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Abstract— In this paper we focus on the problem of
decomposing a global Signal Temporal Logic formula (STL)
assigned to a multi-agent system to local STL tasks when
the team of agents is a-priori decomposed to disjoint sub-
teams. The predicate functions associated to the local
tasks are parameterized as hypercubes depending on the
states of the agents in a given sub-team. The parameters
of the functions are, then, found as part of the solution of
a convex program that aims implicitly at maximizing the
volume of the zero superlevel set of the corresponding
predicate function. Two alternative definitions of the local
STL tasks are proposed and the satisfaction of the global
STL formula is proven when the conjunction of the local
STL tasks is satisfied.

Index Terms— Signal Temporal Logic, Convex Optimiza-
tion, Multi-Agent Systems

I. INTRODUCTION

OVER the last decades, multi-agent systems have been
considered in a variety of applications such as connectiv-

ity and formation control [1] or coverage [2]. The complexity
of these applications has motivated the need of an expressive
language, capable of describing complex task specifications
for planning and control synthesis.

Recently, extensive interest has been shown in planning
under high-level task specifications expressed by Linear Tem-
poral Logic (LTL) [3], [4]. In these methods the tempo-
ral formula, the environment and the agent dynamics are
abstracted into finite-transition systems. Then, graph-based
methods are employed to find a discrete path satisfying the
LTL specifications which is finally followed using continuous
control laws. An important limitation of the aforementioned
methods is the increasing computational complexity as the
number of the agents in the team becomes larger. Towards
minimizing the computational costs, large effort has been
devoted to the decomposition of a global LTL formula into
local LTL tasks whose satisfaction depends on subsets of
agents. Existing methods, applied to heterogeneous agents [5],
[6], most often employ exhausting automata-based approaches
[5]–[7] or more recently, cross-entropy optimization methods
limited, though, to homogeneous agents [8].
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All methods presented so far consider the satisfaction of
LTL tasks without explicit time constraints. On the other hand,
Signal Temporal Logic (STL) [9] can express complex tasks
under strict deadlines. An advantage of STL over LTL, is the
robust semantics [10], [11] it offers that allow the evaluation
of the satisfaction of the task over a continuous-time signal,
rendering the abstractions of the agents’ dynamics obsolete.

Existing methods for planning under STL specifications
consider a global STL formula and find plans as solutions
to computationally prohibitive MILPs [12], [13] or to scalable
convex programs [14], [15]. Other approaches compose [16] or
assume the existence [14] of local STL tasks whose satisfac-
tion involves only a small subset of agents. This facilitates the
design of decentralized frameworks that are inherently more
robust to agents’ failures and often cheaper in terms of com-
munication. Towards decentralized control under global task
specifications, a satisfiability modulo theories (SMT) approach
has been proposed in [17] for tasks described in caSTL, in
which both the global formula and the team of agents are
decomposed. Here, the decomposition is based on a set of
services required for each task and a set of utility functions
specifying the capabilities of the agents. Nevertheless, the
decomposition of a global STL formula in continuous space
and time remains an open problem.

In this paper we propose a novel framework for the de-
composition of a global STL formula imposed on a multi-
agent system into a set of local tasks when the team of agents
is a-priori divided into disjoint sub-teams. The goal of the
decomposition is to make the satisfaction of every local task
dependent only to a subset of agents that belong to the same
sub-team. Initially, the predicate functions corresponding to
STL formulas forming the local tasks are parameterized as
functions of the infinity norm of the agents’ states while their
parameters are found as part of the solution to a convex
program that aims at maximizing the volume of their zero
superlevel set. Although the choice of the parametric family
of the predicate functions is not restrictive, our current choice
allows us to draw conclusions on the volume of a continuous
state-space set by incorporating a finite, but possibly large,
number of constraints in the convex program. The number of
these constraints differs per global STL task but depends solely
on the number of the agents’ states involved in its satisfaction.
Two definitions of the local tasks that differ on the definition
of the STL tasks originating from eventually formulas are
introduced. Finally, for both definitions the satisfaction of the
global STL formula is proven when the conjunction of the
local tasks is satisfied.



The remainder of the paper is as follows: Section II in-
cludes the preliminaries and problem formulation. Section
III introduces the proposed method for STL decomposition.
Simulations are shown in Section IV and conclusions are
summarized in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

The set of real and non-negative real numbers are denoted
by R and R≥0 respectively. True and false are denoted by >,⊥
respectively. Scalars and vectors are denoted by non-bold and
bold letters respectively. The infinity norm of a vector x ∈ Rn
is defined as ‖x‖∞ = maxi |xi|, where x =

[
x1 . . . xn

]T
.

Given a finite set V ,
∏
k∈V Xk denotes the Cartesian product of

the sets Xk, k ∈ V . Given a rectangular matrix A ∈Mn×m(R)
we define the set AX as AX = {Ax : x ∈ X}. Consider the
vectors x ∈ Rn,y ∈ Rm with n ≤ m satisfying x = By.
The matrix B = [bij ] is called a selection matrix if it has
the following properties: 1) bij ∈ {0, 1}, 2)

∑m
j=1 bij =

1,∀i = 1, . . . , n and 3)
∑n
i=1 bij = 1,∀j = 1, . . . ,m. We

denote by θ = [θj ]j∈V =
[
θTa1 . . . θTam

]T
the stacked

vector of θj , j ∈ V = {ak : a1 ≤ . . . ≤ am} and
m < ∞. The cardinality, interior and Lebesgue measure of
a Lebesgue measurable set S is denoted by |S|, int(S) and
λ(S) respectively. The projection of the set X ⊂ Rn onto
Y ⊆ Rm (m ≤ n) is denoted by prY(X).

A. Signal Temporal Logic (STL)

Signal Temporal Logic (STL) is a specification language
defined over continuous time signals [9]. Let µ ∈ {>,⊥} be
a predicate defined after evaluation of a continuous predicate
function h : Rn → R as follows:

µ =

{
>, h(x) ≥ 0

⊥, h(x) < 0
,

for x ∈ Rn. The basic STL formulas are given by the
grammar:

φ ::= > | µ | ¬φ | φ1 ∧ φ2 | G[a,b]φ | F[a,b]φ | φ1 U[a,b] φ2,

where φ1, φ2 are STL formulas and G[a,b], F[a,b], U[a,b]

is the always, eventually and until operator defined over
the interval [a, b] with 0 ≤ a ≤ b. Let x |= φ denote the
satisfaction of the formula φ by a signal x : R≥0 → Rn.
The formula φ is satisfiable if ∃ x : R≥0 → Rn such that
x |= φ. The STL semantics for a signal x : R≥0 → Rn
are recursively given and can be found, e.g., in [9].
STL is equipped with robustness metrics determining
how robustly an STL formula φ is satisfied at time t
by a signal x. These semantics are defined as follows
[10], [11]: ρµ(x, t) = h(x(t)), ρ¬φ(x, t) = −ρφ(x, t),
ρφ1∧φ2(x, t) = min(ρφ1(x, t), ρφ2(x, t)), ρφ1 U[a,b] φ2(x, t) =
maxt1∈[t+a,t+b] min(ρφ2(x, t1),mint2∈[t,t1] ρ

φ1(x, t2)),
ρF[a,b]φ(x, t) = maxt1∈[t+a,t+b] ρ

φ(x, t1), ρG[a,b]φ(x, t) =
mint1∈[t+a,t+b] ρ

φ(x, t1). Finally, it should be noted that
x |= φ if ρφ(x, 0) > 0.

B. Problem Formulation

In this work we consider the following STL fragment:

ϕ ::= G[a,b] µ | F[a,b] µ, (1a)

φ ::=

p∧
i=1

ϕi, (1b)

where 0 ≤ a ≤ b <∞ and p ≥ 1.

Remark 1. The STL fragment defined by (1a)-(1b) is expres-
sive enough to accommodate until STL formulas of the form
ϕ = µ1U[a,b]µ2. By definition of the STL semantics in [18],
for any t∗ ∈ [a, b] the until formula ϕ = µ1U[a,b]µ2 can be
written as ϕ = G[a,t∗]µ1 ∧ F[t∗,t∗]µ2. Hence, if there exists
a continuous function x : R≥0 → Rn and a time instant
t∗ ∈ [a, b] such that x |=

(
G[a,t∗]µ1∧F[t∗,t∗]µ2

)
, then x |= ϕ.

Consider a team of R agents with each agent identified by
its index k ∈ V = {1, . . . , R}. For every agent k let xk ∈
Xk denote its state vector, where Xk ⊆ Rn̄k is a non-empty,
compact, convex set for every k ∈ V . Let n =

∑
k∈V n̄k and

x =
[
xT1 . . . xTR

]T ∈ X, where X =
∏
k∈V Xk is convex

as the Cartesian product of convex sets. Assume that the agents
are decomposed in v smaller teams {V1, . . . ,Vv}, Vl ⊆ V, l =
1, . . . , v that are disjoint, i.e., for any l1, l2 ∈ {1, . . . , v} with
l1 6= l2 it holds that Vl1 ∩ Vl2 = ∅, and satisfy

⋃v
l=1 Vl = V .

Consider a global STL formula φ of the form (1b) with
I = {1, . . . , p} and sub-formulas ϕi, i ∈ I satisfying (1a).
Let [ai, bi] be the interval of satisfaction associated with the
temporal operator of ϕi, i ∈ I and define the sets of always
and eventually formulas of φ as IG =

{
i ∈ I : ϕi =

G[ai,bi]µi
}

and IF =
{
i ∈ I : ϕi = F[ai,bi]µi

}
respectively.

Observe that by definition of the STL fragment in (1a)-(1b)
it holds that I = IG ∪ IF . Assume without loss of generality
that the satisfaction of each ϕi, i ∈ I depends on multiple
agents of different teams Vl and let Vi ⊆ {1, . . . , v}, i ∈ I
denote the set of indices of the agents’ groups that have at
least one member contributing to the satisfaction of ϕi. Since
φ is a global task, its satisfaction requires agents to be fully
aware of the actions of their peers. However, in real-time
scenarios communication between all agents may often be
hard to establish, especially when the working environment
of the agents is large. Addressing this problem, in this paper
we propose decomposing the initial task φ into local tasks the
satisfaction of which depends only on the agents in the same
team Vl. This problem is formally introduced as:

Problem 1. Given a global STL formula φ defined by (1a)-
(1b) and the disjoint sets of agents Vl, l = 1, . . . , v satisfying⋃v
l=1 Vl = V , find STL formulas φ1, . . . , φv such that: 1) each

STL formula φl depends on the agents in Vl and 2) x |=(
φ1 ∧ . . . ∧ φv

)
⇒ x |= φ, if such x : R≥0 → X exists.

III. DECOMPOSITION OF STL FORMULAS

In this Section we design a number of STL tasks the
satisfaction of which depends on a known subset of agents.
Consider the formula φ defined by (1b). Let the predicate
function hi : Z̄i → R associated with the formula ϕi, i ∈ I,



where Z̄i = prRdi (X) and di ∈ {1, . . . , n}. Then, the zero
superlevel set of hi(z̄i) is defined as follows:

Si = {z̄i ∈ Z̄i : hi(z̄i) ≥ 0}. (2)

Here, we assume that hi(z̄i), i ∈ I is a continuous function
whose value may depend on the states of all agents in V . Next,
consider a set of STL tasks φl =

∧pl
qi=1 ϕ̄

l
qi , l = 1, . . . , v

whose satisfaction depends on the corresponding set of agents
Vl. Here, ϕ̄lqi denotes the qi-th formula of φl that is considered
to be the result of the decomposition of the sub-formula ϕi
of (1b). Let zl ∈ Zl ⊂ Rnl be the states of the agents in
Vl where nl =

∑
k∈Vl n̄k and Zl =

∏
k∈Vl Xk. The vector

zl, l = 1, . . . , v can be obtained from x using the following
equation:

zl = Elx, (3)

where El ∈Mnl×n({0, 1}) is a selection matrix. Let dli ≥ 1 be
the number of states in zl, l ∈ Vi contributing to hi(z̄i). Since
the global formula is a-priori given, the elements of zl, l ∈ Vi
the predicate function hi(z̄i) depends on are known. Hence,
for every i ∈ I the following always holds:

z̄i =
[
z̄li
]
l∈Vi
∈ Z̄i, (4)

where Z̄i =
∏
l∈Vi
Z̄ li , di =

∑
l∈Vi

dli, Z̄ li = BliZl and
Bli ∈ Mdli×nl

({0, 1}) is an appropriate selection matrix. Let
[alqi , b

l
qi ] and hlqi : Z̄ li × Θl

i → R, qi = 1, . . . , pl, l = 1, . . . v
denote the interval of satisfaction and predicate function
corresponding to ϕ̄lqi respectively. For every l = 1, . . . , v
we assume that hlqi(z̄

l
i;θ

l
i), qi = 1, . . . , pl is a continuous

function on z̄li belonging to a known family of functions and
its value depends on a set of parameters θli ∈ Θl

i ⊆ Rml
i to

be appropriately tuned. The zero superlevel set of hlqi(z̄
l
i;θ

l
i)

is, then, given by:

Slqi(θ
l
i) =

{
z̄li ∈ Z̄ li : hlqi(z̄

l
i;θ

l
i) ≥ 0

}
. (5)

Considering (5), we pose the following assumption:

Assumption 1. For every θli ∈ Θl
i, i ∈ I, l ∈ Vi the set

Slqi(θ
l
i) is Lebesgue measurable with int(Slqi(θ

l
i)) 6= ∅ and

dim(Slqi(θ
l
i)) = dli.

Observe that Slqi(θ
l
i) ⊆ Z̄ li and Z̄ li is compact. Hence,

λ(Slqi(θ
l
i)) <∞. Let θi =

[
θli
]
l∈Vi
∈ Θi and Θi =

∏
l∈Vi

Θl
i.

Based on the above we propose the following method for
designing φl, l = 1, . . . , v:

Theorem 1. Consider the global STL formula φ defined by
(1a)-(1b). Assume that int(Si) 6= ∅, where Si, i ∈ I is defined
in (2). Let Assumption 1 hold. Define the predicate functions
hlqi(z̄

l
i;θ

l
i) with the parameters θli ∈ Θl

i, l ∈ Vi, i ∈ I found
as solutions to the following optimization problem:

max
θi∈Θi

∑
l∈Vi

λ(Slqi(θ
l
i)) (6)

subject to:

z̄li ∈ Slqi(θ
l
i), l ∈ Vi (6a)

z̄i ∈ int(Si), (6b)

where z̄i satisfies (4). For every l = 1, . . . , v define the
formulas ϕ̄lqi as follows:

ϕ̄lqi =

{
F[alqi

,blqi
]µ̄
l
qi , i ∈ IF

G[alqi
,blqi

]µ̄
l
qi , i ∈ IG

(7)

with

[alqi , b
l
qi ] =

{
[ti, ti], i ∈ IF
[ai, bi], i ∈ IG

, (8a)

µ̄lqi =

{
>, hlqi(z̄

l
i;θ

l
i) ≥ 0

⊥, otherwise
, (8b)

where I = IG ∪ IF , ti ∈ [ai, bi] and [ai, bi] is the interval of
satisfaction associated with each ϕi of the global formula φ.
Let φl =

∧pl
qi=1 ϕ̄

l
qi , l = 1, . . . , v. If there exists a continuous

function x : R≥0 → X such that ρφ1∧...∧φv (x, 0) > 0, then
ρφ(x, 0) > 0.

Proof. Assume that (6) is feasible for every i ∈ I. Then,
by Assumption 1 it holds that int(Slqi(θ

l
i)) 6= ∅, implying

λ(Slqi(θ
l
i)) > 0 for every l ∈ Vi. Assume that a continuous

function x : R≥0 → X exists satisfying ρφ1∧...∧φv (x, 0) >
0. By definition of the robust semantics and the defini-
tion of the min operator for every l = 1, . . . , v we have
ρφ1∧...∧φv (x, 0) ≤ ρφl(x, 0). As a result, if ρφ1∧...∧φv (x, 0) >
0 then ρφl(x, 0) > 0 for every l = 1, . . . , v. By design, the sat-
isfaction of φl depends on a subset of agents, thus ρφl(x, 0) =
ρφl(zl, 0) > 0 where zl satisfies (3). Then, by the definition of
the robust semantics for every l = 1, . . . , v and qi = 1, . . . , pl
we have 0 < ρφl(zl, 0) = minqi ρ

ϕ̄l
qi (zl, 0) ≤ ρϕ̄

l
qi (zl, 0) =

ρϕ̄
l
qi (z̄li, 0). If i ∈ IG , then ϕ̄lqi is an always formula. Hence

due to (7), ρϕ̄
l
qi (z̄li, 0) > 0 implies hlqi(z̄

l
i(t);θ

l
i) > 0 for every

t ∈ [ai, bi], l ∈ Vi. Since θli, l ∈ Vi is a solution of (6), it
holds that hi(z̄i(t)) > 0,∀t ∈ [ai, bi] where z̄i(t) satisfies (4).
Hence, ρϕi(x, 0) > 0. If i ∈ IF , then due to (7) and (8a)-(8b),
for every l ∈ Vi it holds that: ρϕ̄

l
qi (z̄li, 0) = hlqi(z̄

l
i(ti);θ

l
i) >

0. Following a similar argument as before, we can conclude
that hi(z̄i(ti)) > 0 where z̄i(ti) satisfies (4) at ti. This
implies that maxt∈[ai,bi] hi(z̄i(t)) ≥ hi(z̄i(ti)) > 0 leading
to ρϕi(x, 0) > 0. Then, the result follows by the fact that
ρφ(x, 0) = min

(
mini∈IG ρ

ϕi(x, 0),mini∈IF ρ
ϕi(x, 0)

)
. �

In Theorem 1 a complex, possibly non-convex problem
is presented that aims at maximizing the Lebesgue measure
of Slqi(θ

l
i), l ∈ Vi such that K ⊆ int(Si), where K =∏

l∈Vi
Slqi(θ

l
i). In that way, the agents in Vl, l ∈ Vi, may work

towards satisfying µ̄lqi without knowledge of the other agents’
actions while still guaranteeing the satisfaction of the global
µi. Based on (7), all local tasks ϕ̄lqi , l ∈ Vi, corresponding
to i ∈ I inherit their temporal operator from the global task
ϕi. While the local always formulas corresponding to i ∈ IG
share the same time interval as ϕi, a stricter time interval
of satisfaction, defined by (8a), is imposed when i ∈ IF , to
ensure satisfaction of ϕi. In practice, solving the proposed
optimization problem (6) poses several challenges. First, (6)
requires the exhaustive evaluation of the functions hlqi(z̄

l
i;θ

l
i)

over the continuous set Z̄ li , which may be intractable. Another



limitation of the proposed problem is often the lack of a known
formula for computing the Lebesgue measure of a set, unless
hlqi(z̄

l
i;θ

l
i) belongs to a specific class of functions such as

the class of ellipsoids. The aforementioned challenges have
motivated us to seek for a computationally efficient, convex
problem that aims implicitly at maximizing λ(Slqi(θ

l
i)) when

the corresponding predicate function hlqi(z̄
l
i;θ

l
i) is defined as a

function of the infinity norm of z̄li. The computational benefits
of the proposed approach are related to the number of points in
Z̄ li , l ∈ Vi that are considered for evaluation of the satisfaction
of (6b). More specifically, contrary to (6), in this approach
only a finite number of points is evaluated that depends on
the number of states xk of the agents k ∈ Vl, l ∈ Vi involved
in the satisfaction of hi(z̄i). To that end, we consider a special
class of concave functions of the following form:

hlqi(z̄
l
i;θ

l
i) = rlqi − ‖z̄

l
i − clqi‖∞, qi = 1, . . . , pl (9)

where θli =
[
rlqi cl Tqi

]T ∈ Θl
i = R≥0 × Z̄ li is a vector of

parameters to be tuned. Let J lqi = {1, . . . , dli} denote the set
of indices of the elements of z̄li. Given the predicate functions
defined by (9), it follows that:

hlqi(z̄
l
i;θ

l
i) ≥ 0⇔ z̄li(η) ∈ [−rlqi + clqi(η), rlqi + clqi(η)]

(10)
for every η ∈ J lqi , where z̄li(η), clqi(η) denote the η-th element
of the vectors z̄li, c

l
qi respectively. For every i ∈ I and l ∈

{1, . . . , v} consider the following set of vectors:

P li(θli) =
{
ξ ∈ Z̄ li : ξ(η) = −rlqi + clqi(η) or

ξ(η) = rlqi + clqi(η), η ∈ J lqi
}
,

(11)

where ξ(η) denotes the η-th element of ξ. If rlqi > 0, the
set P li(θli) consists of the vertices of a hypercube in Rdli of
edge length rlqi and center clqi . Hence, its cardinality will be
equal to 2d

l
i . If rlqi = 0, then P li(θli) = {clqi}. To guarantee

the convexity of the proposed problem we pose the following
assumption:

Assumption 2. For every i ∈ I the predicate function hi(z̄i)
is concave in Z̄i.

Concave functions can express a variety of tasks such as
connectivity maintenance, formation, reachability and cover-
age tasks [1]. This family includes among others the linear
functions, the logarithm log (·) and the norms with negative
sign, namely g(·) = −‖ · ‖p, p ≥ 1.

Theorem 2. Consider the global STL formula φ defined by
(1a)-(1b) and the predicate functions hi(z̄i), i ∈ I associated
to ϕi. Let Assumption 2 hold. For every i ∈ I assume that
int(Si) 6= ∅, where Si is defined in (2). Consider the functions
hlqi(z̄

l
i;θ

l
i), qi = 1, . . . , pl, l = 1, . . . , v defined by (9) where

θli =
[
rlqi cl Tqi

]T
is the vector of parameters found as the

solution to the following optimization problem:

max
θi∈Θi

∑
l∈Vi

rlqi (12)

subject to:

z̄li ∈ P li(θli), l ∈ Vi (12a)

z̄i ∈ int(Si), (12b)

where z̄i satisfies (4) and P li(θli) is the set defined by (11) for
every l ∈ Vi. For every l = 1, . . . , v define the formulas ϕ̄lqi
based on (7) and (8a)-(8b) and consider the decomposed STL
formulas φl =

∧pl
qi=1 ϕ̄

l
qi , l = 1, . . . , v. If there exists a con-

tinuous function x : R≥0 → X such that ρφ1∧...∧φv (x, 0) > 0,
then ρφ(x, 0) > 0.

Proof. For every i ∈ I, (12) finds the maximum volume
sets Slqi(θ

l
i), l ∈ Vi which are inner approximations of the

projection sets of Si onto Z̄ li . Since int(Si) 6= ∅ for every
i ∈ I, (12) is always feasible, e.g., when rlqi = 0,∀l ∈ Vi and
ci =

[
clqi
]
l∈Vi

satisfying (12b). If there exists l ∈ Vi such that
rlqi = 0, then Slqi(θ

l
i) = {clqi} and hlqi(c

l
qi ;θ

l
i) = 0. Hence, for

every continuous x : R≥0 → X we have ρφ1∧...∧φv (x, 0) ≤ 0.
Assume now that rlqi 6= 0 for every l ∈ Vi. To simplify
notation let the sets W =

{
z̄i ∈ Z̄i : z̄li ∈ Slqi(θ

l
i), l ∈ Vi

}
and W ′ =

{
z̄i ∈ Z̄i : z̄li ∈ P li(θli), l ∈ Vi

}
where z̄i

satisfies (4). Due to (9), W is convex as the Cartesian product
of the sets Slqi(θ

l
i), l ∈ Vi. Observe that W ′ ⊂ W with

|W ′| = 2di > di. By applying Caratheodory’s theorem [19,
Th. 17.1], we write any point y ∈W as a convex combination
of the form y =

∑di+1
j=1 κjy

′
j where y′j ∈ W ′, κj ≥ 0, j =

1, . . . , di + 1 and
∑di+1
j=1 κj = 1. By feasibility of (12) and

due to Assumption 2, we can conclude that hi(y) > 0 for any
y ∈ W . The rest of the proof is similar to that of Theorem
1. �

Remark 2. If for every i ∈ I the predicate function hi(z̄i)
is continuously differentiable and int(Fi) 6= ∅, where Fi =
{θli ∈ Θl

i, l ∈ Vi : (12a) − (12b) are satisfied}, Slater’s
constraint qualification holds. Hence, (12) can be efficiently
solved using Lagrange Multiplier Theory [20].

For i ∈ IF the new STL tasks, defined by (7), are expected
to be satisfied at a specific time instant ti ∈ [ai, bi] which is
considered a designer’s choice. However, in many cases pre-
determining the time instant of satisfaction of a formula may
lead to conservatism and reduced performance. An alternative
would be to allow satisfaction of the local formulas over time
intervals [alqi , b

l
qi ] ⊆ [ai, bi]. Then, in order to guarantee the

satisfaction of the global formula we can define the local
tasks corresponding to ϕi, i ∈ IF as STL tasks of the form
G[alqi

,blqi
]µ. This is depicted in the following Proposition:

Proposition 1. Consider the global STL formula φ defined
by (1a)-(1b). Let Assumption 2 hold. For every i ∈ I assume
that int(Si) 6= ∅, where Si is defined by (2). For every i ∈ I
consider the functions hlqi(z̄

l
i;θ

l
i), l ∈ Vi defined by (9) with

their parameters θli found as solutions to (12). Let the STL
formula ϕ̄lqi be defined as:

ϕ̄lqi = G[alqi
,blqi

]µ̄
l
qi , (13)

where

[alqi , b
l
qi ]

{
⊆ [ai, bi], i ∈ IF
= [ai, bi], i ∈ IG

(14)

is the interval of satisfaction of ϕ̄lqi chosen such that Ti =⋂
l∈Vi

[alqi , b
l
qi ] 6= ∅ and µ̄lqi is the predicate defined by (8b).
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Fig. 1: Agents’ Trajectories under the local STL tasks defined based on (7), (8a)-(8b) and Barrier Function Evolution

Let φl =
∧pl
qi=1 ϕ̄

l
qi , l = 1, . . . , v. If there exists a continuous

function x : R≥0 → X such that ρφ1∧...∧φv (x, 0) > 0, then
ρφ(x, 0) > 0.

Proof. For i ∈ IG the proof follows similar arguments to
Theorem 1. For i ∈ IF , if ρφ1∧...∧φv (x, 0) > 0 then, by (13)-
(14) and the definition of the robust semantics, ρϕ̄

l
qi (z̄li, 0) > 0

implies hlqi(z̄
l
i(t);θ

l
i) > 0 for every t ∈ [alqi , b

l
qi ] and l ∈ Vi.

Since θli, l ∈ Vi are feasible solutions of (12), we may
conclude that hi(z̄i(t)) > 0, for every t ∈ Ti and z̄i(t)
satisfying (4). Hence, ρϕi(z̄i, 0) = maxt∈[ai,bi] hi(z̄i(t)) ≥
maxt∈Ti

hi(z̄i(t)) > 0. The rest of the proof is similar to that
of Theorem 1. �

IV. SIMULATIONS

Consider a team of R = 5 agents. Without loss of generality
the team is decomposed in 3 sub-teams: V1 = {1, 4},V2 =
{3, 5},V3 = {2}. The agents’ states xk, k ∈ V evolve over
time based on the following equation:

ẋk = Akxk + uk, k = 1, . . . , 5

where Ak =

[
−0.5 0

1 −1

]
for every k ∈ {1, 2, 5} and Ak =[

−1 −1
0 −3

]
for k ∈ {3, 4}. The states and inputs of the agents

are subject to constraints, i.e., xk ∈ X = Bdx(0), uk ∈ U =
Bdu(0) where Bε(0) denotes the closed ball with center the
origin and radius ε, dx = 1 and du = 5. Consider the global
STL formula φ =

∧4
i=1 ϕi where ϕi, i ∈ I are defined as:

ϕ1 = G[0,2](‖x1 − x2 − px‖22 ≤ 0.1), ϕ2 = G[2.5,4](‖x3 −
x4‖22 ≤ 0.2), ϕ3 = F[3,7](‖x5 − x4‖2P1

≤ 0.2) and ϕ4 =

F[8,10](‖x5 − x2‖2P2
≤ 0.25), where px =

[
0.3 0.5

]T
and

P1 = diag(4, 1), P2 = diag(0.1, 0.4) are positive definite
weight matrices. Since the predicate functions corresponding
to ϕi, i ∈ I are quadratic, the proposed problem (12) becomes
a Quadratically Constrained Quadratic Program (QCQP) and
is efficiently solved using the Opti Toolbox [21]. The average
computational time of the QCQPs is 0.052sec on an Intel Core
i7-8665U with 16GB RAM using MATLAB.

To verify the validity of Theorem 2 and Proposition 1 we
design agents’ trajectories using the MPC scheme proposed

in [22] with a sampling frequency of 10 Hz and optimization
horizon length N = 1. Each team Vl solves a local MPC
problem without communicating with the other teams since
the satisfaction of the assigned tasks depends only on zl. Here,
a single, time-varying barrier bl(zl, t), l ∈ V is considered and
designed offline encoding the local STL task specifications
φl corresponding to Vl. For every subtask of φl a temporal
behavior is designed for the l-th team such that the satisfaction
of φl with a robustness value r = 0.005 is guaranteed when
bl(zl, t) ≥ 0 is true for every t ∈ [0, 10]. For details on the
design of the barrier function bl(zl, t) see [14], [22]. The local
STL task φl assigned to each team l is defined by (7), (8a)-(8b)
as follows:

φ1 = ϕ̄1
1 ∧ ϕ̄1

2 ∧ ϕ̄1
3, (15)

φ2 = ϕ̄2
2 ∧ ϕ̄2

3 ∧ ϕ̄2
4, (16)

φ3 = ϕ̄3
1 ∧ ϕ̄3

4, (17)

where ϕ̄1
1 = G[0,2] µ̄

1
1, ϕ̄1

2 = G[2.5,4] µ̄
1
2, ϕ̄1

3 = F[7,7] µ̄
1
3, ϕ̄2

2 =
G[2.5,4] µ̄

2
2, ϕ̄2

3 = F[7,7] µ̄
2
3, ϕ̄2

4 = F[10,10] µ̄
2
4, ϕ̄3

1 = G[0,2] µ̄
3
1

and ϕ̄3
4 = F[10,10] µ̄

3
4. Here, to simplify notation we write ϕ̄li,

µ̄li and Sli instead of ϕ̄lqi , µ̄
l
qi and Slqi . In Figure (1a), (1b) the

agents’ trajectories and the zero superlevel sets Slqi(θ
l
i) of the

predicate functions hlqi(z̄l;θ
l
i) are shown when the parameters

clqi , r
l
qi are found as solutions to (12). Since the agents move

on R2 and rlqi 6= 0 for every qi and l ∈ V , the zero superlevel
sets are squares of edge length equal to rlqi . In Figure (1c) the
evolution of the local barrier functions bl(zl, t) is shown. Since
bl(zl, t) ≥ 0 is true for every t ∈ [0, 10] and l ∈ V , we can
conclude that ρφl(zl, 0) ≥ 0.005 for every l ∈ V . Given the
trajectories of the agents, found by the local MPC controllers,
we aim at designing a barrier function bc(x, t) encoding the
global specifications described by φ and evaluating its value
over the interval [0, 10]. If bc(x, t) ≥ 0 is true for every t ∈
[0, 10], then the global formula φ is satisfied. From Figure
(1c) we have that inft∈[0,10] bc(x, t) ≥ 0.0952. Hence, x |= φ.
Next, we consider the alternative definition of the local tasks
presented in Proposition 1. The local tasks φl are defined by
(15)-(17) as before, where now ϕ̄1

3 = G[5,7] µ̄
1
3, ϕ̄2

3 = G[5,7] µ̄
2
3,

ϕ̄2
4 = G[9,10] µ̄

2
4 and ϕ̄3

4 = G[8,10] µ̄
3
4. In Figure (2a) and

(2b) the agents’ trajectories are shown. Following a similar
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Fig. 2: Agents’ Trajectories under the local STL tasks defined based on (8b), (13) and (14) and Barrier Function Evolution

procedure as before, we design a set of local barrier functions
bl(zl, t) and a function bc(x, t) with robustness r = 0.005.
Based on Figure (2c), minl inft∈[0,10] bl(zl, t) ≥ 0, implying
zl |= φl, l ∈ V . Additionally, it holds that inft∈[0,10] bc(x, t) ≥
0.0954. Hence, ρφ(x, 0) ≥ 0.005.

V. CONCLUSIONS

In this work a global STL formula is decomposed to a
set of local STL tasks whose satisfaction depends on an a-
priori chosen subset of agents. The predicate functions of the
new formulas are chosen as functions of the infinity norm of
the agents’ states. A convex optimization problem is, then,
designed for optimizing their parameters towards increasing
the volume of their zero superlevel sets while the temporal
operator and interval of satisfaction are chosen to ensure the
satisfaction of the global formula. Future work will consider
a more sophisticated framework for choosing the interval of
satisfaction of the formulas aiming at increasing the total
robustness of the task.
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[3] S.L. Smith, J. Tumová, C. Belta, D. Rus, “Optimal path planning for
surveillance with temporal-logic constraints,” The International Journal
of Robotics Research, vol. 30, no. 14, p. 1695–1708, 2011.

[4] G.E. Fainekos, A. Girard, H. Kress-Gazit, G.J. Pappas, “Temporal logic
motion planning for dynamic robots,” Automatica, vol. 45, no. 2, pp.
343–352, 2009.

[5] P. Schillinger and M. Bürger and D. V. Dimarogonas, “Simultaneous
task allocation and planning for temporal logic goals in heterogeneous
multi-robot systems,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 818–838, 2018.

[6] Y. Chen and X. C. Ding and A. Stefanescu and C. Belta, “Formal
approach to the deployment of distributed robotic teams,” IEEE Trans-
actions on Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[7] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of
finite ltl specifications for efficient multi-agent planning,” in Distributed
Autonomous Robotic Systems. Springer, Cham, 2018, vol. 6, p.
253–267.

[8] C. Banks and S. Wilson and S. Coogan and M. Egerstedt, “Multi-agent
task allocation using cross-entropy temporal logic optimization,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
Paris, France, 2020, pp. 7712–7718.

[9] O. Maler and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. FTRTFT 2004, FORMATS 2004., Y. Lakhnech
and S. Yovine, Eds. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2004, vol. 3253, pp. 152–166.
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