, δ,Π, g,W1,W2), and Bφ = (Q,Qinit, δB , 2

Π , F ) is defined as a tuple
Bp = T ⊗ Bφ = (Qp, Qinit,p, δp, Σp, Fp), where

– Qp = Q× S is a set of states;
– Qinit,p = Qinit × sinit ⊆ Qp is a set of initial states;
– δp ⊆ Qp×Qp is a transition relation, where ((q, s), (q′, s′)) ∈ δp iff (s, s′) ∈ δ

and (q, g(s′), q′) ∈ δB ;
– Σp = 2Π is an input alphabet;
– Fp = F × S is a set of accepting states.

For a given word σseq = σ0σ1 · · · with σi ∈ Σp, ∀i ∈ N, a run of Bp over σseq is
defined as an infinite sequence of states: (qseq, sseq) = (q0, s0) (q1, s1) · · · , such
that (q0, s0) ∈ Qinit,p (i.e., s0 = sinit, q0 ∈ Qinit) and ((qi, si), (qi+1, si+1)) ∈
δB , ∀i ∈ N. A run of Bp is called accepting if there exists a word σseq = σ0σ1 · · ·
such that Fp is intersected infinitely often. Let

(qseq, sseq) = (q0, s0) (q1, s1) (q2, s2) · · · (31)

be one of the accepting runs of Bp. It is known that any accepting run can be
represented by a prefix-suffix structure, i.e., there exist n1, n2 ∈ N, such that

(qseq,sseq)

= (q0, s0) · · · (qn1−1, sn1−1)︸ ︷︷ ︸
prefix part

[(qn1 , sn1) · · · (qn1+n2−1, sn1+n2−1)︸ ︷︷ ︸
suffix part

]ω. (32)

As shown in (32), n1, n2 represent the length of the prefix and the suffix
part, respectively. Based on (32) and the weight functions defined in (30),
denote by A(sseq) the ratio between the total number of time steps and the
communication time steps required for the suffix part of sseq, i.e.,

A(sseq) =

n1+n2−1∑
n=n1+1

W1(sn−1, sn)

n1+n2−1∑
n=n1+1

W2(sn−1, sn)

. (33)

Based on the above definitions, in this paper the high level controller finds
an appropriate run of Bp in the following way. First, it finds a set of accepting
runs:

Qp,seq = {(qseq, sseq) | (qseq, sseq) is an accepting run of Bp}, (34)
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which can be obtained by finding strongly connected components through
depth-search methods (see, e.g., Baier and Katoen 2008). Then, we select the
accepting run such that the average communication time step for the suffix
part is minimized, i.e.,

(q∗seq, s
∗
seq) = arg min

(qseq,sseq)∈Qp,seq

A(sseq). (35)

Since q∗p,seq = (q∗seq, s
∗
seq) is an accepting run of Bp, it is shown that

trace(s∗seq) |= φ (see, e.g., Baier and Katoen 2008) and we can obtain the
corresponding sequence of regions of interest that is projected from s∗seq, i.e.,

R∗seq = R∗0R
∗
1R
∗
2 · · · (36)

where we denote s∗seq = s∗0s
∗
1 · · · and R∗i = Γ (s∗i ), ∀i ∈ N. Note that since

s∗0 = sinit, we have R∗0 = Rinit. Namely, the sequence R∗seq represents the
infinite sequence of the regions of interest that the state trajectory should
traverse to satisfy φ.

Remark 4 (On selecting the accepting run) As shown in (35), in this
paper we select the accepting run such that the average communication rate is
minimized. However, we could consider several other criteria in order to select
the accepting run. For example, one could select the accepting run according
to the following:

(q∗seq, s
∗
seq) = arg min

(qseq,sseq)∈Qp,seq

n1+n2−1∑
n=n1+1

W2(sn−1, sn)

s.t. A(sseq) < ρ̄. (37)

That is, among all accepting runs such that the average communication rate
for the suffix is below ρ̄, we select the one that minimizes the total time steps
(in order to satisfy the formula φ “as soon as possible”). Here, the constraint
A(sseq) < ρ̄ is enforced in order to deduce that the average communication
rate is indeed below the threshold ρ̄; for details, see Theorem 1.

5.2 Low level controller

Based on the obtained sequence as in (36), the low-level controller iteratively
implements the control and communication strategies, such that the resulting
state trajectory satisfies φ as well as that the average communication rate is
below ρ̄. To this end, let x̂∗0x̂

∗
1x̂
∗
2, · · · , û∗0û∗1û∗2 · · · , L∗0L∗1L∗2 · · · be an infinite

sequence of nominal states, inputs, and inter-communication time steps that
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are generated based on R∗seq:

Lx0(R∗0,R∗1)︸ ︷︷ ︸
x̂∗0 ··· x̂∗kM1

Lx(R∗1,R∗2)︸ ︷︷ ︸
x̂∗kM1

+1 ··· x̂
∗
kM2

Lx(R∗2,R∗3)︸ ︷︷ ︸
x̂∗kM2

+1 ··· x̂
∗
kM3

· · · , (38)

Lu(R∗0,R∗1)︸ ︷︷ ︸
û∗0 ··· û∗kM1

−1

Lu(R∗1,R∗2)︸ ︷︷ ︸
û∗kM1

··· û∗kM2
−1

Lu(R∗2,R∗3)︸ ︷︷ ︸
û∗kM2

··· û∗kM3
−1

· · · , (39)

LI(R∗0,R∗1)︸ ︷︷ ︸
L∗0 ··· L∗M1−1

LI(R∗1,R∗2)︸ ︷︷ ︸
L∗M1

··· L∗M2−1

LI(R∗2,R∗3)︸ ︷︷ ︸
L∗M2

··· L∗M3−1

· · · , (40)

where for the notational simplicity we let Lx0(R∗0,R∗1) = x̂∗0 · · · x̂∗kM1
and

Lx(R∗i ,R∗i+1) = x̂∗kMi
+1 · · · x̂∗kMi+1

, (41)

Lu(R∗i ,R∗i+1) = û∗kMi
· · · û∗kMi+1

−1, (42)

LI(R∗i ,R∗i+1) = L∗Mi
· · · L∗Mi+1−1, (43)

with Mi ∈ N, i ∈ N+ appropriately chosen to line up the sequences:

x̂∗0x̂
∗
1x̂
∗
2x̂
∗
3 · · · , û∗0û∗1û∗2û∗3 · · · , L∗0L∗1L∗2L∗3 · · · . (44)

Moreover, let k∗m, m ∈ N be given by

k∗0 = 0, k∗m+1 = k∗m + L∗m, ∀m ∈ N, (45)

i.e., k∗m, m ∈ N are the communication time steps between the plant and the
controller. Based on the above, a complete algorithm of the low-level imple-
mentation is summarized in Algorithm 2. As shown in the algorithm, for each
communication time step k∗m the plant transmits the current state information
to the controller, based on which the controller updates the control input ac-
cording to (25) and (26), and transmits it back to the plant. The main result
of this paper is now given as a solution to Problem 1.

Theorem 1 Suppose that for given x0 ∈ Rinit, φ and ρ̄ ∈ (0, 1], the high
level controller finds an accepting run q∗p,seq = (q∗seq, s

∗
seq) according to (35)

and that we have A(s∗seq) < ρ̄. Moreover, suppose that the low level controller
(Algorithm 2) is implemented. Then, the resulting state trajectory satisfies φ
for any wk ∈ W, ∀k ∈ N. Moreover, the average communication rate is below
ρ̄, i.e., ρave < ρ̄. �

Proof : For a given i ∈ N, suppose that xkMi
∈ R∗i , where kMi

is defined
in (38). Since the reachability holds from R∗i to R∗i+1 and from the proof of
Lemma 1, it follows that the state trajectory enters R∗i+1 (i.e., xkMi+1

∈ R∗i+1)

by applying a control strategy according to (25) and (26), and this holds for
any disturbance sequence wk ∈ W, k ∈ NkMi

:kMi+1−1
. Hence, starting from

x0 ∈ R∗0 = Rinit, it is inductively shown that the state trajectory traverses all
regions of interest R∗seq = R∗0R∗1 · · · by applying Algorithm 2. Moreover, from
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Algorithm 2: Low level controller

input : x0 (initial state);
x̂∗0x̂
∗
1x̂
∗
2 · · · , û∗0û∗1û∗2 · · · (nominal states and inputs);

L∗0L
∗
1L
∗
2 · · · (inter-communication time steps)

k∗0k
∗
1k
∗
2 · · · (communication time steps);

output: State trajectory that solves Problem 1;
1 k ← 0 (initialization);
2 while do
3 if k = k∗m (m ∈ N) then
4 the plant transmits the current state xk to the controller;
5 the controller computes uk as follows:

uk = K(xk − x̂∗k) + ûk; (46)

the controller transmits uk to the plant, and the plant applies uk;
6 else
7 set uk = uk−1 and the plant applies uk (no communication is given);
8 end
9 k ← k + 1;

10 end

the proof of Lemma 1 the state trajectory from R∗i to R∗i+1 for each i ∈ N
satisfies (C.1)–(C.3) in Definition 5. That is, the trace of the state trajectory
while moving from R∗i to R∗i+1 is g(s∗i )g(s∗i+1) for all i ∈ N (see Proposition 1),
which leads to the fact that the trace of the overall state trajectory is given
by trace(x) = g(s∗0)g(s∗1)g(s∗2) · · · . Thus, we obtain trace(x) = trace(s∗seq) |= φ
and so the satisfaction of φ is achieved.

Now, it remains to show that the communication rate is below ρ̄. From
Section 5.1, the sequences s∗seq and R∗seq can be expressed by the following
prefix-suffix structure:

s∗seq = s∗0s
∗
1 · · · s∗n∗1−1

(
s∗n∗1 · · · s

∗
n∗1+n∗2−1

)ω
, (47)

R∗seq = R∗0R∗1 · · ·R∗n∗1−1

(
R∗n∗1 · · ·R

∗
n∗1+n∗2−1

)ω
, (48)

where n∗1, n∗2 denote the length of the prefix and the suffix parts, respectively.
Note that we have A(s∗seq) < ρ̄. Let M∗pref ,M

∗
suf ,K

∗
pref ,K

∗
suf ∈ N+ be given by

M∗pref =

n∗1−1∑
n=1

W1(s∗n−1, s
∗
n), M∗suf =

n∗1+n∗2−1∑
n=n∗1+1

W1(s∗n−1, s
∗
n), (49)

K∗pref =

n∗1−1∑
n=1

W2(s∗n−1, s
∗
n), K∗suf =

n∗1+n∗2−1∑
n=n∗1+1

W2(s∗n−1, s
∗
n). (50)

That is, M∗pref and M∗suf represent the number of communication time steps
for the prefix and the suffix parts, respectively, and K∗pref and K∗suf represent
the total number of time steps for the prefix and the suffix parts, respectively.
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Hence, the total number of time steps when the state trajectory traverses the
prefix part (i.e., R∗0R∗1 · · ·R∗n∗1−1) and p-cycles of the suffix part (i.e., the p

repetitions of R∗n∗1 · · ·R
∗
n∗1+n∗2−1) is given by K∗pref +pK∗suf . Similarly, the total

number of communication time steps when the state trajectory traverses the
prefix part and p-cycles of the suffix part is given by M∗pref + pM∗suf . Hence,
the average communication rate is given by

ρave = lim
p→∞

M∗pref + pM∗suf

K∗pref + pK∗suf

= lim
p→∞

(
M∗pref

K∗pref + pK∗suf

+
pM∗suf

K∗pref + pK∗suf

)

=
M∗suf

K∗suf

. (51)

Thus, it follows that ρave < ρ̄ since A(s∗seq) = M∗suf/K
∗
suf < ρ̄. Thus, the

average communication rate is below ρ̄. �

6 Illustrative examples

In this section we illustrate the effectiveness of the proposed approach. As
a simulation example, we consider the motion planning problem of a vehicle
moving in a given free space. Let x = [xpos;xvel] ∈ R4 denote the state of
the vehicle, where xpos = [xpos1;xpos2] ∈ R2 and xvel = [xvel1;xvel2] ∈ R2 are
the position and the velocity of the vehicle, respectively. The dynamics of the
vehicle is given by the following double integrator:

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x+


0 0
0 0
1 0
0 1

u+ w, (52)

where u ∈ R2 is the control input and w ∈ R4 is the disturbance. To ob-
tain the discrete-time model, we discretize the system in (52) under zero-order
hold controller with 0.5 sampling time interval. The disturbance set is given
byW = {w ∈ R4 : ‖w‖∞ ≤ 0.1}. The position space of the vehicle, denoted as
Xpos ⊂ R2 is shown in Fig. 3(a). In the figure, the white regions represent Xpos

in which the state (vehicle) can move freely, and the black regions represent
obstacles to be avoided. As shown in Fig. 3(a) there exist 4 regions of interest
R1,R2,R3,R4, which are all 1 × 1 squares. The velocity space, denoted as
Xvel ⊂ R2, is given by Xvel = {xvel ∈ R2 : ‖xvel‖∞ ≤ 2.0}. The (free) state
space is thus given by X = Xpos×Xvel. Based on the above setting, we imple-
ment Algorithm 1 for each pair of the regions of interest. While implementing
Algorithm 1, we assume Lmax = 20, Nmax = 500 and the matrix K is given
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Table 1 The average execution time to compute a control input per each communication
time step and the total number of time steps to achieve reachability from R1 to R3.

this paper Hashimoto et al. 2018

Execution time [s] 5.0× 10−4 0.25
The num. time steps 78 64

by

K =

[
0.004 0 0.139 0

0 0.004 0 0.139

]
(53)

so that the matrix A + BK is stable. Fig. 3(b) illustrates the nominal state
trajectory x̂0:kM obtained by implementing Algorithm 1 for the pair (R1,R3).
In the figure, the red circles represent the instants when the communication is
given (i.e., x̂k0 , x̂k1 , . . . x̂kM−1

). The total number of communication time steps
and the total number of time steps are given by M = 10 and kM = 78, respec-
tively. From the figure, it is shown that the nominal state trajectory reaches
R3, while avoiding all the obstacles. Moreover, Fig. 3(c) illustrates 100 state
trajectories by applying the control strategies in (25) and (26), starting from
different initial states randomly selected from R1. It can be shown from the
figure that all state trajectories satisfy (C.1)–(C.3) in Definition 5. Similarly,
we analyze reachability for all the other pairs of the regions of interest and
construct the transition system. The resulting transition system T contains 4
symbolic states and 16 transitions. The total time to construct T is 4398s on
Windows 10, Intel(R) Core(TM) 2.40GHz, 8GB RAM. To compare with the
previous result in Hashimoto, Adachi, and Dimarogonas 2018, we illustrate in
Table 1 the average execution time to compute a control input per each com-
munication time step by employing the approach in this paper (i.e., (46)) and
the one presented in our previous work (i.e., Eq.(24) and Eq.(25) in Hashimoto,
Adachi, and Dimarogonas 2018). The table shows that, the approach presented
in this paper results in a significant reduction of the computation load, since
it does not need to solve an optimal control problem. On the other hand, the
table shows that the approach in this paper requires longer time steps than
Hashimoto, Adachi, and Dimarogonas 2018 to achieve the reachability, which
may be due to the fact that only one control action can be applied during the
inter-communication time steps (while different control actions can be used in
the previous approach).

To illustrate the proposal, we consider the following specification: φ =
(♦π1 ∧ ♦π2 ∧ ♦π3 ∧ ♦π4) ∧ {(�♦π1 ∧�♦π2) ∨ (�♦π1 ∧�♦π2 ∧�♦π3)}. The
specification means that, the vehicle should visit all regions of interest at least
once, and visitR1,R2 orR1,R2,R3 infinitely often. Moreover, we assume that
the threshold of the average communication rate is given by ρ̄ = 0.1. Based on
the above problem setup, we implemented both high and low level controllers.
Fig. 4(a) illustrates the resulting state trajectory by implementing the low level
controller (Algorithm 2) with x0 = [8.3; −8.4; 0; 0] ∈ R4. The figure shows
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(a) The position space Xpos

(b) Nominal state trajectory x̂0:kM
from R1 to R3 ob-

tained by applying Algorithm 1. The red circles indicate
the communication instants (i.e., x̂k0

, x̂k1
, . . . , x̂kM−1

)

(c) 100 state trajectories by applying (25) and (26) from
the initial state randomly selected from R1.

Fig. 3 Illustration of the position space Xpos and the results by applying Algorithm 1 for
(R1,R3).
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(a) Resulting state trajectory by implementing the low
level controller (Algorithm 2).

0 50 100 150
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0.1

0.15

m
/k

m

(b) The sequence of m/km, m = 1, 2, . . ..

Fig. 4 Resulting state trajectory by implementing the low level controller (Algorithm 2)
and the corresponding sequence of m/km, m = 1, 2, . . ..

that the state trajectories visit all the regions of interest, as well as that they
visit R1, R2 infinitely often. Hence, the state trajectories are shown to satisfy
the formula φ. In addition, Fig. 4(b) illustrates the corresponding sequence
m/km, m = 1, 2, . . .. The figure shows that the sequence m/km converges
below ρ̄ = 0.1, which shows that that the average communication rate is
indeed below ρ̄.

Note that the state trajectory could satisfy φ if the high level controller
would select the run of T such that the state trajectory traverses R1, R2, R3

(instead of R1, R2) infinitely often. Fig. 5 illustrates the sequence m/km, m =
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Fig. 5 The sequence of m/km, m = 1, 2, . . . if the state trajectory would traverse
R1,R2,R3 infinitely often.
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Fig. 6 Execution time against the state dimension n and NI .

1, 2, . . . for the case when the state trajectory traverses R1, R2, R3 infinitely
often. The figure illustrates that, the corresponding average communication
rate cannot be below ρ̄ = 0.1. This means that, if the high level controller
would select a run such that the state trajectory traverses R1, R2, R3, it
would then violate the specification of the average communication rate (i.e.,
ρave > ρ̄). Hence, it is shown that the high level controller appropriately
selected the accepting run, such that the average communication rate is below
ρ̄.

Finally, it is worth analyzing the execution time with respect to the number
of regions of interest NI as well as the state dimension n. Fig. 6 plots of the
execution time for constructing T (i.e., the total execution time of Algorithm 1
for all pairs of the regions of interest) against the state dimension n ≥ 5,
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with different selections of NI = 2, 4, 6. Here, we fix the input dimension as
m = 5 and the matrices A and B are randomly generated over the reals in the
interval [0, 1]. The state space is given by X = {x ∈ Rn : ‖x‖∞ ≤ 15}, and
we assume that the regions of interest are the full dimensional polytopes with
n+ 1 vertices, which are randomly generated from X . The figure shows that,
for fixed NI , the execution time increases as n increases. This is due to some
primitive procedures in Algorithm 1, such as IfFeasible, some vertex operations
in (14), etc. In addition, for fixed n the execution time also increases as NI
increases. This is mainly due to the fact that the total number of combinations
to select the pair of the regions of interest is NI(NI − 1)/2, implying that
the execution time increases quadratically with NI . Note that, thanks to the
implementation of the sampling-based algorithm, the algorithm is tractable
even for high-dimensional systems (e.g., n = 20), if the number of the regions
of interest is small enough. This point may be an advantage over the previous
discretization based approaches (e.g., Wongpiromsarn, Topcu, and Murray
2012; Nilsson et al. 2012), in which the algorithm becomes intractable even
with much lower state dimensions.

7 Conclusions and Future work

In this paper, we propose control and communication strategies, such that the
state trajectories satisfy the LTL specification and the average communication
rate is below a given threshold. We start by providing RRT-based reachability
analysis, which is adapted such that the state trajectories satisfy the reachabil-
ity specifications, as well as that the communication strategy can be designed.
Then, we provide a high level controller that aims to find an accepting run of
the transition system, and then provide a low level controller that aims to steer
the state trajectories satisfying the desired specifications. Finally, we illustrate
the benefits of the proposed approach through numerical simulations.

As previously stated in Remark 2, the reachability algorithm is not guar-
anteed to provide a communication strategy that minimizes the number of
communication frequency. Hence, future work involves investigating the reach-
ability algorithm that improves the optimality of the communication strategy.
Moreover, the control synthesis that handles delays and packet dropouts ex-
plicitly for NCSs will be considered for our future work.
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