o

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 13th International Symposium on Distributed
Autonomous Robotic Systems, London, November 6-9, 2016..

Citation for the original published paper:

Schillinger, P., Biirger, M., Dimarogonas, D. (2016)

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning.
In: Roderich Gross (ed.),

Springer Tracts in Advanced Robotics

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199915

Decomposition of Finite LTL Specifications for
Efficient Multi-Agent Planning

Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

Abstract Generating verifiably correct execution strategies from Linear Temporal
Logic (LTL) mission specifications avoids the need for manually designed robot be-
haviors. However, when incorporating a team of robot agents, the additional model
complexity becomes a critical issue. Given a single finite LTL mission and a team of
robots, we propose an automata-based approach to automatically identify possible
decompositions of the LTL specification into sets of independently executable task
specifications. Our approach leads directly to the construction of a team model with
significantly lower complexity than other representations constructed with conven-
tional methods. Thus, it enables efficient search for an optimal decomposition and
allocation of tasks to the robot agents.

1 Introduction

High-level planning based on Linear Temporal Logic (LTL) specifications creates
the opportunity to deploy robots in increasingly sophisticated scenarios while being
able to provide guarantees regarding correctness and optimality, e.g. [L7, 16} [14].
In such scenarios, systems often benefit from utilizing multiple agents in order to
flexibly distribute workload. Instead of executing tasks sequentially, they can be
allocated to different agents and carried out in parallel. Nonetheless, considering

Philipp Schillinger, Mathias Biirger

Corporate Research - Cognitive Systems (CR/AEY2), Robert Bosch GmbH Renningen, 70465
Stuttgart, Germany. e-mail: philipp.schillinger@de.bosch.com, e-mail: mathias.
buergerlde.bosch.com

Philipp Schillinger, Dimos V. Dimarogonas

KTH Centre for Autonomous Systems and ACCESS Linnaeus Center, EES, KTH Royal Institute
of Technology, Stockholm, Sweden. e-mail: schillin@kth. se, e-mail: dimos@kth. se
Third author was supported by the H2020 ERC Starting Grant BUCOPHSYS and the Swedish
Research Council (VR).

philipp.schillinger@de.bosch.com
mathias.buerger@de.bosch.com
mathias.buerger@de.bosch.com
schillin@kth.se
dimos@kth.se

2 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

multiple agents for a set of tasks introduces significant additional planning com-
plexity.

Consider as a motivating example a hospital station. In addition to caring for
patients, nurses are required to refill medical supplies, guide visitors, deliver meals,
or clean equipment. To support them, a multi-robot system can automate required
transportation. Similarly, workflows in an intelligent factory can be improved using
a multi-robot system. Machines for assembly can monitor required components and
request supplies if they run low. In such scenarios, missions are typically given as
one specification, implicitly based on a set of independent finite tasks, e.g., deliver
meals to all rooms or supply a machine with several components. In the following,
we formally define problems of this type, based on an LTL mission specification
and a system model, with the goal to obtain execution strategies for all robots such
that the mission is guaranteed to be fulfilled with minimal costs.

Approaches for multi-agent task planning include Mixed-Integer Linear Program
(MILP) formulations [9}21]], numerical vector-based allocation [1]], or market-based
contracting [23]]. However, these approaches involve forming a team product or re-
quire separate cost calculation for all combinations of allocation options, given that
these options are explicitly known. An automata-based approach is proposed in [10]
and assumes synchronous team motions to plan motion sequences from an LTL
specification. This assumption is relaxed in [19] by a two-phase model reduction
approach, and in [20, 3] by employing trace-closed languages [[18]] to abstract over
asynchronous motions of the agents. However, these approaches only decompose
the LTL specification into independent tasks in the special case of disjoint agent
alphabets. Their focus is rather to coordinate execution between a known team of
agents given explicit allocation options.

If task allocation to the agents is explicitly provided, approaches like [15] and
[8] take communication and motion coordination between the agents into account;
[[L3L [11] choose a Petri-Net based approach for explicit coordination whereas [6]
uses a game theoretic approach for negotiation, able to consider adversarial agents.
In contrast, our approach does not assume known allocation and instead decomposes
the mission such that execution does not require coordination between the agents,
enabling them to operate independently based on their assigned task.

The contributions of this paper are as follows: (i) A formal definition of the de-
composition of finite LTL specifications into tasks is introduced and several relevant
properties of such decompositions are discussed. (ii) It is shown how such decom-
positions can be efficiently identified in an automaton representation of the LTL
specification. (iii) Based on these results, a method is presented for constructing a
team model of tractable complexity with respect to the team size that can be used for
efficient multi-agent planning. The proposed approach and its computational advan-
tages are illustrated on an example system setup motivated by the scenarios men-
tioned above. Specifically, we evaluate state space complexity of the team model
and planning time based on a ROS implementation of our approach.

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 3

2 Preliminaries

2.1 LTL Semantics

An LTL specification ¢ over a set of atomic propositions I identifies a set of tem-
poral sequences ¢ = ¢(1)c(2)... which fulfill this specification, written as ¢ F ¢.
At each discrete time ¢ € T with T C N, a set of propositions o (¢) C IT is true, i.e.,
a sequence is defined as o: T — 21, A sequence is called finite if it is bounded
by a maximum time 7 and then we say it has length 7. Finite LTL is a variant of
LTL that can be interpreted over finite sequences. Classes of finite LTL are formulas
which are insensitive to infiniteness [5], for example co-safe LTL [12] or LT Ly [4].

The semantics of LTL over a finite sequence o(1)...o(T) are defined as follows:
Mo)Eniffrec(t);) o@l)FE-@iff ot)Z@; (3) o(t)E @ A iff
ct)Fprand oc(t)E@y; @ o(t)FoVgiffo(t)F @ oro(t)E @y (5)
oct)Fopiff c(r+1)FE @; (6) 6(t) F @ % @ iff there exists 1, € [¢,T] such
that 6(n) E @y and o(t1) E @) forallsy € [t,r—1]; (7) o(t) E ¢ Z ¢, iff for all
f € [t,T) either 6(t2) E @ or there exists a t; € [t,t, — 1] such that o (¢;) F ¢;.

Furthermore, we derive the operators eventually ¢ = T 72/ ¢ and always (o =
Q % ¢ with Q = | forallt <T, where T denotes true and L denotes false. Note
that, as usual for finite LTL [J5], the scope of always is limited to the range ¢ €
{1,...,T}, not considering an infinite future.

In the case of finite LTL specifications, a finite automaton can be constructed
from the given LTL formula ¢ [2]].

Definition 1 (NFA). A nondeterministic finite automaton (NFA) is given as the tuple
Z = (0,00, a,8,F) consisting of (1) a set of states Q, (2) a set of initial states
Qo C 0, (3) an alphabet & of Boolean formulas over 7 € I, (4) a set of transition
conditions 6: Q x Q — «, (5) a set of accepting (final) states F C Q.

Note that we define the set of transitions as Boolean conditions which need to
be fulfilled for taking a transition. Especially, the absence of a transition is denoted
by the formula 6(q1,¢2) = L, which can never be fulfilled. A finite sequence of
states g € Q is called a run p: {0,1,....,T} — Q with 8(p(r —1),p(z)) # L for
all € {1,...,T}. We say that a sequence o describes p if 6(t) Ed(p(t—1),p(t))
for all 7 € {1,...,T}. In the case that a run p leads from an initial state p(0) € Qo
to an accepting state p(T) € F, this run is called accepting. If .% is constructed
appropriately [22], a finite sequence o fulfills a finite LTL formula ¢ if and only if
o describes an accepting run p in the NFA .# constructed from ¢.

In general, constructing an NFA from an LTL formula has worst-case time and
space complexity exponential in the length of the formula |@| [2]]. The actual com-
plexity might be lower depending on the specific formula. However, this construc-
tion complexity is usually still a limiting factor.

4 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

2.2 Closure Labeling

In order to decide if a sequence o fulfills an LTL specification ¢, Wolper [22]] defines
a closure labeling 7: N — 2¢ (@) corresponding to ¢ and constructed as given below.
The closure of ¢ is the set of its subformulas, given by c/(¢) with ¢ € cl(¢) and
recursively for all operations o = @ € cl(¢) and (@1 A @2), (o1 V @), (@1 %
02),(Q1 Z @) €cl(9) = @1, € cl(9).

The closure labeling enables to formally reason about requirements imposed by
the part of a sequence ¢ from 1 to 7, in the following denoted by o (1, ...,7). Follow-
ing the intuition of [[7], we divide the construction of 7 into two parts, one defining
expectations from the previous step ¢ and one consequently required observations
7°. Then, 7 is given by 7(r) = 7¢(¢) U ().

Definition 2 (Expectations). Expectations 7¢(¢ + 1) on the next time step are con-
structed such that:

o if o € 7(t) then @ € T¢(r + 1)

o if o % @€ 1(t) and @, ¢ T(z), then @; % @2 € 1°(t + 1)

o if o Z @ €t(t)and @ ¢ 1(¢), then @ Z @, € T°(1 +1).

Definition 3 (Observations). Observations 7°(¢) on the current time step are con-
structed such that:

o 1 ¢1°(%)

o if oy A @, € T(¢) then @ € 7°(¢) and @2 € 7°(1)

o if V@, €1(r) then @ € 7°() or 2 € 7°(t)

o if oy % ¢ € ©(t) then either ¢ € 7°(t), or 1 € T°(t) and @y % @2 € T°(t + 1)
o if @) Z @ € T(t) then @ € 7°(¢), and either ¢ € T°(¢) or @1 Z @2 € T¢(t + 1).

Requirements on observations 7°(¢) at time ¢ initially come from the expectations
7¢(¢) on this time step. Thus, starting from ¢ = 1, the closure labeling 7 can be
constructed consecutively. Finally, the following rules regarding propositions need
to hold true for all w € IT with respect to 0. If £ € 7(¢) then 7 € 6(¢) and if -7 € 7(¢)
then 7 ¢ o(¢). Otherwise, we say that ¢ violates the requirements imposed by the
LTL specification ¢.

By this construction of 7, 6(¢,...,T) fulfills all ¢ € t(¢) if and only if 7¢(T +
1)Ncl(@) = 0. In particular, we can check if o F ¢ by constructing 7 from the
expectation 7¢(1) = {¢} and then check if 7¢(7 + 1) = 0. Note that [22] additionally
requires that there exists a ¢’ > ¢ such that ¢, € 7(¢') for the until operation @; %
¢ € 1(t). However, this requirement is already covered in our extended acceptance
condition 7¢(T + 1) = 0 and does not need to be explicitly required here.

[lustratively speaking, observations 7° formally describe what needs to be ob-
served at a given time, while expectations 7¢ specify expected future observations.
Intuitively, if not all observations are fulfilled at a certain time, the corresponding
LTL formula is violated. If this is not the case and at some point, there are no implied
expectations anymore, the LTL formula is satisfied.

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 5

2.3 System Model

Every agent is represented by a transition system to model its available actions and
define which propositions are true consequently. It usually combines a topological
map of the environment with discrete actions, which can be executed at certain
locations, and is formally defined as follows.

Definition 4 (Agent Model). An agent model is given as the transition system &7 =
(87,580,747, 11,A,C,y) consisting of (1) a set of states S/, (2) an initial state
50,7 € Sez, (3) a set of actions A,y C Sy X Sy, (4) a set of propositions IT, (5) a
labeling function A : S, — 21, (6) action costs Cyy: A,y — R.

Forming a product between the agent model .27 and the NFA .# constructed from
the LTL specification ¢ creates an automaton that combines properties of &7 and .%.

Definition 5 (Product Automaton). A product automaton is a tuple & = ¥ ®
o = (S2,5,2,A2,Cp) consisting of (1) a set of states S» = Q X S, (2) a
set of initial states Sp » = {(¢,50.) € S»: q € Qo}, (3) a set of actions Ay =
{((gs,5s),(gt,5t)) € S X S (85,8t) € Ay N A(55) E 6(qs,qt)}, (4) action costs
Cp:Ap - RwithCyplap)=Cy(ay).

Consequently, only actions that do not violate ¢ are contained in the model. A
run ending in a state s, = (¢q,s.,) with ¢ € F being an accepting state in % gives an
action sequence which fulfills ¢.

Definition 6 (Action Sequence). An action sequence f3 is given by 8 = soaysi...ansy
with s; € S5, 50 € So,», and a; = (sj_1,5;) €A .

3 LTL Decomposition

Considering a multi-agent system with N agents, we can represent each robotic
agent r € {1,...,N} according to the above definitions by an individual product
automaton 2" created from its agent model &/ (") and the NFA .Z , obtained from
the complete LTL mission specification denoted by .Z .

Problem 1. Given a team of agents r € {1,...,N}, each modeled as &/ ("), and
the finite LTL mission specification .#, provide independent action sequences (")
for all agents such that ./ is fulfilled in an optimal way for the specified team cost.

In order to utilize the team of agents, it is desirable to decompose the mission .#
such that parts of it can be allocated to different agents, i.e., automatically identify
independently executable task specifications if there exist some. This decomposi-
tion will allow us to distribute .# and solve Problem 1 as if the mission has been
specified by one LTL formula for each agent. Based on the above LTL semantics,
we define what we accept as a semantically valid decomposition of a finite LTL
mission . following the motivation of specifying .# as a set of independent tasks.

6 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

Definition 7 (Finite Decomposition). Let .7; with i € {1,...,n} be a set of finite
LTL task specifications and o; denote any sequence such that o; = .7;. These tasks
are called a decomposition of the finite LTL mission specification ./ if and only if:

0j,...0j,...0j, E M)]
for all permutations of j; € {1,...,n} and all respective sequences O;.

Note that this decomposition condition includes that each .7 is a safe, i.e.,
non-violating, prefix of .# . Furthermore, by requiring all permutations of sequences
to be feasible, we make sure that no o; implies expectations to be respected by other
sequences of the decomposition, and that the set of tasks completely covers .Z.
In the following, we discuss how to decompose the mission .# into independently
executable tasks .7} such that ./ is fulfilled if the set of tasks is fulfilled.

Example. Consider the LTL mission specification .# = ca Aob AO(b — ¢). In
this simple case, as will be more clear at the end of this section, a possible decompo-
sition of .Z is given by 7 = oa AO(b — ¢) and 75 = ob AJ(b — ¢). For example,
the sequence 6 = 0102 with o1 = {c}{a}, o» = {a}{b,c} would fulfill .#, and
also the permutation 6,07 = {a}{b,c}{c}{a} would be valid. However, note that
the modification of the above solution such that .7 = ¢a would not constitute a valid
decomposition. In this case, for example, o] = {b}{a} F 7] and still, 63 F .7, but
ol M.

For more complex LTL formulas, the explicit LTL formulation of a decomposi-
tion can be significantly different from simply splitting the mission specification or
replicating some parts. However, a boolean conjunction of all tasks .7; always gives
the complete specification ./ .

Notation Remark. The following notation conventions are used throughout the
rest of this paper. .# is the finite LTL mission specification, ¢ a sequence such
that o F .# and 7 the closure labeling of o. A different o will have a different
t. Furthermore, .7; is a finite LTL task specification, i.e., a subformula of .#Z, o; a
sequence such that o; F .7 and 7; the closure labeling of o;. Note that 7; is defined
over the closure cl(.9;) C cl(.#) while 7 is defined over cl(.#). Accordingly for T
and 7;, T and T; denote the ending times, 7¢ and 7{ the expectations, and so on.

In order to efficiently determine a valid LTL decomposition as discussed above,
note the following observation.

Theorem 1 (Transitivity). If .7;, % is a decomposition of .# and T3, Iy is a
decomposition of S, then 9, Fa, T4 is a decomposition of M.

Proof. We need to show that all six permutations of the sequences o, 03, 04 ful-
fill .# . Four of them are rather trivial by substitution of o, with 0304 or 6403.
However, for proving 6306104 F .4 and 640,03 F ., the closure labeling is used.
Specifically, we need to show that we can construct a closure labeling 7 of .# from
the closure labelings 7; of the tasks .7, i € {1,3,4}, such that t¢(1) = {.#} and
7¢(T + 1) = 0 for completion time 7 = T} + T3 + Tx.

For this purpose, we construct a candidate T with 7¢(1) = {.#} from the given
set of 7;, and then show that this always leads to 7°(T + 1) = 0. Since .77, % are

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 7

a decomposition of .#, following decomposition condition (1), 7°(1) = {.#} is
equivalent to 7¢(1) = {71, %}, which itself is equivalent to t¢(1) = {71, 73, 74}
for 73,.7, being a decomposition of 7. Consequently, we have 7(1) = 7¢(1) U
7°(1) with 7°(1) following Definition 3|

We start by considering the permutation 636 04. For the first part, ¢ € [2, T3],
we construct the candidate 7 from 73 such that 7(¢) = 73(¢) U (7(1) \ ¢/(.Z3)). From
using 73 we get that this part fulfills .73, and extend 73 by all requirements which
are not covered by 73, i.e., which are not in c/(.%3). 7 is still valid because the tasks
are decomposition pairs as stated in the Theorem. Specifically, 0, | = 6201 F 4
implies 71 € 12,1 (¢) with ¢ € [1, T2 + 1] for the closure labeling 7, ; of the permuta-
tion 0, 07. This means that the requirement .7] cannot be violated at any time during
execution of 0, = 0304, and thus, also during o3.

We can repeat this construction for the remaining two parts, continuing with
(I+1) = {9, 7,}. Finally, this leads to 7°(T3 + T1 + Ty + 1) = 0, meaning that
A is fulfilled. Thus, we see that the constructed candidate is a valid closure labeling
respecting all requirements and consequently, 630104 F .# . The proof for the last
permutation 640103 F . follows accordingly. O

Theorem [T] has especially two consequences. First, only n specific permutations
instead of all n! permutations need to be checked in order to decide if a set of n
tasks .7 is a valid decomposition of .# . This is obtained by forming pairs, each of
one task .7; and combination of the other n — 1 tasks, for example by a conjunc-
tion. Then, it is sufficient to check the decomposition condition (I)) only for these
n permutations in order to decide if these tasks form a decomposition of .#. Illus-
tratively, the specific n permutations individually separate tasks .7; from the rest to
decide whether .7 is independent.

Second, it is not required to find a complete set of tasks decomposing .# at
once. Instead, it is possible to step-wise identify individual parts to be isolated into
a separate task .7; of the final decomposition and continue with the rest of .#. This
progress can be repeated until no further task is found to be isolated and especially
enables automata-based approaches for finding possible decompositions.

3.1 Decomposition Set

In general, different decompositions of .# can exist and a task .7; does not need to
be minimal in the sense that it cannot be further decomposed. Thus, we propose an
efficient automata-based approach to identify all possible choices of decomposition
as shown in the remainder of this section. First, note the following relation between
states g € Q of the NFA .% constructed from the LTL mission specification .# and
the closure cl(.#).

Lemma 1 (Subformula Labeling). Each state g € Q of the NFA % constructed
Sfrom A can be labeled with subformulas @, € 2¢1A) \which are required to be true
at this particular state.

8 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

We refer the interested reader to [22], Section 4.4, for a detailed proof, covering
the more general case of infinite sequences. In summary, .% is explicitly constructed
from ./ such that its state space Q is given by 2¢/(-#) as discussed in Section
and there is a transition if and only if the successor state fulfills the requirements of
the closure labeling of its predecessor. In particular, note that .# € @, for all g € Qo
and ¢y =0 forallg € F. Lemma shows the connection between the NFA .% and
the closure labeling 7, since 7 is as well defined over the subformulas 2¢cl(4) and
construction of .# respects the requirements imposed by 7.

Furthermore, we introduce the following notion of essential sequences to gener-
alize over sequences by associating them with runs p in the NFA.

Definition 8 (Essential Sequence). A sequence o is called essential for an NFA %
if and only if it describes a run p in .% and o(t) \ {7} ¥ §(p(r —1),p(¢)) for all ¢
and propositions 7 € o(¢), i.e., o only contains required propositions.

This notation is motivated by the closure labeling 7 of ¢. By restricting o to
satisfy only the conditions explicitly required by 7, we get the following property.

Lemma 2 (Closure Coverage). Let T denote the closure labeling of a sequence G.
If 0 is an essential sequence, any other v’ satisfied by G is at most as restrictive as
T, in the sense that T'(t) N IT C ©(¢) N 11 for every t and the set of propositions IT.

Proof. Assume there would be a 7 € IT such that & € 7/(¢) and 7 ¢ 7(¢). 7" would
then require that 7 € o(r). However, this cannot be the case since o is essential. [J

This property ensures that if an essential sequence describes a run in one part
of the NFA corresponding to T as well as one corresponding to 7/, any other non-
essential sequence conforming with 7 will not violate 7’ neither. This can be used to
generalize over sequences without explicitly constructing the closure labeling, but
instead finding an essential sequence.

Finally, we can associate a pair of tasks 7;%, 7,! with a state g € Q of .Z. Every
sequence o) describing a run p; from an initial state gg € Qp to ¢ satisfies .7, q,
specified by the set of fulfilled subformulas @, \ P. %q is given accordingly by
Dy \ Py, = Py with gr € F and represents the rest of ./ not fulfilled by .7;%.

It remains to decide if the pair .7;9, %q resulting from a split forms a valid de-
composition of .#, and we define the decomposition set of F as follows.

Definition 9 (Decomposition Set). The decomposition set D C Q of the NFA .
constructed from . contains all states ¢ for which the pair of tasks .7 9 %q defines
a valid decomposition of .# according to Definition

This decomposition set can then be constructed as follows, giving all possible
decomposition choices of the finite LTL mission specification .Z .

Theorem 2 (Decomposability). Let g € Q be a state in the NFA F constructed
from M, and 6 = G0, be an essential sequence such that 6| describes a run from
an initial state to q and o, describes a run from q to an accepting state of F. Then,
g € D if and only if 6 = 0,0 describes an accepting run in F.

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 9

Proof. The "only if"-part follows directly from the decomposition condition in Def-
inition [/} For the "if"-part, it remains to show that ¢ generalizes over all possible
ol F ﬂlq and 0} F 7,!, i.e., all pairs of sequences describing a run through g. Note
that, given that ¢ = 070> is an essential sequence, also 07 and 0, are essential.

First, we show that the essential sequence oy, generalizes over o] F 7%, This
means, if 6 = 0,0} describes an accepting run, then also any other 6,0 describes
an accepting run. According to Lemma|2] the closure labeling 7(¢), ¢ € [Tr 4+ 1,T> +
Ti] of G is at most as restrictive as 7(¢), ¢ € [1,71] of o. This means that no sequence
can violate 7 if it conforms with 7.

Next, following Lemma we can retrieve the closure labeling 7’ of a sequence
o from arun p’ described by o, given by 7'(r) = @, for g = p’(t). By construction
of the NFA and qu, all sequences leading to the respective last state p’(T') fulfill
all requirements imposed by p’(0). Although these sequences may have a different
closure labeling 7', this always satisfies the same requirements as 7, given by o] F
T = @y, \ Py with go = p’(0) = p(0) and g = p/(T1) = p(T;) where p is described
by 0. Consequently, o] cannot violate T as shown by Lemma

Finally for the permutation 6,67, this gives that any | F .7, applied to the same
state as o7 leads to an accepting state and thus, 0,0/ describes an accepting run
if 6 = 0,07 does, i.e., the essential sequence o7 indeed generalizes over possible
different realizations of ﬂlq. The same then holds true accordingly for o, and thus,
we get 050 = . if and only if 6,01 F .#, given that 6 and o, are essential. [

Note that Theorem [2] only requires to check one essential sequence, which is
much more efficient than the requirement to check every single possible sequence.
Furthermore, an essential sequence o to a specific state g can be easily constructed
from an NFA .%, for example by representing the set of transition conditions ¢ of .%#
in disjunctive normal form (DNF). Then, the essential sequence to ¢ is given by the
propositions which are true in one of the conjunctive clauses along the path to g. By
step-wise constructing these sequences o for all states first, all essential sequences
can be found in linear time with respect to |Q|, which is non-critical compared to
constructing .# as discussed earlier in Section [2.1]

4 Team Model Construction

Based on the results of the previous section, a team model can be constructed as
follows in order to solve Problem 1. First, the mission specification ./ is translated
to an equivalent NFA .%#. Next, we form a local product automaton P20 = Z
/") for each agent r € {1,...,N}. Unlike previous task allocation approaches, we
do not explicitly calculate the costs for each subset of tasks resulting from a possible
decomposition choice in each of the local P0), Instead, we combine these local
product automata into a team model of tractable complexity in which the optimal
task allocation can be calculated much more efficiently.

The basis for this team model is given by a union of all "), resulting in N un-
connected partitions. Afterwards, additional switch transitions connect these parti-

10 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

tions. They represent an option in the planning process to consider a different agent
for allocation of the part of the mission which is not yet assigned. Such a switch
transition is only present if both parts of the mission form a valid decomposition.
Formally, the team automaton is defined as follows.

Definition 10 (Team Automaton). The team automaton ¢ is a union of N local
product automata 2" with r € {1,...,N} given by 4 = (S¢,So &,A«,Cq) consist-
ing of (1) a set of states Sy = {(r,q,s): r € {1,...,N},(q,s) € ng)}, (2) a set of
initial states So ¢ = {(r,¢,s) € Sy : r =1} equivalent to the initial states of one arbi-

trary agent, (3) a set of actions Ay = J ,Ag,) U € where the individual agent actions
Agj are extended by the set of switch transitions { as defined below, (4) action costs
Cy: Ay — R with Cy(ay) =) (a"})) and Cy(g) = 0 forall g € ¢.

Core part of this composition is constructing the set of switch transitions §
connecting states in the partitions of two different agents and preserving mission
progress, restricted to states corresponding to a valid mission decomposition.

Definition 11 (Switch Transition). The set { C Sy x S¢ denotes switch transitions
in the team automaton ¢ and ¢ € § for ¢ = ((i,q¢s,ss), (j,qt,st)) if and only if it
(i) connects different agents: i # j, (ii) preserves the NFA progress: g5 = ¢, (iii) is
directed: r; < r; for an arbitrary ordering of agents r; <y < ... < ry, (iv) points to

an initial agent state: s = séjjy, (v) implies a valid decomposition of .%: g5 € D.

While condition (i) is trivial, (ii) characterizes the main purpose of a switch tran-
sition, which is transferring the mission progress to another agent. Condition (iv) in
combination with (iii) requires to account for the initial state of each agent. Specif-
ically, (iii) ensures that each agent is considered exactly once for participating in
solving the mission. Finally, (v) guarantees that any possible decomposition result-
ing from switch transitions is valid.

The model ¢ has a much lower state space complexity than the complete product
Gorod = PV @ ... PW) of all local automata, which would be required if we did
not decompose the LTL mission into independent tasks. Specifically, the number of
states of ¢ is linear in the number of agents N and given by O(N - |Q| - [Se|). |Ser|
denotes the number of states of the agent model and |Q| the number of states of the
NFA .Z. In contrast, the state space complexity of Gproq would be exponential in
the number of agents with O(|Q|-[S./ V).

A team model ¢ constructed as defined above enables to employ conventional
graph-search algorithms for obtaining optimal action sequences ﬁ(r) for all agents
such that the LTL mission specification .# is fulfilled. Consequently, this solves
Problem 1 and is summarized by the following properties.

Correctness. ") = .Z ® of preserves the acceptance criterion of .%. A union
of the state space when constructing ¢ out of all 2 does not add any new tran-
sitions except § and because condition (ii) requires all ¢ € { to preserve the NFA
component, any accepting run p in ¢ satisfies ..

Independence. Given by switch condition (v) and the construction of the de-
composition set D as discussed above, parts of p referring to different agents r solve

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 11

independent tasks .7, and thus, do not affect each other. Especially, each .7} is a safe
prefix of all other tasks, i.e., all constraints of .# are covered by 7.

Completeness. Any set of individual agent action sequences (") resulting from
a run in the complete product automaton épyoq is also present in the reduced team
model ¢, since the parts referring to different agents are independent. Especially,
also the optimal solution in époq is as well contained in ¢.

5 Evaluation

The presented approach has been implemented in ROS and evaluated both in simu-
lation and on a real system. In the following, we discuss our performance evaluation
results for a set of simulated scenarios and compare them to the conventional prod-
uct model approach. For planning the optimal action sequence based on the con-
structed team model, we used a conventional Bellman-Ford graph-search and min-
imize the largest individual agent costs, i.e., aim to distribute the mission equally.
Note that, although action costs are usually positive, we cannot use a greedy graph-
search such as Dijkstra or A* because we aim to distribute the mission equally and
not to minimize the sum of all action costs.

To evaluate applicability in scenarios as motivated in Section [T} we assume a
hospital environment, depicted left in Figure [I] and form the agent model <7 as
the product between this topological map (left) and a transition model of robot ac-
tions (right). The set of states S, is given as the product between the map locations
and the robot states. Propositions II according to the state labels describe specific
properties of locations and robot states, e.g., p for pick-up locations, s for station
rooms, ¢ for carrying an object. The actions A, consist of navigation actions ac-
cording to the undirected edges in the map and further robot actions according to
the robot model. These robot actions are limited to certain locations such that an
action is only feasible if the respective state contains the propositions listed by the
transition label, e.g., the transition from "normal" to "carrying" is only possible at
pick-up locations p. Finally, action costs C, are chosen to approximately represent
the execution times of actions.

d 5,51 5,5)| (5,83 7 d "normal”
{s} {d}
p tay {r} ()
p 5,54 S, S5 p d reoiled “equipped”
! "carrying"

Fig. 1: Map (left) and robot capabilities (right) used in the scenarios. State labels denote proposi-
tions which are true at this state, transition labels denote requirements for performing an action.

12 Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

5.1 Scenarios

Before we present illustrative scenarios in the presented environment, we dis-
cuss two mission specifications representing corner cases with respect to the de-
composition of the mission, specifically for the size of the decomposition set D.
First, requiring the team to visit the five station rooms in any order is essen-
tially a multi-agent traveling salesman problem (TSP) and given by the mission
Mrsp = 051 Nosy Nos3 Aosg A oss. Consequently, all 32 states of the NFA .% are in
the decomposition set: D = Q. In this case, construction of .# took approximately
56ms and determination of D around 2.2ms. Note that, although the decomposition
set contains the full state space of .#, the proposed team automaton ¥ still has a
significantly lower state space complexity than the complete product 6pyoq. In fact,
the state space complexity is independent of the size of the decomposition set and
|D| only determines the density of switch transitions.

In contrast, requiring visits to occur in a specific order is given by the mission
Mseq = (53 No(s4 No(s2 ANo(ss Aosy)))). Different robots cannot execute parts
of .#s., independently since the correct order could not be guaranteed. Thus, the
decomposition set only contains trivially the initial and accepting states: D = Qo U
F, totaling to 2 of 6 states and reducing the mission to an allocation problem of
choosing the single best robot to execute the mission alone. Construction of .#
took approximately 50ms and determination of D around 0.1ms. For both cases,
specialized solutions exist to solve problems of this type. However, most missions
in the motivated scenarios usually combine characteristics of both cases.

In the following, we consider three scenarios with different characteristics in the
presented hospital environment to represent the most common use cases. Teams
consist of three robots, although also the performance for varying team sizes is
investigated at the end of this section as well.

Scenario 1 (Station Tour)
M1 =051 Nosy Aos3 ANosa ANoss AO(s — e) AO(e — —a)

The robots are required to visit all five station rooms. In addition, a robot needs to
carry medical equipment (proposition e) in order to be at any station room s and
should avoid the public area a while being equipped. As presented before, robots
know from the agent model o/ that equipment can only be picked up at pick-up
locations p. This mission is similar to a constrained TSP, but requires robots to
perform additional actions before visiting a room, regardless of which room they
would choose to visit first.

Scenario 2 (Room Cleaning)
My =0(s3 No8) No(sa Nod) Ao(ss Aod) A((—sAos) — n)
with 6§ :=w % (d No(d % —w)). The robots need to pick up waste w at three of the
rooms. In this scenario, robots are only required to be in "normal" state » in order to
enter a state room s. But in addition, they are required to visit a dispose location d
as consequence of visiting a room, given by 8. Again, this combines goal allocation
with sequential action planning as consequence of servicing one of the goals.

Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning 13

ty |Sq] oo IS G|

M1 10965 6912 1.71 % 10* 1.19x 10
M> 10946 9504 | 1.52x 104 1.64 x 107
M3 (2908 13,824 | >4.32 x 104 2.39 x 107

Fig. 2: Analysis of the evaluation scenarios for teams of three agents, time given in seconds.

Scenario 3 (Medication Delivery)

My =o(s1 An) No(sa An) Ao(s3 An) Ao(sa An) Ao(ss An) AD((—sAos) = ¢)
The robots need to deliver medication to all station rooms. They can only enter a
room s when carrying medication ¢ and need to deliver it by switching back to their
"normal" state n. Consequently, robots need to repeatedly visit pick-up locations.

Figure [2] summarizes our performance results for the three scenarios, each ran-
domly initialized. ¢ is the average planning time in seconds, including model con-
struction, calculation of the decomposition set and planning, and |S| the total num-
ber of states in the model. We compare the team model ¢ of our presented approach
with the conventional complete product model %pyoq. Already for the small team of
three robots, our approach is much more efficient.

Furthermore, Figure [3|provides an analysis of how both approaches scale with an
increasing number of agents, evaluated for scenario .#;. The significantly increas-
ing planning times on the product model 6p;oq reflect the exponential growth of its
state space. In contrast, our team model ¢ scales well with increasing team size and
produces reasonable results even for large teams.

6 Conclusion

Motivated by the need for efficient methods for multi-robot team planning, we pre-
sented an approach for decomposition of finite LTL mission specifications into in-
dependent tasks, resulting in a team model of tractable complexity for increasing
team sizes. On this model, graph-search algorithms can efficiently distribute action
sequences for the available robots, such that the LTL mission is completed by the
team best suitable, which can dynamically change between missions. We illustrated
the computational advantages of our approach over the conventional product model
in example scenarios, resulting in significantly lower planning times.

Is| 1013 [E agents |ty S| 0 S G|
1 0.324 2.3x10° 0342 23x10°
ol Corod 2 10525 4.6x%x10° 9475 1.6x10°
10 310965 69x10°[1.7x10* 1.2x107
6 [2324 1.4x10* n/a 4.5%10'2
103 i 10 [3.896 2.3 x 107 n/a 1.2x 107
1 2 3 4 5 6 ygents| 100 [9246 2.3x10° na 1.7x10'%7

Fig. 3: Complexity analysis with respect to the team size, performed for scenario .#]. Planning
time in seconds, missing entries exceeded the maximum time of 8 hours.

14

Philipp Schillinger, Mathias Biirger and Dimos V. Dimarogonas

References

(1]

(2]
(3]

(4]
[5]
[6]

[7]
(8]
[9]
[10]
(11]
[12]

[13]

(14]
[15]
[16]
[17]
(18]
[19]

(20]

(21]

[22]

(23]

M. Agarwal, N. Kumar, and L. Vig. Non-additive multi-objective robot coalition formation.
Expert Systems with Applications, 41(8):3736-3747, 2014.

C. Baier and J.-P. Katoen. |Principles of model checking. MIT Press, 2008.

Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. [Formal approach to the deployment of
distributed robotic teams. IEEE Trans. on Robotics, 28(1):158-171, 2012.

G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on finite traces.
In Int. Joint Conf. on Art. Intell. (IJCAI), pages 854-860. Assoc. for Comp. Machinery, 2013.
G. De Giacomo, R. De Masellis, and M. Montali. Reasoning on LTL on Finite Traces:
Insensitivity to Infiniteness.| In AAAZ pages 1027-1033. Citeseer, 2014.

J. Fu, H. Tanner, and J. Heinz. Concurrent multi-agent systems with temporal logic ob-
jectives: Game theoretic analysis and planning through negotiation. /ET Control Theory &
Applications, 9(3):465—-474, 2015.

R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Int. Symp. on Prot. Spec., Testing and Verification. IFIP, 1995.

M. Guo and D. V. Dimarogonas. Bottom-up motion and task coordination for loosely-coupled
multi-agent systems with dependent local tasks. In CASE, pages 348-355. IEEE, 2015.

S. Karaman and E. Frazzoli. |Vehicle routing problem with metric temporal logic specifica-
tions. In Conf. on Decision and Control (CDC), pages 3953-3958. IEEE, 2008.

M. Kloetzer and C. Belta. Automatic deployment of distributed teams of robots from tempo-
ral logic motion specifications. /[EEE Transactions on Robotics, 26(1):48-61, 2010.

M. Kloetzer and C. Mahulea. /Accomplish multi-robot tasks via Petri net models, In Int.
Conf. on Automation Science and Engineering (CASE), pages 304-309. IEEE, 2015.

0. Kupferman and M. Vardi. Model checking of safety propertiesl Formal Methods in System
Design, 19(3):291-314, 2001.

B. Lacerda and P. Lima. LTL-based decentralized supervisory control of multi-robot tasks
modelled as Petri nets, In Int. Conf. on Intell. Robots and Systems (IROS), pages 3081-3086.
IEEE, 2011.

R. Luna, M. Lahijanian, M. Moll, and L. Kavraki. Asymptotically optimal stochastic motion
planning with temporal goals. In Alg. Found. of Robotics XI, pages 335-352. Springer, 2015.
V. Raman and H. Kress-Gazit. Synthesis for multi-robot controllers with interleaved motion.
In Int. Conf. on Robotics and Automation (ICRA), pages 4316-4321. IEEE, 2014.

V. Raman, C. Finucane, and H. Kress-Gazit. Temporal logic robot mission planning for slow
and fast actions. In Int. Robots and Systems (IROS), pages 251-256. IEEE, 2012.

S. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning for surveillance with
temporal logic constraints| Int. Journal of Robotics Research, 2011.

A. Stefanescu. Automatic synthesis of distributed transition systems. PhD thesis, Univ.
Stuttgart, 2006.

J. Tumova and D. V. Dimarogonas. Decomposition of Multi-Agent Planning under Dis-
tributed Motion and Task LTL Specifications, In CDC, pages 1775-1780. IEEE, 2015.

A. Ulusoy, S. Smith, X. C. Ding, and C. Belta. Robust multi-robot optimal path planning
with temporal logic constraints. In Int. Conf. on Robotics and Automation (ICRA), pages
4693-4698. IEEE, 2012.

E. Wolff, U. Topcu, and R. Murray. Optimization-based trajectory generation with linear
temporal logic specifications| In Int. Conf. on Robotics and Automation (ICRA), pages 5319—
5325. IEEE, 2014.

P. Wolper. Constructing Automata from Temporal Logic Formulas: A Tutorial. In Lect. on
Form. Methods and Perf. Analysis, pages 261-277. Springer, 2001.

R. Zlot and A. Stentz. Complex task allocation for multiple robots, In Int. Conf. on Robotics
and Automation (ICRA), pages 1515-1522. IEEE, 2005.

http://www.sciencedirect.com/science/article/pii/S0957417413009640
https://mitpress.mit.edu/books/principles-model-checking
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6016243
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6016243
http://hdl.handle.net/1911/78495
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.445&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.445&rep=rep1&type=pdf
http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2014.0611
http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2014.0611
http://rd.springer.com/chapter/10.1007/978-0-387-34892-6_1
http://rd.springer.com/chapter/10.1007/978-0-387-34892-6_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294103
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294103
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4739366
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4739366
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5345787
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5345787
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294096
http://rd.springer.com/article/10.1023/A:1011254632723
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6094824
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6094824
http://rd.springer.com/chapter/10.1007/978-3-319-16595-0_20
http://rd.springer.com/chapter/10.1007/978-3-319-16595-0_20
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907487
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385935
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385935
http://ijr.sagepub.com/content/early/2011/10/08/0278364911417911.abstract
http://ijr.sagepub.com/content/early/2011/10/08/0278364911417911.abstract
http://dx.doi.org/10.18419/opus-2573
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7403396
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7403396
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224792
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224792
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907641
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907641
http://rd.springer.com/chapter/10.1007/3-540-44667-2_7
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570329

	Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning
	Philipp Schillinger, Mathias Bürger and Dimos V. Dimarogonas
	Introduction
	Preliminaries
	LTL Semantics
	Closure Labeling
	System Model

	LTL Decomposition
	Decomposition Set

	Team Model Construction
	Evaluation
	Scenarios

	Conclusion
	References

