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Cooperative Manipulation via Internal Force
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Abstract—This paper considers the integration of rigid co-
operative manipulation with rigidity theory. Motivated by rigid
models of cooperative manipulation systems, i.e., where the
grasping contacts are rigid, we introduce first the notion of
bearing and distance rigidity for graph frameworks in SE(3).
Next, we associate the nodes of these frameworks to the robotic
agents of rigid cooperative manipulation schemes and we express
the object-agent internal forces by using the graph rigidity
matrix, which encodes the infinitesimal rigid body motions of
the system. Moreover, we show that the associated cooperative
manipulation grasp matrix is related to the rigidity matrix via a
range-nullspace relation, based on which we provide novel results
on the relation between the arising interaction and internal forces
and consequently on the energy-optimal force distribution on
a cooperative manipulation system. Finally, simulation results
enhance the validity of the theoretical findings.

Index Terms—Cooperative manipulation, infinitesimal rigidity,
distance rigidity, bearing rigidity.

I. INTRODUCTION

MULTI-robot systems have received a considerable
amount of attention during the last decades, due to

the advantages they offer with respect to single-robot setups.
Example problems include consensus/rendezvous, connectivity
maintenance, formation control, and robotic manipulation. In
the latter case, multi-robot frameworks can yield significant
advantages due to the potentially heavy payloads or challeng-
ing maneuvers. This work focuses on bridging the fields of
cooperative robotic manipulation and robot formation control
by associating the inter-agent interaction forces of the first to
inter-agent geometric relations of the latter.

The goal of robot formation control is to control each
robot using local information from neighboring agents so
that the entire team forms a desired spatial geometric pattern
[1]. A special instance of formation control with numerous
applications is rigid formations. Two cases of rigid formation
control have been widely studied in the literature, namely
distance rigidity and bearing rigidity. Rigidity theory, a branch
of discrete mathematics, explores under what conditions can
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the geometric pattern of a network be determined given that
the length (distance) or bearing of each edge in a network of
nodes is fixed. This theory has been applied in distance and
bearing formation control and localization problems [2]–[6].

In this paper, we introduce the notion of distance and
bearing rigidity, which studies under what conditions can
the geometric pattern of a multi-agent system be uniquely
determined if both the distance and the bearing of each edge is
fixed. Moreover, we combine the latter with rigid cooperative
manipulation, i.e., configurations where a number of robots
carry an object via rigid contact points.

Cooperative manipulation is a special form of constrained
dynamical systems [7]–[12]. The majority of related works
assume that the robotic agents are attached to the object via
rigid grasps, and hence the overall system can be considered
as a closed-chain robotic agent. In terms of control design,
most works consider decentralized schemes, where there is no
communication between the agents, and use impedance and/or
force control [13]–[16], possibly with contact force/torque
measurements (e.g., [17], [18]). In addition, numerous works
consider unknown dynamics/kinematics of the agents and the
object and/or external disturbances [19]–[22].

An important property in rigid cooperative manipulation
systems that has been studied thoroughly in the related lit-
erature is the regulation of internal forces. Internal forces are
forces exerted by the agents at the grasping points that do
not contribute to the motion of the object. While a certain
amount of such forces is required in many cases (e.g., to avoid
contact loss in multi-fingered manipulation), they need to be
minimized in order to prevent object damage and unnecessary
effort of the agents. Most works in rigid cooperative manipula-
tion assume a certain decomposition of the interaction forces in
motion-inducing and internal ones, without explicitly showing
that the actual internal forces will be indeed regulated to the
desired ones (e.g., [17], [18]); [9], [12], [23]–[25] analyze
specific load decompositions based on whether they provide
internal force-free expressions, whereas [26] is concerned
with the cooperative manipulation interaction dynamics. The
decompositions in the aforementioned works, however, are
based on the inter-agent distances and do not take into account
the actual dynamics of the agents. The latter, as we show in
this paper, are tightly connected to the internal forces as well
as their relation to the total force exerted by the agents.

More specifically, the contribution of this paper is twofold.
Firstly, we integrate rigid cooperative manipulation with rigid-
ity theory. Motivated by rigid cooperative manipulation sys-
tems, where the inter-agent distances and bearings are fixed,
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we introduce the notion of distance and bearing rigidity in
the special Euclidean group SE(3). Based on recent results,
we show next that the internal forces in a rigid cooperative
manipulation system, consisting of more than 2 robotic agents,
depend on the distance and bearing rigidity matrix, a matrix
that encodes the allowed coordinated motions of the multi-
agent-object system. Moreover, we prove that the cooperative
manipulation grasp matrix, which relates the object and agent
velocities, is connected via a range-nullspace relation to the
rigidity matrix. Secondly, we rely on the aforementioned
findings to provide new results on the internal force-based
rigid cooperative manipulation. We derive novel results on the
relation between the arising interaction and internal forces in
a cooperative manipulation system. This leads to novel condi-
tions on the internal force-free object-agents force distribution
and consequently to optimal, in terms of energy resources, co-
operative manipulation. Bearing rigidity has been used before
in [27] to analyze the properties of virtual closed-loop mecha-
nisms and parallel robots; similarly, our analysis provides new
physical insights for the fields of cooperative manipulation and
rigidity theory. This paper extends our preliminary conference
version [28], which tackles optimal cooperative manipulation
by regulating the internal forces. That work, however, does
not associate cooperative manipulation with rigidity theory
or provide explicit results on the optimal object-agents force
distribution.

The rest of the paper is organized as follows. Section
II provides notation and necessary background. Section III
provides the cooperative manipulation model and Section IV
discusses distance and bearing rigidity. The main results of the
paper are given in Section V, and Section VI discusses features
of our analysis. Finally, Section VII presents simulation results
and Section VIII concludes the paper.

II. PRELIMINARIES

The set of positive integers is denoted by N and the real
n-coordinate space, with n ∈ N, by Rn. The n × n identity
matrix is denoted by In, the n-dimensional zero vector by
0n and the n × m matrix with zero entries by 0n×m. We
write 0 instead of 0n when n is clear from the context.
The vectors of the canonical basis of Rd are indicated as
ei, i ∈ {1 . . . d}, and they have a one in the (imod d)-th
entry and zeros elsewhere. Given a matrix A ∈ Rn×m, we
use A† for its Moore-Penrose inverse, and null(A), range(A)
for its nullspace and range space, respectively. For a discrete
set N , |N | denotes its cardinality. Given a, b ∈ R3, S(a) is the
skew-symmetric matrix defined according to S(a)b = a×b. In
addition, Sn denotes the (n+1)-dimensional sphere and SO(3)
SE(3) the rotation and special Euclidean group, respectively;
Pr(x) := In− xx>

‖x‖2 projects vector x ∈ Rn onto the orthogonal
complement of x, i.e., the subspace {y ∈ Rn : y>x = 0}.
A graph G is a pair (N , E), where N is a finite set of
N = |N | ∈ N nodes, and E ⊆ N × N is a finite set of |E|
edges. The complete graph on N nodes is denoted by KN . All
vectors and vector differentiations are expressed with respect
to a known inertial reference frame, unless otherwise stated.

We also make use of some properties from linear algebra.
1) For any matrix H , it holds that H† = H>(HH>)† [29,

Theorem 3.8]. 2) For a matrix A ∈ Rn×m, and B := KA,
where K ∈ Rn×n is an invertible matrix, it holds that A†A =
B†B. 3) Let A,B ∈ Rn×m such that range(A>) = null(B).
Then it holds that A†A+B†B = Im. 4) For matrices A,B ∈
Rn×m, A is left equivalent (or row equivalent) to B if and only
if there exists an invertible matrix P ∈ Rn×n such that A =
PB. It then can be shown that A and B are left-equivalent if
and only if null(A) = null(B).

Lemma 1 (Gauss’ principle [10], [11]). Let an unconstrained
system described by the configuration variables q ∈ Rn and
evolving according to M(q, t)q̈ = Q(q, q̇, t) where M ∈ Rn×n
is positive definite. Assume now that the system is subjected
to m consistent constraints of the form A(q, q̇, t)q̈ = b(q, q̇, t).
Then, the acceleration q̈ of the constrained system is given by
the constrained minimization problem

min
q̈

[q̈ − α]>M(q)[q̈ − α] s.t. A(q, q̇, t)q̈ = b(q, q̇, t),

where α := M(q)−1Q(q, q̇, t) is the acceleration of the
unconstrained system.

III. COOPERATIVE MANIPULATION MODELING

We provide in this section the dynamic modeling of the rigid
cooperative manipulation system. A key feature of the model
is the grasp matrix, which, as will be clarified, motivates the
introduction of the notion of distance and bearing rigidity in
the next section and the association between the two.

Consider N robotic agents, indexed by the set N :=
{1, . . . , N}, rigidly grasping an object. We denote by qi, q̇i ∈
Rni , with ni ∈ N,∀i ∈ N , the generalized joint-space vari-
ables and their derivatives of agent i. The overall joint config-
uration is then q := [q>1 , . . . , q

>
N ]>, q̇ := [q̇>1 , . . . , q̇

>
N ]> ∈ Rn,

with n :=
∑
i∈N ni. In addition, we denote the position

and rotation matrix of the ith end-effector by pi ∈ R3 and
Ri ∈ SO(3), respectively. Similarly, the velocity of the ith
end-effector is denoted by vi := [ṗ>i , ω

>
i ]>, where ωi ∈ R3 is

the respective angular velocity, and it holds that vi = Ji(qi)q̇i,
where Ji : Si → R6×ni is the robot Jacobian, and Si :=
{qi ∈ Rni : dim(null(Ji(qi))) = 0} is the set away from
kinematic singularities [30], ∀i ∈ N . Moreover we denote
xi := (pi, Ri) ∈ SE(3) and x := (x1, . . . , xN ) ∈ SE(3)N .
The task-space dynamics of the agents are [30]:

M(x)v̇ + C(x, ẋ)v + g(x) = u− h, (1)

where v := [v>1 , . . . , v
>
N ] ∈ R6N , h := [h>1 , . . . , h

>
N ]>,

u := [u>1 , . . . , u
>
N ]>, g := [g>1 , . . . , g

>
N ]> ∈ R6N ; the terms

Mi : SEi → R6×6, Ci : SEi × R6 → R6×6, gi : SEi → R6

are their positive definite inertia, Coriolis, and gravity terms,
respectively, which are well-defined when qi ∈ Si, i ∈ N ;
hi ∈ R6 are the forces between the object and the agents, and
ui ∈ R6 the task-space inputs, ∀i ∈ N .

Regarding the object, we denote by xO := (pO, RO) ∈
SE(3), vO := [ṗ>O , ω

>
O ]> ∈ R12 the pose and generalized

velocity of the object’s center of mass. We consider the



3

Fig. 1: Two robotic agents rigidly grasping an object.

following second order dynamics, which can be derived based
on the Newton-Euler formulation:

ṘO = S(ωO)RO (2a)
MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) = hO, (2b)

where MO : M→ R6×6 is the positive definite inertia matrix,
CO : M×R6 → R6×6 is the Coriolis matrix, gO : M→ R6 is
the gravity vector, and hO ∈ R6 is the vector of generalized
forces acting on the object’s center of mass.

In view of Fig. 1 and the grasping rigidity, one obtains [19]

vi = JOi
(xi)vO, ∀i ∈ N , (3)

where JOi
: SE(3) → R6×6 is the object-to-agent Jacobian

matrix, with

JOi
(xi) =

[
I3 −S(piO)

03×3 I3

]
, (4)

and piO := pi − pO, ∀i ∈ N ; JOi
is always full-rank, due

to the rigidity of the grasping contacts. The grasp matrix is
formed by stacking J>Oi

as

G(x) := [JO1
(x1)>, . . . , JON

(xN )>] ∈ R6×6N , (5)

and has full column rank due to the rigidity of the grasping
contacts; (3) can now be written in stack vector form as

v = G(x)>vO. (6)

The kineto-statics duality [30] along with the grasp rigidity
suggest that the force hO acting on the object’s center of mass
and the generalized forces hi, i ∈ N , exerted by the agents at
the grasping points, are related through:

hO = G(x)h. (7)

By using (1), (7), and (2), we obtain the coupled dynamics:

Mc(x̄)v̇O + Cc(x̄, ˙̄x)vO + gc(x̄) = G(x)u, (8)

where Mc := MO +GMG>, Cc := CO +GCG> +GMĠ>,
gc := gO + Gg, x̄ is the coupled state x̄ := [x>, x>O ]> ∈
SE(3)N+1, and we have omitted the arguments for brevity.
The interaction forces h between the object and the agents
can be decoupled into motion-induced and internal forces

h = hm + hint. (9)

The internal forces hint are squeezing forces that the agents
exert to the object and belong to the nullspace of G(x) (i.e.,
G(x)hint = 0). Intuitively, when h = hint, it holds that
G(x)(u−Mv̇−Cv−g) = 0 and the object moves according to
hO = MOv̇O +COvO +gO = 0. Hence, hint does not contribute
to the object’s motion and results in internal stresses that might

damage it. An analytic expression for h and hint is given in
Section V.

Note from (6) that the agent velocities v belong to the
range space of G(x)>. Therefore, since G(x) is a matrix that
encodes rigidity constraints, this motivates the association of
G(x) to the rigidity matrix used in formation rigidity theory,
and of the rigid cooperative manipulation scheme to a multi-
agent rigid formation scheme. To this end, we introduce next
in Section IV the notion of Distance and Bearing Rigidity.
In Section V-A, we connect the latter with the cooperative
manipulation system (8), and in Section V-B we use this
connection to derive new results on cooperative manipulation
free from internal forces. We argue that the association of
rigid cooperative manipulation with rigidity theory, which has
not been considered before, provides new physical insights
in the intersection of the two fields (illustrated in Theorem 1
of Section V). It also paves the way for drawing novel links
that could help solve problems of one by leveraging the rich
literature of the other.

IV. DISTANCE AND BEARING RIGIDITY IN SE(3)

We begin by recalling that the range space of the grasp
matrix G(x)T corresponds to the rigid body translations and
rotations of the system. While G appears naturally in the con-
text of dynamic modeling of rigid bodies, it is also indirectly
related to the notion of structural rigidity in discrete geometry.

In the classical structural rigidity theory, one considers a
collection of rigid bars connected by joints allowing free
rotations around the joint axis (bar-and-joint frameworks).
One is then interested in understanding what are the allowable
motions of the framework, i.e., those motions that preserve
the lenghts of the bars and their connections to the joints. The
so-called trivial motions for these frameworks are precisely
the rigid body translations and rotations of the system. For
some frameworks, there may be additional motions, known as
flexes, that also preserve the constraints. This is captured by
the notion of infinitesimal motions of the framework and is
characterized by the rigidity matrix of the framework [31].

Since, in a rigid cooperative manipulation system, the rela-
tive distances and bearings among the agents and the object are
fixed, we naturally consider frameworks that encode both the
lengths of bars and pose of the joints, leading to a distance and
bearing-type framework. This relates notions from distance
rigidity, and recent works in bearing rigidity for frameworks
embedded in SE(2) and SE(3) [32], [33]. In this direction,
we introduce the concept of distance and bearing rigidity
(abbreviated as D&B Rigidity ). For this work we focus on
the notion of infinitesimal rigidity for D&B frameworks. We
first formally define a D&B framework in SE(3):

Definition 1. A framework in SE(3) is a triple (G, pG , RG),
where G := (N , E) is a graph, pG : N → R3 is a function
mapping each node to a position in R3, and RG : N → SO(3)
is a function associating each node with an orientation element
of SO(3) (both with respect to an inertial frame).

In this work we employ the Special Orthogonal Group
(rotation matrices) {R ∈ R3×3 : R>R = I3, det(R) = 1}
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to express the orientation of the agents. Moreover, we use
the shorthand notation pi := pG(i), Ri := RG(i), p :=
[p>1 , . . . , p

>
N ]> ∈ R3N , R := (R1, . . . , RN ) ∈ SO(3)N ,

xi := (pi, Ri) ∈ SE(3), and x := (x1, . . . , xN ) ∈ SE(3)N .
The distances and bearings in a framework can be sum-

marized through the following SE(3) D&B rigidity function,
γG , that encodes the rigidity constraints in the framework.
Consider a directed graph G = (N , E), where E ⊆ {(i, j) ∈
N 2 : i 6= j}, as well as Eu := {(i, j) ∈ E : i < j} ⊆ E .
Then γG can be formed by the distance and bearing functions
γe,d : R3 × R3 → R≥0, γe,b : SE(3)2 → S2, with

γe,d(pi, pj) :=
1

2
‖pi − pj‖2,∀e = (i, j) ∈ Eu, (10a)

γe,b(xi, xj) := R>i
pj − pi
‖pi − pj‖

,∀e = (i, j) ∈ E , (10b)

which encodes the distance ‖pi − pj‖ between two agents
as well as the local bearing vector R>i

pj−pi
‖pi−pj‖ , expressed

in the frame of agent i. Now γG is formed by stacking
the aforementioned distance and bearing functions, i.e., γG :
SE(3)N → R|Eu| × S2|E|, with

γG :=

[
γd(p)
γb(x)

]
:=
[
γ1,d, . . . , γ|Eu|,d, γ

>
1,b, . . . , γ

>
|E|,b

]>
. (11)

We have introduced the edge set Eu for the symmetric distance
functions γ(i,j),d = γ(j,i),d in order to avoid redundancy in
the rows of γG . Note that the aforementioned expressions for
γe,d, γe,b are not unique and other choices that capture the
rigidity constraints can also be made. We also mention our
slight abuse of notation, where the index k in γk,d and γk,b
refers to a labeled edge in Eu and E .

In this work, we are interested in the set of D&B in-
finitesimal motions of a framework in SE(3). These can be
thought as perturbations to a framework in SE(3) that leave
γG unchanged. This set is characterized by the nullspace
of the matrix appearing in the rate-of-change of γG under
the kinematic equations associated with rotational motion in
SE(3) [33]. That is, the nullspace of the matrix ∇(p,R)γG ,
termed the SE(3)-D&B rigidity matrix RG : SE(3)N →
R(|Eu|+3|E|)×6N := ∇(p,R)γG , i.e.,

RG(x) =



∂γ1,d
∂p1

∂γ1,d
∂R1

. . .
∂γ1,d
∂pN

∂γ1,d
∂RN

...
. . .

...
∂γ|Eu|,d
∂p1

∂γ|Eu|,d
∂R1

. . .
∂γ|Eu|,d
∂pN

∂γ|Eu|,d
∂RN

∂γ1,b
∂p1

∂γ1,b
∂R1

. . .
∂γ1,b
∂pN

∂γ1,b
∂RN

...
. . .

...
∂γ|E|,b
∂p1

∂γ|E|,b
∂R1

. . .
∂γ|E|,b
∂pN

∂γ|E|,b
∂RN


, (12)

with

∂γe,d
∂xi

=
[
∂γe,d
∂pi

∂γe,d
∂Ri

]
=
[
(pi − pj)> 01×3

]
,

∂γe,d
∂xj

=
[
∂γe,d
∂pj

∂γe,d
∂Rj

]
=
[
(pj − pi)> 01×3

]
,

∂γe,b
∂xi

=
[
∂γe,b
∂pi

∂γe,b
∂Ri

]
=
[
− Pr(γe,b)
‖pj−pi‖R

>
i S(γe,b)R

>
i

]
,

∂γe,b
∂xj

=
[
∂γe,b
∂pj

∂γe,b
∂Rj

]
=
[
Pr(γe,b)
‖pj−pi‖R

>
i 03×3

]
.

The projection operator Pr(·) [5] is defined as in Section
II. Infinitesimal motions, therefore, are motions x(t) pro-
duced by velocities v(t) that lie in the nullspace of RG ,
for which it holds that γ̇G = RG(x(t))v(t) = 0, where
v := [ṗ>1 , ω

>
1 , . . . , ṗ

>
N , ω

>
N ]>, as defined in Section III. The

infinitesimal motions therefore depend on the number of
motion degrees of freedom the entire framework possesses.
This directly relates to the structure of the underlying graph.

Motions that preserve the distances and bearings of the
framework for any underlying graph are called D&B trivial
motions. This leads to the definition of infinitesimal rigidity.

Definition 2. A framework (G, pG , RG) is D&B infinitesimally
rigid in SE(3) if every D&B infinitesimal motion is a D&B
trivial motion.

We now aim to identify what the trivial motions of a D&B
framework are, and to determine conditions for a framework
to be infinitesimally rigid based on properties of RG . Before
we proceed, we note that the D&B rigidity function in SE(3)
can be seen as a superposition of the rigidity functions
associated with the classic distance rigidity theory [31] and
the SE(3) bearing rigidity theory [32]. In particular, we note
that RG,d : R3N → R|Eu|×3N := ∇pγd is the well-studied
(distance) rigidity matrix, while RG,b : SE3N → R3|E|×6N :=
∇(p,R)γG,b is the SE(3) bearing rigidity matrix. Note that
RG,d is associated with the framework (G, pG), which is
the projection of (G, pG , RG) to R3. With an appropriate
permutation, PR, of the columns of RG , we have that

R̃G := RGPR

=



∂γ1,d
∂p1

. . .
∂γ1,d
∂pN

∂γ1,d
∂R1

. . .
∂γ1,d
∂RN

...
. . .

...
∂γMG ,d

∂p1
. . .

∂γMG ,d

∂pN

∂γMG ,d

∂R1
. . .

∂γMG ,d

∂RN
∂γ1,b
∂p1

. . .
∂γ1,b
∂pN

∂γ1,b
∂R1

. . .
∂γ1,b
∂RN

...
. . .

...
∂γMG ,b

∂p1
. . .

∂γMG ,b

∂pN

∂γMG ,b

∂R1
. . .

∂γMG ,b

∂RN


, (13)

which is equal to

R̃G =

[[
RG,d 0|Eu|×3N

]
RG,b

]
=:

[
R̄G,d
RG,b

]
.

The nullspace of R̃G , therefore, is the intersection of the
nullspaces of R̄G,d and RG,b.

With the above interpretation, we can now understand
the trivial motions to be the intersection of trivial motions
associated to distance rigidity with those associated to SE(3)
bearing rigidity. In particular, let

Sd := span
{

1N ⊗ I3,L�
R3(G)

}
,

denote the trivial motions associated to a distance framework
[31]. That is, 1N ⊗ I3 represents translations of the entire
framework, and L�

R3(G) is the rotational subspace induced by
the graph G in R3, i.e.,

L�
R3(G) = span {(IN ⊗ S(eh)) pG , h = 1, 2, 3} .

These motions can be produced by the linear velocities
of the agents. It is known that Sd ⊆ null(RG,d) for any
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underlying graph G [31]. For the matrix R̄G,d, we can define
the corresponding set

S̄d := span

{[
1N ⊗ I3

?

]
,

[
L�
R3(G)
?

]}
⊆ null(R̄G,d).

Note that the distance rigidity does not explicitly depend on
the orientation of the nodes when expressed as a point in
SE(3). This accounts for the free ? entry in the subspace S̄d
corresponding to the rotations. Thus, the set of trivial motions
in R3 can be seen as the projection of S̄d in R3.

Similarly, for an SE(3) bearing framework one can define
the subspace [32]

Sb := span

{[
1N ⊗ I3
03N×3,

]
,

[
pG

03N ,

]
,L�

SE(3)(G)

}
,

where the vector [pTG 0T3N ]T represents a scaling of the frame-
work. The space L�

SE(3)(G) is the rotational subspace induced
by G, in SE(3),

L�
SE(3)(G) = span

{[
(IN ⊗ S(eh)) pG

1N ⊗ eh

]
, h = 1, 2, 3

}
. (14)

It is also known that Sb ⊆ null(RG,b). Thus Sb describes
the trivial motions of an SE(3) bearing framework [32]. The
above discussion leads to the following result.

Proposition 1. The trivial motions of a D&B framework are
characterized by the set

Sdb := S̄d ∩ Sb = span

{[
1N ⊗ I3
03N×3

]
,L�

SE(3)(G)

}
.

Furthermore, it follows that Sdb ⊆ null(R̃G).

Having characterized the trivial motions, it now follows
from Definition 2 that for infinitesimal rigidity, we require
that null(R̃G) = Sdb. This is summarized as follows.

Proposition 2. The framework (G, pG , RG) is D&B infinites-
imally rigid in SE(3) if and only if

null(R̃G) = null(R̄G,d) ∩ null(RG,b)

= span
{[

1N ⊗ I3
03N×3,

]
,L�

SE(3)(G)

}
= Sdb. (15)

Equivalently, the D&B framework is infinitesimally rigid in
SE(3) if and only if

rank(R̃G) = dim(R̃G)− dim(null(R̃G)) = 6N − 6. (16)

Hence, all the motions produced by the nullspace of R̃G for
an infinitesimally rigid framework must correspond to trivial
motions, i.e., translations and coordinated rotations. Moreover,
given (13), it follows that (G, pG , RG) is D&B infinitesimally
rigid in SE(3) if and only if

null(RG) = {x = PRy ∈ SE(3)N : y ∈ null(R̃G)}, (17)

i.e., the nullspace of RG consists of the vectors of null(R̃G)
whose elements are permutated by PR.

It is worth noting that the aforementioned results are not
valid if the rigidity matrix loses rank, i.e., rank(RG) <
max{rank(RG(x)), x ∈ SE(3)}. These are degenerate cases
that correspond, for example, to when all agents are aligned

along a direction v ∈ S2. In particular, frameworks with
N = 2 nodes are also degenerate by this definition. For more
discussion on these cases, the reader is referred to [33].

As a last remark, we observe that frameworks over the com-
plete graph, (KN , pKN

, RKN
), are (except for the degenerate

configurations), infinitesimally rigid. That is, rank(R̃KN
) =

6N−6. This result follows from the literature on distance- and
SE(3)-rigidity theory [31], [32]. This leads to the following
corollary.

Corollary 1. Consider the D&B frameworks (G, pG , RG)
and (KN , pG , RG) for nondegenrate configurations (pG , RG).
Then (G, pG , RG) is D&B infinitesimally rigid if and only if
rank(R̃G) = rank(R̃KN

) = 6N − 6.

In the next section, we use the aforementioned results to link
the D&B rigidity matrix of a complete graph to the internal
forces from (9).

V. MAIN RESULTS

In cooperative manipulation schemes, the most energy-
efficient way of transporting an object is to exploit the full
potential of the cooperating robotic agents, i.e., each agent
does not exert less effort at the expense of other agents, which
might then potentially exert more effort than necessary. For
instance, consider a rigid cooperative manipulation scheme,
with only one agent (a leader) working towards bringing
the object to a desired location, whereas the other agents
have zero inputs. Since the grasps are rigid, if the leader is
equipped with sufficiently powerful actuators, it will achieve
the task by “dragging” the rest of the agents, compensating
for their dynamics, and creating non-negligible internal forces.
In such cases, when the cooperative manipulation system is
rigid (i.e., the grasps are considered to be rigid), the optimal
strategy of transporting an object is achieved by regulating the
internal forces to zero. Therefore, from a control perspective,
the goal of a rigid cooperative manipulation system is to
design a control protocol that achieves a desired cooperative
manipulation task, while guaranteeing that the internal forces
remain zero.

This section provides the main results of this work. We first
give, in Section V-A, a closed-form expression for the internal
forces of the coupled object-agents system, by connecting
them with the D&B rigidity matrix introduced in Section IV.
Next, we use these results in Section V-B to provide a novel
relation between the arising interaction and internal forces;
we further give conditions on the agent force distribution for
cooperative manipulation free from internal forces.

A. Internal Forces Based on the D&B Rigidity Matrix

In this section we provide a closed-form expression for the
internal forces of the coupled object-agents system and link
them to the D&B rigidity matrix notion introduced in Section
IV. In particular, we consider that the robotic agents form a
graph that will be defined in the sequel. Note that, due to
the rigidity of the grasping points, the forces exerted by an
agent influence, not only the object, but all the other agents as
well. Hence, since there exists interaction among all the pairs
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of agents we model their connection as a complete graph, as
explicitly described below. Moreover, as will be clarified later,
the rigidity matrix of this graph encodes the constraints among
the agents, imposed by the rigidity of the grasping points, and
plays an important role in the expression of the internal forces.

Let the robotic agents form a framework (G, pG , RG) in
SE(3), where G := (N , E) is the complete graph, i.e.,
E = {(i, j) ∈ N 2 : i 6= j}, and pG := [p>1 , . . . , p

>
N ]>,

RG := (R1, . . . , RN ). Consider also the undirected part
Eu = {(i, j) ∈ E : i < j} of E , as also described in Section IV.
Since the graph is complete, we conclude that |E| = N(N−1)

and |Eu| = N(N−1)
2 .

Consider now the rigidity functions γe,d : R3×R3 → R≥0,
∀e ∈ Ēu and γe,b : SE(3)2 → S2, ∀e ∈ E , as given in (10), as
well as the stack vector γG : SE(3)N → R

N(N−1)
2 ×S2N(N−1)

as given in (11). The rigidity constraints of the framework are
encoded in the constraint γG = const.. Since the rigidity of the
framework stems from the rigidity of the grasping points, these
constraints encode also the rigidity constraints of the object-
agent cooperative manipulation. By differentiating twice γG =
const., one obtains

RG(x)v̇ = −ṘG(x)v (18)

where RG : SE(3)N → R
7N(N−1)

2 ×(6N) is the rigidity matrix
associated to G and has the form (12). Note that (18) is derived
from γG , which corresponds to the distance and bearing
constraints for a complete graph; hence, using Corollary 1,
γG encodes rigid body motions (coordinated translations and
rotations of the system). Therefore, by assuming that the
agents satisfy the constraint γ̇G = RGv = 0 initially1, we
conclude that the motion of the cooperative object-agents
manipulation system that is enforced by (18), corresponds
to rigid body motions (coordinated translations and rotations
of the system). Hence, since G is complete, the analysis of
Section IV dictates that these motions are the infinitesimal
motions of the framework and are the ones produced by the
nullspace of RG(x). We note that the rigid body motions
can be produced by the nullspace of the rigidity matrix
of other graph topologies as well (except for the complete
one). Nevertheless, as explained above, the complete graph
topology draws motivation from the physics of the cooperative
manipulation system, where all agents indeed influence the
object as well as each other via their exerted forces.

After giving the rigidity constraints in the cooperative ma-
nipulation system, we are now ready to derive the expressions
for the internal forces, hint, in terms of the aforementioned
rigidity matrix. We follow the same methodology as in [9].
Since we are concerned with the internal forces, consider,
without loss of generality, that hO = hm = 0 ⇔ h = hint,
i.e., the agents produce only internal forces, without inducing
object acceleration. Then, the agent dynamics are

M(x)v̇ + C(x, ẋ)v + g(x) = u− hint (19)

We use Gauss’ principle [10], [11] (see Lemma 1) to derive a
closed form expression for hint. Let the unconstrained system

1Otherwise, the constraint RGv = 0 can be appended in (18).

of the robotic agents be M(x)α(x, ẋ) := u−C(x, ẋ)v−g(x),
where α is the unconstrained acceleration, i.e., the acceleration
the system would have if the agents did not grasp the object.
According to Gauss’s principle [10], the actual acceleration
v̇ of the system is the closest one to α, while satisfying the
rigidity constraints. More rigorously, and as stated in Lemma
1, v̇ is the solution of the constrained minimization problem

min [v̇ − α(x, ẋ)]>M(x)[v̇ − α(x, ẋ)]

s.t. RG(x)v̇ = −ṘG(x)v.

The solution to this problem is obtained by using the
Karush-Kuhn-Tucker conditions [34] and has a closed-form
expression. It can be shown that it satisfies

Mv̇ = Mα−R>G (RGM−1R>G )†(ṘGv +RGα),

which is consistent with the one in [10],

Mv̇ = Mα−M 1
2 (RGM−

1
2 )†(ṘGv +RGα),

since it holds that R>G (RGM−1R>G )† = M
1
2 (RGM−

1
2 )†.

Indeed, according to Property 1) of Section II, it holds that
H† = H>(HH>)†, for any H ∈ Rx×y . Then the aforemen-
tioned equality is obtained by setting H = RGM−

1
2 .

Therefore, the internal forces have the form

hint = R>G (RGM−1R>G )†(ṘGv +RGα) (20a)

= M
1
2 (RGM−

1
2 )†(ṘGv +RGα) (20b)

and one concludes that when the unconstrained motion
of the system does not satisfy the constraints (i.e., when
ṘGv 6= −RGα), then the actual accelerations of the system
are modified in a manner directly proportional to the extent to
which these constraints are violated. Moreover, it is evident
from the aforementioned expression that the internal forces
depend, not only on the relative distances pi− pj , but also on
the closed loop dynamics and the inertia of the unconstrained
system (see the dependence on αint and B). Therefore, given a
desired force hd to be applied to the object, an internal force-
free distribution to agent forces hi,d at the grasping points
cannot be independent of the system dynamics. We stress that
the derived expression concerns the internal forces produced
exclusively by the redundancy of the multi-robot system
(excluding, for instance, potential internal forces needed to
keep the object from falling due to gravity, which would also
arise in a single manipulation task). By following a similar
procedure and including the object in the multi-agent graph,
one can arrive to similar results for the interaction forces h as
well.

Note that, as dictated in Section IV, the rigidity matrix RG
is not unique, since different choices of γG that encode the
rigidity constraints can be made. Hence, one might think that
different expressions of RG will result in different rigidity
constraints of the form (18) and hence different internal forces
- which is unreasonable. Therefore, in order to show the con-
sistency of (20), we prove next in Proposition 3 that this is not
the case, by using the fact that all different expressions of the
rigidity matrix RG have the same nullspace (the coordinated
translations and rotations of the framework).
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Proposition 3. Let RG,1 and RG,2 such that null(RG,1) =
null(RG,2) and let

hint,i :=M
1
2 (RG,iM−

1
2 )†(ṘG,iv +RG,iαint), ∀i ∈ {1, 2}.

Then hint,1 = hint,2.

Proof: The poses and velocities in the terms ṘG,iv
are the actual ones resulting from the coupled system dy-
namics and hence they respect the rigidity constraints im-
posed by RG,iv̇ = −ṘG,iv, for i ∈ {1, 2}. Therefore,
exploiting the positive definiteness of M , we need to prove
that (RG,1M−

1
2 )†RG,1 = (RG,2M−

1
2 )†RG,2. According to

property 4) of Sec. II, since RG,1 and RG,2 have the same
nullspace, they are left equivalent matrices and there exists
an invertible matrix P such that RG,1 = PRG,2. Hence, by
further using property 2) of Sec. II, it holds that

(RG,2M−
1
2 )†RG,2 − (RG,1M−

1
2 )†RG,1 =[

(RG,2M−
1
2 )†RG,2M−

1
2 − (PRG,2M−

1
2 )†PRG,2M−

1
2

]
M

1
2 ,

which is equal to 0.
Additionally, by following its proof, one can conclude that

Proposition 3 can be extended to account for different graphs
G and G′ satisfying (18).

Next, we note that (20) leads to the following Lemma:

Lemma 2. The cooperative manipulation system is free of
internal forces, i.e., hint = 06N , if and only if

ṘGv +RGM−1(u− Cv̇ − g) ∈ null(R>G )

Proof: In view of (20), ṘGv + RGαint = ṘGv +
RGM−1(u − Cv̇ − g) must belong to null(M

1
2 (RGM−

1
2 )†)

in order to avoid internal forces. The latter, however, is
identical to null(R>G ), since it holds that null(RGM−1/2)† =

null(M−
1
2R>G ) and M is positive definite.

As mentioned before, the most energy-efficient way of
transporting an object in a cooperative manipulation scheme is
by minimizing the arising internal forces. In the next section,
we derive a new relation between the interaction and internal
forces as well as novel sufficient and necessary conditions on
the agent force distribution for the provable regulation of the
internal forces to zero, according to (20). We further show
its application in a standard inverse-dynamics control law that
guarantees trajectory tracking by the object’s center of mass.

B. Cooperative Manipulation via Internal Force Regulation

In this section, we use the results of Section V-A to derive
a new relation between the interaction and internal forces h
and hint, respectively. Moreover, we derive novel sufficient and
necessary conditions on the agent force distribution for the
provable regulation of the internal forces to zero, according
to (20), and we show its application in a standard inverse-
dynamics control law that guarantees trajectory tracking of
the object’s center of mass. This is based on the following
main theorem, which links the complete agent graph rigidity
matrix RG to the grasp matrix G:

Theorem 1. Let N robotic agents, with configuration x =
(p,R) ∈ SE(3)N , rigidly grasping an object and associ-
ated with a grasp matrix G(x), as in (5). Let also the
agents be modeled by a framework on the complete graph
(KN , pKN

, RKN
) = (KN , p, R) in SE(3), which is associ-

ated with a rigidity matrix RKN
. Let also x be such that

rank(RKN
(x)) = maxy∈SE(3)N {rank(RKN

(y))}. Then

null(G(x)) = range(RKN
(x)>). (21)

Proof: Since RKN
corresponds to the complete graph and

rank(RKN
(x)) = maxy∈SE(3)N {rank(RKN

(y))}, the frame-
work (KN , p, R) is infinitesimally rigid. Hence, the nullspace
of RKN

consists only of the infinitesimal motions of the
framework, i.e., coordinated translations and rotations, as
defined in Prop. 1. In particular, in view of (17), Prop. 2,
and (14), one concludes that null(RKN

) is the linear span of

1N ⊗
[
I3

03×3

]
and the vector space [χ>1 , . . . , χ

>
N ]> ∈ SE(3)N ,

with χi := [χ>i,p, χ
>
i,R]> ∈ SE(3), satisfying

χi,p − χj,p = −S(pi − pj)χi,R (22a)
χi,R = χj,R, (22b)

where pi := pKN
(i), pj := pKN

(j), ∀i, j ∈ N , with i 6= j.
In view of (6), one obtains v = G(x)>vO. Note that the first

3 columns of G> form the space 1N ⊗
[
I3

03×3

]
whereas its

last 3 columns span the aforementioned rotation vector space.
Indeed, for any ṗO, ωO ∈ R6 the range of these columns is[

−ṗ>OS(p1O)>, ω>O , . . . ,−ṗ>OS(pNO)>, ω>O
]>
,

for which it is straightforward to verify that (22) holds. Hence,
null(RKN

) = range(G>), which implies (21).
We note that, in degenerate cases (i.e., when RG loses

rank, as explained in Sec. IV), null(RG) contains more mo-
tions than the trivial coordinated translations and rotations,
i.e., range(G>) ⊂ null(RG). Therefore, (21) is replaced by
range(R>G ) ⊂ null(G).

Since the internal forces belong to null(G), one concludes
that they are comprised of all the vectors z for which there
exists a y such that z = R>G y. This can also be verified by in-
specting (20b); one can prove that range(M

1
2 (RGM−

1
2 )†) =

range(R>G ). The aforementioned result provides significant
insight regarding the control of the motion of the coupled
cooperative manipulation system. In particular, by using (20b)
and Th. 1, we provide next new conditions on the agent force
distribution for provable avoidance of internal forces. We first
derive a novel relation between the agent forces h and the
internal forces hint.

In many related works, h is decomposed as

h = G∗Gh+ (I −G∗G)h, (23)

where G∗ is a right inverse of G. The term G∗Gh is a
projection of h on the range space of G>, whereas the
term (I − G∗G)h is a projection of h on the null space of
G. A common choice is the Moore-Penrose inverse G∗ =
G† = G>(GG>)−1. This specific choice yields the vector
G∗Gh = G†Gh ∈ range(G>) that is closest to h, i.e.,
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‖h − G†Gh‖ ≤ ‖h − y‖, ∀y ∈ range(G>). However, as the
next theorem states, if the second term of (23) must equal hint,
as defined in (20), G∗ must equal MG>(GMG>)−1.

Theorem 2. Consider N robotic agents rigidly grasping an
object with coupled dynamics (8). Let h ∈ R6N be the stacked
vector of agent forces exerted at the grasping points. Then the
agent forces h and the internal forces hint are related as:

hint = (I6N −MG>(GMG>)−1G)h.

In order to prove Th. 2, we first need the following result.

Proposition 4. Consider the grasp and rigidity matrices G,
RG , of (5), (12), respectively. Then it holds that

MG>(GMG>)−1G+M
1
2 (RGM−

1
2 )†RGM−1 = I. (24)

Proof: Let A := RGM−
1
2 and B := GM

1
2 . Then

range(A>) = null(B). Indeed, according to Th. 1, it holds
that if z = R>G y, for some y ∈ R6, then Gz = 06. By
multiplying by M−

1
2 , we obtain M−

1
2 z = M−

1
2R>G y, which

implies that ẑ := M−
1
2 z ∈ range((RGM

1
2 )>). It also holds

that Bẑ = GM
1
2 ẑ = Gz = 06, and hence ẑ ∈ null(B).

Therefore, by using properties 1) and 3) of Sec. II and the
fact that GMG> is invertible, we conclude that

(GM
1
2 )†GM

1
2 + (RGM−

1
2 )†RGM−

1
2 = I ⇔

M
1
2G>(GMG>)†GM

1
2 + (RGM−

1
2 )†RGM−

1
2 = I,

and by left and right multiplication by M
1
2 and M−

1
2 ,

respectively, the result follows.
Moreover, for the proof of Th. 2, we need the following

expression, which is derived from (6), (1), (2), and (7).

h =(M−1 +G>M−1O G)−1[M−1(u− g − Cv)− Ġ>vO

+G>M−1O (COvO + gO)]. (25)

Proof of Theorem 2: We first show that

[I −MG>(GMG>)−1G](M−1 +G>M−1O G)−1 =

M
1
2 (RGM−

1
2 )†RG .

Indeed, since (M−1 +G>M−1O G)−1 has full rank, it suffices
to show that

I −MG>(GMG>)−1G =

M
1
2 (RGM−

1
2 )†RG(M−1 +G>M−1O G),

which can be concluded from the fact that RGG> = 0 (due
to Th. 1) and Prop. 4. Therefore, in view of (25), it holds that

(I −MG>(GMG>)−1G)h =

[I −MG>(GMG>)−1G](M−1 +G>M−1
O G)−1[−Ġ>vO

+M−1(u− g − Cv) +G>M−1
O (COvO + gO)] =

M
1
2 (RGM−

1
2 )†RG [M−1(u− g − Cv) +G>M−1

O (COvO + gO)

− Ġ>vO]

which, in view of the facts that RGG> = 0, and hence
−RGĠ> = ṘGG>, as well as G>vO = v, becomes

M
1
2 (RGM−

1
2 )†[ṘGv +RGM−1(u− g − Cv)] = hint.

Based on Th. 2, we provide next new results on the internal
force-free (optimal) distribution of a force to the agents.

Theorem 3. Consider N robotic agents rigidly grasping an
object with coupled dynamics (8). Let a desired force to be
applied to the object hO,d ∈ R6, which is distributed to the
agents’ desired forces as hd = G∗hO,d, and where G∗ is a
right inverse of G, i.e., GG∗ = I6. Then it holds that

hint = 0⇔ G∗ = MG>(GMG>)−1.

Proof: Firstly, it is easily verified that G∗ is a pseudo-
inverse of G [29]. Next, according to Th. 2, the derivation
of hd that yields zero internal forces can be formulated as a
quadratic minimization problem:

QP : min
hd

‖hint‖2 = h>d Hhd s.t. Ghd = hO,d, (26)

where H := (I6N − MG>(GMG>)−1G)>(I6N −
MG>(GMG>)−1G). Note that the choice G∗ =
MG>(GMG>)−1hO,d is a minimizer of QP, since GG∗ = I6,
and HG∗hO,d = 06N , and therefore sufficiency is proved.

In order to prove necessity, we prove next that G∗ is a strict
minimizer, i.e., there is no other right inverse of G that is a
solution to of QP. Note first that G ∈ R6×6N has full row rank,
which implies that the dimension of its nullspace is 6N−6. Let
Z := [z1, . . . , z6N−6] ∈ R6N×(6N−6) be the matrix formed by
the vectors z1, . . . , z6N−6 ∈ R6N that span the nullspace of
G. It follows that rank(Z) = 6N − 6 and GZ = 06×6N−6.
Let now the matrix H ′ := Z>HZ ∈ R(6N−6)×(6N−6). Since
GZ = 06×(6N−6) ⇒ Z>G> = 0(6N−6)×6, it follows that
H ′ = Z>Z. Hence, rank(H ′) = rank(Z) = 6N − 6, which
implies that H ′ is positive definite. Therefore, according to
[35, Th. 1.1], QP has a strong minimizer.

The aforementioned theorem provides novel necessary and
sufficient conditions for provable minimization of internal
forces in a cooperative manipulation scheme. As discussed
before, this is crucial for achieving energy-optimal cooperative
manipulation, where the agents do not have to “waste” control
input and hence energy resources that do not contribute to
object motion. Related works that focus on deriving internal
force-free distributions G∗, e.g., [9], [12], [23]–[25], are
solely based on the inter-agent distances, neglecting the actual
dynamics of the agents and the object. The expressions (20),
however, give new insight on the topic and suggest that the
dynamic terms of the system play a significant role in the
arising internal forces, as also indicated by Coroll. 2. This is
further exploited by Th. 3 to derive a right-inverse that depends
on the inertia of the system. Note also that, as mentioned
before and explained in [9], the internal forces depend on the
acceleration of the robotic agents and hence the incorporation
of M in G∗ is something to be expected.

The forces h, however, are not the actual control input
of the robotic agents, and hence we cannot simply set h =
hd = MG>(GMG>)−1GhO,d for a given hO,d. Therefore,
we design next a standard inverse-dynamics control algorithm
controller that guarantees tracking of a desired trajectory by
the object center of mass while provably achieving regulation
of the internal forces to zero. Provable force regulation is also
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done in [8], requiring however the constraints matrix (RG in
our case) to have positive singular values.

C. Control Design

Let a desired position trajectory for the object center of
mass be pd : R≥0 → R3, and ep := pO−pd. Let also a desired
object orientation be expressed in terms of a desired rotation
matrix Rd : R≥0 → SO(3), with Ṙd = S(ωd)Rd, where ωd :
R≥0 → R3 is the desired angular velocity. Then an orientation
error metric is [36] eO := 1

2 tr
(
I3 −R>d RO

)
∈ [0, 2], which,

after differentiation and by using (2a) and properties of skew-
symmetric matrices, becomes [36]

ėO =
1

2
e>RR

>
O (ωO − ωd) , (27)

where eR := S−1
(
R>d RO −R>ORd

)
∈ R3. The equilibrium

eR = 0 corresponds to eO = 0, implying tr(R>d RO) = 3 and
RO = Rd, as well as to eO = 2 implying tr(R>d RO) = −1 and
RO 6= Rd [36]. The second case represents an undesired equi-
librium, where the desired and the actual orientation differ by
180 degrees. This issue is caused by topological obstructions
on SO(3) and it has been proven that no continuous controller
can achieve global stabilization [37]. We design next a control
protocol that guarantees internal force-free convergence of ep,
eO, while guaranteeing that eO(t) < 2, ∀t ∈ R≥0, provided
that the right inverse G∗ = MG>(GMG>)−1 is used.

Corollary 2. Consider N robotic agents rigidly grasping an
object, as described in Section III, with coupled dynamics (8).
Let a desired trajectory be defined by pd : R≥0 → R3, Rd :
R≥0 → SO(3), ṗd, ωd ∈ R3, and assume that eO(0) < 2.
Consider the control law

u = g + (CG> +MĠ>)vO +G∗ (gO + COvO) +

(MG> +G∗MO)(v̇d −Kdev −Kpex), (28)

where ev := vO − vd, vd := [ṗ>d , ω
>
d ]> ∈ R6, ex :=

[e>p ,
1

2(2−eO)2 e
>
RR
>
O ]>, Kp := diag{Kp1 , kp2I3}, where

Kp1 ∈ R3×3,Kd ∈ R6×6 are positive definite matrices, and
kp2 ∈ R>0 is a positive constant. Then the solution of the
closed-loop coupled system satisfies the following:

1) eO(t) < 2, ∀t ∈ R≥0
2) limt→∞(pO(t)− pd(t) = 03, limt→∞Rd(t)>RO(t) = I3
3) It holds that hint(t) = 0⇔ G∗ = MG>(GMG>)−1.

Proof: 1) By substituting (28) in (8) and using GG∗ = I
and GuR = 06, we obtain, in view of (8) and the positive
definiteness of M̃ that M̃(x̄)(ėv +Kdev +Kpex) implying

ėv = −Kdev −Kpex. (29)

Consider now the function V := 1
2e
>
p Kp1ep+

kp2
2−eO + 1

2e
>
v ev,

for which it holds V (0) < ∞, since eO(0) < 2. By
differentiating V , and using (27) and (29), one obtains V̇ =
−e>v Kdev ≤ 0. Hence, it holds that V (t) ≤ V (0) <∞, which
implies that kp2

2−eO(t) is bounded and consequently eO(t) < 2.
2) Since V (t) ≤ V (0) < ∞, the errors ep, ev are bounded,
which, given the boundedness of the desired trajectories pd, Rd
and their derivatives, implies the boundedness of the control

Fig. 2: Four UR5 robotic arms rigidly grasping an object. The red
counterpart represents a desired object pose at t = 0.

law u. Hence, it can be proved that V̈ is bounded which
implies the uniform continuity of V̇ . Therefore, according
to Barbalat’s lemma ( [38], Lemma 8.2), we deduce that
limt→∞ V̇ (t) = 0 ⇒ limt→∞ ev(t) = 06. Since ex(t) is
also bounded, it can be proved by using the same argu-
ments that limt→∞ ėv(t) = 06 and hence (29) implies that
limt→∞ ex(t) = 06.
3) Let the desired object force be

hO,d = COvO + gO +MOαd, (30)

where αd := v̇d −Kdev −Kpex. In view of Th. 3, it suffices
to prove h = hd = G∗hO,d. By substituting (28) in (25) and
canceling terms, we obtain

h =(M−1 +G>M−1O G)−1[M−1G∗hO,d +G>αd+

G>M−1O (COvO + gO)].

Next, we add and subtract the term G>M−1O GG∗hO,d as

h =(M−1 +G>M−1O G)−1(M−1 +G>M−1O G)G∗hO,d+

(M−1 +G>M−1O G)−1[G>M−1O (MOαd + COvO+

gO −G>MOhO,d)],

which, in view of (30), becomes h = G∗hO,d. Completion of
the proof follows by invoking Th. 3.

In case it is required to achieve a desired internal force
hint,d, one can add in (28) a term of the form described next.

Corollary 3. Let hint,d ∈ null(G) be a desired internal force
to be achieved. Then adding the extra term uint,d = (I6N −
MG>(GMG>)−1G)hint,d in (28) achieves hint = hint,d.

Proof of Corollary 3: Since hint,d ∈ null(G) =
range(R>G ), it holds that M−

1
2hint,d ∈ range(M−

1
2R>G ) =

range(RGM−
1
2 )†. Therefore, it holds that

(RGM−
1
2 )†RGM−1hint,d =

(RGM−
1
2 )†RGM−

1
2 (M−

1
2hint,d) =M−

1
2hint,d. (31)

Hence, (20b) yields the resulting internal forces

hint =M
1
2 (RGM−

1
2 )†RGM−1(I −MG>(GMG>)−1G)hint,d

=M
1
2 (RGM−

1
2 )†RGM−1hint,d = M

1
2M−

1
2hint,d = hint,d,

where we have used (31) and the fact that RGG> = 0.
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VI. DISCUSSION

We briefly comment now on some of the features of the
aforementioned analysis.

Firstly, we note that the aforementioned results, spanning
from Theorem 1 to Corollary 3, still hold if the rigidity matrix
RG is replaced by any constraint matrix A satisfying Av = 0
and (18), not necessarily related to rigidity theory (see, e.g.,
eq. (10) of [28]). However, the connection between cooperative
manipulation and rigidity theory could, through the insight
provided by Theorem 1, pave the way for drawing novel links
that could help solve problems in the two fields. For instance,
one could use rigidity-theory results towards the localization
of robotic agents [5], or object-agent contact maintenance via
means of rigidity maintenance for non-rigid grasping contacts.
Reversely, the association of cooperative manipulation and
rigidity theory could help use cooperative-manipulation tools
to tackle issues in formations of rigid graphs. For instance,
the results on cooperative manipulation free from internal
forces could be used to prevent local minima in decentralized
formation control of rigid graphs through Theorem 1.

Secondly, note that G? = MG>(GMG>)−1 induces an
implicit and natural load-sharing scheme via the incorpora-
tion of M . More specifically, note that the force distribu-
tion to the robotic agents via G∗hO,d yields for each agent
MiJOi

(
∑
i∈N J

>
Oi
MiJOi

)−1, ∀i ∈ N . Hence, larger values
of Mi will produce larger inputs for agent i, implying that
agents with larger inertia characteristics will take on a larger
share of the object load. Note that this is also a desired load-
sharing scheme, since larger dynamic values usually imply
more powerful robotic agents. Previous works (e.g., [17]) used
load-sharing coefficients, without relating the resulting force
distribution with the arising internal forces.

Thirdly, note that the employed controller requires knowl-
edge of the agent and object dynamics. In case of dynamic
parameter uncertainty, standard adaptive control schemes that
attempt to estimate potential uncertainties in the model (e.g.,
[19], [22]) would intrinsically create internal forces, since the
dynamics of the system would not be accurately compensated.
The same holds for schemes that employ force/torque sensors
that provide the respective measurements at the grasp points
(e.g., [17], [18]) in periodic time instants. Since the interaction
forces depend explicitly on the control input, such measure-
ments will unavoidably correspond to the interaction forces of
the previous time instants due to causality reasons, creating
thus small disturbances in the dynamic model.

Finally, note that the aforementioned results do not hold
in degenerate cases where the rigidity matrix loses rank (see
Sec. IV). In such cases, null(RG) contains more motions
than the trivial ones (coordinated translations and rotations),
and hence the constraints (18) are not consistent with the
motion of the cooperative manipulation system, leading to an
inaccurate expression in (20). In these cases, one can employ
the constraints’ matrix used in [28] (see eq. (10)), whose
nullspace always coincides with range(G>).

VII. SIMULATION RESULTS

This section provides simulation results using 4 identical
UR5 robotic manipulators in the realistic dynamic environment
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Fig. 3: The error metrics ep(t), eO(t), ev(t), respectively, top to
bottom, for the two choices G∗1 and G∗2 and t ∈ [0, 15] seconds.
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Fig. 4: The norms of the resulting control inputs, ‖τi(t)‖ for G∗1 (with
blue) and G∗2 (with red), ∀i ∈ {1, . . . , 4}, and t ∈ [0, 15] seconds.

V-REP [39]. The agents are rigidly grasping an object of 40
kg as shown in Fig. 2. In order to verify the findings of
the previous sections, we apply the controller (28) to achieve
tracking of a desired trajectory by the object’s center of mass.
We simulate the closed loop system for two cases of G∗,
namely the proposed one G∗1 = MG>(GMG>)−1 as well
as the more standard choice G∗2 = G>(GG>)−1, showing the
validity of Coroll. 2 and 3.

The initial pose of the object is set as pO(0) =
[−0.225,−0.612, 0.161]>, ηO(0) = [0, 0, 0]> and the de-
sired trajectory as pd(t) = pO(0) + [0.2 sin(wpdt +
ϕd), 0.2 cos(wpt + ϕd), 0.09 + 0.1 sin(wpt + ϕd)]>, ηd(t) =
[0.15 sin(wφt+ϕd), 0.15 sin(wθt+ϕd), 0.15 sin(wψt+ϕd)]>

(in meters and rad, respectively), where ϕd = π
6 , wp = wφ =

wψ = 1, wθ = 0.5, and ηd(t) is transformed to the respective
Rd(t). The gains are set as Kp1 = 15, kp2 = 75, Kd = 40I6.

The results are given in Figs. 3-4 for 15 seconds. Fig. 3
depicts the pose and velocity errors ep(t), eO(t), ev(t), which
converge to zero for both choices of G∗, as expected. The
norms of the control inputs τi(t) of the agents are shown in
Fig. 4. Moreover, the norm of the internal forces, ‖hint(t)‖,
computed via (20a), is shown in Fig. 5 (left). It is clear that G∗2
yields significantly larger internal forces, whereas G∗1 keeps
them very close to zero, as proven in the theoretical analysis.
The larger internal forces in the case of G∗2 are associated with
the larger control inputs τi. This can be also concluded from
Fig. 4; It is clear that inputs of larger magnitude occur in the
case of G∗2, which create internal forces.

Finally, we set a random force vector hint,d in the nullspace



11

0 5 10 15

0

20

40

60

80

100

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

Fig. 5: Left: The signal ‖hint(t)‖ (as computed via (20a)) for the
two cases of G∗ and t ∈ [0, 15] seconds. Right: The signal ‖eint(t)‖,
when using G∗1 and for t ∈ [0, 15] seconds.

of G and we simulate the control law (28) with the extra com-
ponent uint,d = hint,d (see Coroll. 3). Fig. 5 (right) illustrates
the error norm ‖eint(t)‖ := ‖hint,d(t)− hint(t)‖, which evolves
close to zero. The minor observed deviations can be attributed
to model uncertainties and hence the imperfect cancellation of
the respective dynamics via (28).

VIII. CONCLUSION AND FUTURE WORK

We introduce the notion of distance and bearing rigidity in
SE(3) and we use the associated rigidity matrix to express
the internal forces that emerge in a cooperative manipulation
scheme. Based on these results, we connect the rigidity and
grasp matrices via a nullspace-range relation and we provide
novel results on internal-forced based cooperative manipula-
tion control and on the relation between the interaction and
internal forces. Future efforts will be directed towards using
rigidity theory for object pose estimation and robust control
design that minimizes the arising internal forces.
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