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1. Introduction

An overarching goal of robotics research is for robots to
co-exist with humans in the real world. Significant ap-
plications of human-robot co-existence include domestic1

and industrial environments.2 Examples of human-robot
co-existence include robotic manipulators safely cooperat-
ing with humans in a manipulation task3 as well as cooper-
ative manned/unmanned flight formation control.4 There
also exist frameworks that address relations in human-
robot collaboration/co-existence.5 A key component of co-
existence is the ability of both humans and robots to adapt
to one another. Adaptation can occur bi-directionally, that
is the human adapts their behaviour to the robot as the
robot adapts to the human. This bi-directional adapta-
tion is also coined co-adaptation.6 Recent work in co-
adaptation is focused in developing trust between human
and robot.6,7 However, it is arguable that the concept of
co-adaptation is much broader than trust.

Human-robot co-existence is indeed an interdisci-
plinary field encompassing robot planning/control, trust,
multi-modal human-robot interaction, natural language
processing, and machine learning. Robot planning and con-
trol investigates how to implement autonomous decision
making and execute actions in a safe manner to accomplish
a task with/for a human. Multi-modal human-robot in-

teraction (HRI) addresses multi-modal communication be-
tween humans and robots, including speech/non-speech re-
lated communication as well as physical interactions/safety
between the human and robot. In order to cooperate, hu-
mans and robots must be able to communicate. Natural
language processing (NLP) handles the use of natural lan-
guage for communication between human and machine.
This establishes a basis of communication between the two.
Finally, machine learning addresses the ability of the robot
to update its knowledge of the environment, task, and hu-
man.

We claim that such an interdisciplinary topic as
human-robot co-existence can greatly benefit from co-
adaptation. Here we focus on three main concepts in co-
existence: a) safe planning/control b) trust and c) multi-
modal HRI with respect to NLP and machine learn-
ing. Each of these concepts can be viewed by a feedfor-
ward/feedback mechanism that describes the exchange of
information and actions between humans and robots (see
Figure 1). The “Planner”, “Control Law”, and “Agent Ac-
tion” boxes of Figure 1 represent the hierarchical levels of
autonomy in the robot system. The “Planner” stage deter-
mines what actions need to be taken, the “Control Law” de-
termines how to achieve the desired action, and the “Agent
Action” is the resulting response of the robot agent. Feed-
forward and feedback exchanges are represented by blue
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and red arrows, respectively. The interactions between hu-
mans and the various levels of autonomy of the robot sys-
tem are dependent on the task. Figure 1 is meant as an
abstract template to depict the exchange of information
between a human and robot agent. To better explain this
template, consider for example a standard navigation task
in which a human is commanding a robot to reach a certain
goal location. First, the human must specify the location
of the goal to the robot, and this information exchange is
represented by the arrow between “Human” and “Plan-
ner”. Second, the “Planner” discretizes the entire robot
workspace and an algorithm chooses the sequence of cells
of the workspace that will lead the robot to the goal. The
sequence of cell locations the robot must pass through is
sent from “Planner” to “Control Law”. The “Control Law”
block then computes the necessary motion command (steer-
ing angle and velocity) based on the robot’s current posi-
tion to reach each individual cell, and ultimately reach the
goal. The steering angle and velocity commands are then
sent to “Agent Action”, whereas the position of the robot
with respect to the cell is fed back to the “Planner” so
that the planning algorithm is aware of the current cell the
robot occupies and can update the plan accordingly. Then,
the agent executes the steering angle/velocity command,
and feeds back its current position to the “Control Law”.
To complete the loop, the arrow between “Agent Action”
and “Human” represents human perception, i.e., the hu-
man sees that the robot is indeed achieving its goal. As
the human sees the robot’s motion, they may update the
plan online in which case the process is repeated for the
new goal to be reached. The last remaining arrow not yet
addressed in this example is from “Human” to “Control
Law” in which the human may provide joystick commands
to directly control the robot steering angle/velocity so that
the human may intervene in the “Control Law” block.

Human(s)

Planner Control Law Agent Action

Fig. 1. Co-adaptation Template

The work presented here is a culmination of devel-
opments within the Swedish project COIN : Co-adaptive
human-robot interactive systems, funded by the Swedish
Foundation for Strategic Research (SSF), which addresses a
unified framework for co-adaptive methodologies in human-
robot co-existence. We investigate co-adaptation in the
context of safe planning/control, trust, and multi-modal
human-robot interactions. This is done in the context of

Figure 1 further confined to each of the three main co-
existence concepts and investigating the synergies thereof.
We present novel methods that allow humans and robots
to adapt to one another and discuss directions for future
work.

The rest of the paper is organized as follows: In Sec-
tion 2, we summarize the related literature in the context
of co-adaptation for human-robot systems. In Section 3,
we summarize co-adaptation in the context of safe plan-
ning and control. In Section 4, new developments in co-
adaptation and trust are presented. Section 5 addresses
multi-modal interaction in the context of co-adaptation.
Section 6 presents challenges in existing methods and di-
rections for future work. Finally, Section 7 concludes the
paper.

2. Related work

2.1. Safe Planning and Control of Robot
Systems

One objective in robotics research is to synthesise con-
trollers for autonomous robotic systems that are given com-
plex task and safety specifications. During the past few
years, the design of algorithms to generate such controllers
has found a wide support in formal verification methods8

that combine two major advantages: temporal logics pro-
vide a rigorous and highly expressive specification means
with some resemblance to the natural language.9 Formal
verification-based algorithms can then be employed to syn-
thesize a robot controller guaranteeing the accomplishment
of the given temporal logic specification in the given envi-
ronment.10,11 Some recent papers12,13 use barrier functions
to satisfy specifications expressed by linear temporal logic
(LTL). The control policies in these works are correct-by-
design but does not address uncertainties, unknowns, dy-
namical environments or how to progress when the given
specification is not feasible.

Several recent studies in temporal logic-based con-
trol have focused on dealing with general sources of un-
certainty,14 or inherent system uncertainty.15 In these
works, an offline synthesis procedure yields a correct-by-
design non-adaptive feedback controller that is not suit-
able for deployment in co-adaptive systems. Some stud-
ied topics include addressing efficient reconfiguration of
robot controllers based on learning of a partially unknown,
static environment,16,17 and a subclass of dynamic envi-
ronments.18,19 Therein, the synthesized controllers adapt
to the system over time, but the representation of the un-
certain elements and the learning procedure are too simpli-
fied to cover the aspects brought by human presence. Non-
feasible specifications have been addressed by revising the
formula but keeping it as close as possible to the original
task20 and by minimizing introduced metrics which mea-
sure the violation of the task.21 This is an important part
of human-robot co-adaption since the likeliness of specifica-
tion feasibility decreases as the robot adapts for the human.
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To our best knowledge, none of the existing literature
in temporal logic-based planning and control has aimed
specifically at co-adaptive human-in-the-loop robotic sys-
tems. Temporal logic specifications have been combined
with a variety of additional criteria, such as robot’s energy
consumption, deadlines etc.22 However, none of them con-
siders a systematic human-in-the-loop approach to permit
co-adaptive planning and control.

2.2. Co-adaptation and Trust

The ability to interact with humans in a socially accept-
able way and adapt to their needs, preferences, interests,
and emotions in a contingent manner is of paramount im-
portance for robots to become achieve trust. Simulating
the tremendous social adaptation abilities that character-
ize human interactions requires the establishment of bidi-
rectional processes in which humans and robots synchronize
and adapt to each other in real-time to achieve mutual co-
adaptation.23–25

In social robotics, while there is a large body of liter-
ature on robots learning skills from human teachers in a
social context, endowing robots with the ability to adapt
to humans via incremental learning is still heavily under-
explored. A strand of approaches leverages advances in au-
tomatic human behavior analysis, affect recognition, and
reinforcement-learning (RL) to incrementally adapt the
robot’s behaviors to maintain the user in a positive affective
state.23 These methods use RL to find an optimal policy
of robot behavior with respect to rewards calculated as a
function of the automatically detected user’s affective state.
Despite the promising results, to date, traditional RL meth-
ods using affect-based rewards are not sensitive to context
and have relied solely on the often noisy outputs of auto-
matic affect detectors programmed in the robot.24 How-
ever, an open problem is how to leverage human feedback
towards the development of robust approaches for affect
co-adaptation in social HRI. Similarly, little previous work
has addressed the development of context-sensitive meth-
ods for co-adapting problems with emotion-based reward
mechanisms that can handle multiple users.23,26

Few researchers have investigated RL for social human-
robot co-adaptation over the last few decades. Different RL
algorithms have been applied to implement adaptive behav-
ior selection in different fields, such as education. For ex-
ample, a Q learning-based effective model was considered
to determine the verbal and non-verbal behaviors of social
robots in an educational game to facilitate effective person-
alization.27 In addition, contextual bandit algorithms were
applied to adaptively control the pace of interaction based
on user performance and effective feedback.28 RL was also
used to personalize the robot according to each individual’s
learning difficulty level.29 An RL framework was proposed
to enable robots to select supportive behaviors in game-
based learning scenarios to maximize task performance.24

Furthermore, we observe a growing trend of applying differ-
ent learning-based mechanisms in the HRI domain.30–34 Si-

multaneously, various RL models have been applied to give
information to robot tutors.35 The results of these studies
influenced individuals’ positive attitudes and contributed
to improved job performance or learning ability.

2.3. Multi-Modal Interaction

Traditional computer systems expect their users to interact
with the system in specific ways. In the 1960s and 1970s,
the main form of interaction was syntactically precise com-
mand line interfaces, and while user design has since moved
on to interfaces that more closely align with how we have
learned to interact with computers, the interaction is still
static, and something the user has to learn.

When humans communicate with humans, the parties
of the interaction adapt how they present their utterances
and reactions to the other, ending up in a situation where
both believe the interaction to be proceeding well enough
for whatever the goal is.36,37 The difference between this
and the traditional computer interface is that the computer
interface does not adapt back to the user – even though the
user does in fact adapt to what the system expects them to
do. Multi-modally interactive systems, and multi-modally
interactive agents, are computer systems that use some part
of how humans are used to adapting to a co-adapting part-
ner to enhance the interaction between the human user and
the robotic, or computerised, system. Such a system can
adapt its style of speaking, including both verbal (choice
of words, pitch, speech rhythm, etc.) and non-verbal ex-
pressions (facial gestures). This kind of entrainment can
be expected to increase the level of rapport between the
user and agent,38 which in turn can increase for example
the learning efficiency.39 Second, such a system can also
adapt the interactional dynamics, which include for exam-
ple turn-taking and the pace of information delivery.40 Just
like humans do, the system can package information into
appropriately sized chunks and then monitor (verbal and
non-verbal) feedback from the user in order ensure common
ground. Repeated positive feedback might mean that the
pace can be increased, whereas repeated negative feedback
means that the instructions must be explained in more de-
tail. The system can also monitor the attention of the users
and adapts its speaking to that.

In situated multi-party interaction, it is not certain
that the users always are attending the system. For exam-
ple, they could shift their attention towards the task at
hand, or towards each other. Since the attention of humans
is limited, the system must be aware of this when inter-
acting with the users.41 While theory about how humans
ground information between each other is well-established
and has good models and abstractions of how those pro-
cesses work, as described briefly above, few interactive
human-to-robot systems actually use those models or ab-
stractions as a basis for interacting with their users. To be
able to fully use models of grounding like that of Clark,36,42

interactive systems must structure their information and
information about what their users know and think about
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that information in some way that relates to the grounding
state; we address this in Section 5.1.

We also consider non-verbal interaction between hu-
man and robot partners in which multi-modal feedback
can help the robot to better understand the state, action
and intention of the human partner, e.g., through gaze
and gesture recognition,43 body movement prediction and
recognition,44–47 force/torque measurements in physical in-
teractions,48 and modeling bio-signals.49 We describe our
method to implement pro-active robot behavior based on
multi-modal feedback in non-verbal settings in Section 5.2.

3. Human-in-the-loop Plan and Control
Synthesis with Safety Guarantees

In this section we discuss the role of co-adaptation in the
context of robot planning and control. We consider a novel
form of robot planning using formal methods and temporal
logic specifications.8 Temporal logic offers ways to express
complex tasks and planning problems as formulas that can
be adapted to human language, and can be used for exam-
ple with speech-type commands.50,51

We address co-adaptation in robot planning and con-
trol using the block diagram in Figure 2. As shown in the
figure, the human(s) can provide several forms of inputs
to the autonomous system. First, the human can express
a desired plan as a high-level temporal logic formula to be
executed. The planner then develops a sequence of actions
implemented by a control law to realize the humans’ plan.
Second, the human can also provide non-speech, joystick
inputs into the system during the low-level control of the
robot. The human receives feedback of the resulting plan by
visual perception of the robot’s actions, and can then adapt
the plan/low-level control accordingly. The robot is able to
adapt to the resulting human actions by using sensor mea-
surements and changing the control law/plan as required
to satisfy the original high-level task.

Human(s)

Planner
Temporal Logic-
based planning

Control Law
Tracking control law,

mixed initiative
control, barrier

functions

Agent Action

Set point/ ref.
trajectory Control input

On-board sensor
measurements

Current system state
w.r.t high level plan

High level task in
temporal logic
specification

Joystick control input

Visual perception

Fig. 2. Co-adaptation for Planning and Control Synthesis

3.1. Language-based Plan Synthesis

There exist several forms of temporal logic specifications,
including Linear Temporal Logic (LTL) and Metric Interval
Temporal Logic (MITL).8 Both LTL and MITL formulas

are composed of temporal operators (always �, eventually
♦, until U , and next ©), logic connectives (conjunction ∧,
disjunction ∨, negation ¬, implication =⇒ ) and atomic
propositions. Simple examples of tasks which can be ex-
pressed are: eventually a must be true (♦a), and b and c
must always be true (�(b ∧ c)). By combining operators,
the tasks can become more complicated such as: a must
be true on a regular basis (�♦a), or eventually b must be
avoided forever (♦�¬b). In MITL each temporal operator
is associated with a time interval I which limits the impact
of the specific part of the formula to a fixed time interval.
The time intervals can include any non-negative values. If
I = [0,∞) the implication is the same as for LTL. In our
work we have limited the expressiveness to time intervals
on the form I = [0, x > 0], which is equivalent to putting
deadlines on the operators. By using LTL or MITL as our
specifications we allow the human who is giving the tasks
to express them in an easy-to-understand, high-level man-
ner. Considering a potentially large environment where the
properties the human is interested in may be satisfied in
multiple non-connected areas as well as overlap with each
other, it can become very complicated and limiting when
described in a conventional point-to-point navigation task.
As a helpful example one can consider a robot charged
with delivering coffee to workers in an open office space.
In the office there are multiple tables and chairs at dif-
ferent locations as well as two coffee machines. The robot
must move to one of the coffee machines, get the coffee
and take it to the worker, without colliding with any of
the furniture. While it would be difficult to express this
task as a low-level specification, and impossible to do so
without limiting the robot to using a specific coffee ma-
chine, with LTL it is as simple as: ♦(at coffee machine) ∧
(at coffee machine =⇒ pour coffee) ∧ (pour coffee =⇒
♦at worker) ∧�(¬at furniture).

3.2. Human-in-the-Loop Planning and
Control

Here, we present methods for control and plan synthesis
(for LTL and MITL) with the consideration of humans in-
the-loop. In both cases the overall framework follows the
steps: i) a human supplies the system with a temporal logic
task, ii) the temporal logic formula is translated into an au-
tomaton which is later intersected with a transition system,
iii) a graph search algorithm is applied to find a nominal
plan, iv) human control input is merged with the nominal
plan through a mixed-initiative controller and, v) the re-
sulting control plan is used by the system to learn some
user-preferred parameter used in the planning. Returning
to Fig. 2, we note that step i is represented by the blue
arrow ‘High level task in temporal logic specification’, step
ii-iii and v all take place within the box ‘Planner Temporal
Logic-based planning ’, and step iv occurs in the box ‘Con-
trol Law Tracking control law...’.

For LTL specifications, we suggest a framework where
the human can assign hard, soft, and temporary tasks (sim-
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ple motion tasks which are performed once) to a robot, as
well as give joystick control input.52 The system applies a
classical automata approach to find an initial plan which
satisfies the hard constraints while balancing the violation
of the soft constraint against the limit on the control input.
During the execution of the plan the human can give input
as temporary tasks and joystick commands. A path patch-
ing approach is used to create small deviations from the
original plan to satisfy the temporary tasks and a mixed-
initiative controller is applied to ensure safety when the
human gives joystick commands. The path patching con-
siders the planned path and searches for the point at which
the goal region of the temporary task can be reached in the
shortest time, while having the least impact on the cost as-
sociated with the non-temporary tasks. This is solved by an
optimization problem on which details can be found in.52

The mixed-initiative controller is an additive control func-
tion which measures the distance to unsafe regions dt and
determines how much of the human control input is used
depending on this distance:

u = ur + κ(dt)uh

where κ(dt) ∈ [0, 1] is designed such that κ = 1 if dt ≥
ds + ε, κ ∈ (0, 1) is decreasing with dt if ds + ε > dt > ds,
and κ = 0 if dt < ds for some safety design parameters ds
and ε. This is satisfied by the function we suggested in:52

κ =
ρ(dt − ds)

ρ(dt − ds) + ρ(ε+ ds − dt)

ρ(s) =

{
e−1/s, s > 0
0, s ≤ 0.

The unsafe regions are in turn determined based on the
criterion that the hard task can not be satisfied whence an
unsafe region is entered. As an example, consider a robot
tasked with repeatedly picking up and delivering packages
at fixed locations (hard task). The robot should avoid an
area where humans sometimes pass through (soft task).
However, this area is in the middle of the shortest path, and
to avoid it the robot must use more resources (exceeding
the control limit). Initially the robot plans to completely
avoid the area, the human co-pilot then uses his/her joy-
stick to steer the robot through the edge of it indicating
that a small violation of the soft task is preferred over us-
ing more resources. The mixed-initiative allows the human
interference since the hard task is not affected. The system
updates its knowledge of the human preference based on
the real-time trajectory, and uses it in future planning.

For MITL we suggest a framework for least-violating
control. By least-violating control, we mean that the frame-
work will satisfy the high level task if it is feasible. We note
that the use of timing in the MITL setup may be difficult
to ensure in the event of humans or obstacles that may ob-
struct the robot. In this sense, least-violating control allows
the system to satisfy the high level task with respect to a
quantitative metric coined the hybrid distance. The hybrid
distance measures the violation of a MITL specification.53

The classical automata approach is applied with the hy-
brid distance as a cost function to find the least-violating
plan. The hybrid distance consists of two quantitative mea-
surements of the violation and a design parameter which
determines a priority balance between the violation types.
The role of the human in this framework is to supply the
system with a task and a value on the design parameter.
This design parameter value can be given directly or via
human control input to the low level controller. The latter
is further discussed below in the context of co-adaption and
learning. The human control input is applied to the system
through a mixed-initiative controller. The mixed-initiative
controller used for MITL follows the same concept as that
for LTL, albeit in the MITL case the unsafe regions are
dependent on time.

In both the LTL and MITL frameworks, mixed-
initiative control is employed to allow a human to control
the system subject to satisfying the hard tasks. Now, let’s
consider how the autonomous system can learn and update
its plan for human preference. This allows the system to
co-adapt with the human in a safe manner. We suggest
two approaches for co-adaption. Both treat the hard task
as fixed and use low-level human control input to change
elements of the soft task to closer reflect the indicated pref-
erence.

First, the human control input to the low level con-
troller can be used in an inverse reinforcement learning
(IRL) algorithm.52,53 This approach can be applied for
both LTL and MITL. In the first case the algorithm is used
to learn the value of a weight parameter which determines
the priority between satisfaction of the soft constraints and
the limit of the control input. It is assumed that the hu-
man is helping the system and the trajectory resulting from
the human’s influence is used to determine how the weight
should be improved.52 For example, if the human steers the
robot in a trajectory that violates the soft constraint to a
greater extent than the system’s plan, this indicates that
the human prefers the limitation on the control input to be
of more importance. By changing the value of the weight
accordingly the system can take this in consideration when
finding a new plan. If the assumption that the human is
consequently trying to help is true, the system will eventu-
ally find the optimal path and the human will no longer be
needed as a co-pilot. For MITL the system instead learns
the value of the internal design parameter in the hybrid dis-
tance. This internal design parameter determines the rela-
tive importance of continuous and discrete violations of the
soft task. The continuous violation consists of unmet dead-
lines, while the discrete violation consists of visits to unde-
sired regions. As for LTL, it is assumed that the human is
helping the system. In this case, we maximize the improve-
ment of the violation achieved by following the trajectory
the human indicates compared to all previous plans.53 An
example of this is if the human steers the robot towards a
target region, using a shorter path than the system’s plan
indicated, by going through an undesired region. This in-
dicates that the human has a preference towards deadline
satisfaction, i.e. minimizing continuous violations. By up-
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dating the design parameter to reflect this, a new plan can
be synthesized which better suits the human’s need. It is
important to note here that this only affects the satisfaction
of the soft constraint. These parameters have no impact on
the planning for satisfaction of the hard constraints. Hence,
safety is not affected by the learning, and if combined with
the mixed-initiative controller discussed in Section 3 safety
is guaranteed independent of the quality of the current es-
timation of the parameters.

Another direction that has been considered for co-
adaption with regards to MITL is to consider a system
where the human has his/her own soft task to satisfy. By
making some assumptions on the task structure and that
the resulting path with human inputs is acceptable for the
task, the system can learn this task using a simple algo-
rithm.54 As for the previously discussed co-adaption ap-
proaches, safety is solely reliant on the mixed-initiative
controller since the impact of the changes caused by the
learning is limited to the satisfaction of the soft constraint.

4. Co-adaptation and Trust

Co-adaptation and trust is vital for human-robot interac-
tion. In this section, we address the issue of trust and co-
adaptation between humans and robots in different sce-
narios. In the next paragraphs we will analyze how our
studied scenarios help robots to build social state perceived
trust with humans, in addition to their specific implemen-
tation that we discuss in the related papers. Combined with
the co-adaptation framework, the problem of trust and co-
adaptation in different scenarios can be comprehensively
analyzed from three aspects, namely the learning frame-
work, the emotion-based co-adaptation approach, and the
comprehensive guidelines for human users.

The overall structure for co-adaptation and trust
is shown in Figure 3, which illustrates the relationship
between our studies and the never-ending circle of co-
adaptation. Specifically, in this Figure 3, we first develop
a co-adaptation framework based on an affective model
as our control law. More concretely, we design an inter-
active model based on the psychological model with ad-
justable key parameters using machine learning methods.
This model can generate robots’ behaviors, such as verbal
utterances or gestures, for human-robot interaction in the
real world. These verbal utterances or gestures that are fed
back to the human will elicit a response from the human.
The reinforcement learning model then observes the hu-
man response and adjusts the parameters of the previous
control model so that the model will produce actions that
are more suitable for a smoother co-adaptation process of
human-robot interaction.

In our HRI scenarios, the participants interact with a
robot implemented with RL. The participants give explicit
or implicit feedback to the robot verbally. While the robot
processes the feedback by taking psychological dynamics
into account, the robot, based on the algorithmic dynamics,
also uses different modalities to influence the participants.

Participant(s)

Planner
(Deep)  Reinforcement

Learning Algorithms

Control Law
Adaptive Model

based on
Psychological

Dynamics

Agent Action
Speech synthesis,
gesture synthesis,

gaze synthesis

Human Feedback

Action indicator

Feedback of overall
performance of the model or

accuracy of the prediction

Explicit feedback through
verbal utterances,

Implicit feedback through an
understanding module

Verbal feedback like "I do not
like this" or explicit feedback

like "particiapnt is 30% un
happy"

Set behavior
category

Fig. 3. Co-adaptation for Trusted Human-Robot Interactions

We mainly considered three scenarios. The first is the
“tutorial scenario”, where a robot acts as a tutor to guide
an interactive learning process. We build a framework as-
sociated with this scenario to support the connection be-
tween different learning algorithms and robotic interfaces.
The second scenario is the group-approaching scenario, in
which a robot needs to learn the best strategy to approach a
group of people while considering the feedback of the agents
in the group. The third scenario is the “escape room sce-
nario”, where the robot acts as a guide or an adversarial
agent. In this scenario, participants are asked to interact
with the robot to find a way to escape the room. For the
escape room, we built another framework that is integrated
with augmented reality (AR) to support the communica-
tion between algorithms and the scenario.

In the previous scenarios, affect-based co-adaptation
approaches are also built to interact with participants. The
scenarios are established and tested with different inter-
active patterns. For example, in the tutorial scenario,24 a
framework that incorporates the algorithm Exp323,24,26,55

allows us to test the overall effect of the algorithm dur-
ing a human-robot interaction. The escape room scenario
is implemented to guide or test player’s internal state dur-
ing their exploration in the escape room scenario. In the
following paragraphs, we will use the escape room scenario
and the logic represented by Figure 3 as an example to
introduce the adaptive process.

4.1. Adaptation in an Escape Room Scenario

In socially assistive robotics, an important research area
is the development of adaptation techniques and under-
standing their effect on human-robot interaction. To inves-
tigate whether the basic trust could be observed during the
human-robot co-adaptation in an escape room scenario, we
present a meta-learning based policy gradient method for
addressing the problem of adaptation in human-robot in-
teraction and also investigate its role as a mechanism for
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trust modelling. By building an escape room scenario in
mixed reality with a robot, we test our hypothesis that bi-
directional trust can be influenced by different adaptation
algorithms. We found that our proposed model increased
the perceived trustworthiness of the robot and influenced
the dynamics of gaining the human’s trust. Additionally,
participants evaluated that the robot perceived them as
more trustworthy during the interactions with the meta-
learning based adaptation compared to the previously stud-
ied statistical adaptation model.

In order to model the interaction in our scenario,
we loosely follow the assumption that a human-like robot
should have the tripartite mental activities, namely cona-
tion, cognition, and affection. This assumption is inspired
by Hilgard’s tripartite classification of mental activities of
human personality, and intelligence in modern behaviour
psychology.56 For our particular escape room scenario,
each mental functionality instance is modelled and im-
plemented as an adversarial Multi-Armed Bandit (MAB)
problem. All of the three instances operate independently
throughout the interaction process. We define three differ-
ent meta-learning processes and for each mention function-
ality. Each meta-learning strategy contains two processes
{ζcp, ζcr}, where c corresponds with a mental functionality,
p and r stand for two different processes.

During the interaction, the robot needs to optimize all
of its policies (πc)∗ to learn the most preferred action for
each MAB environment. To keep the generality of the con-
cept of trust, we also assume the observational states of
each category sc to be fixed for each category c. As stated
before, our methods involve two training processes. Firstly,
we model the human feedback of each action of MAB as
a Gaussian distribution rc ∼ N (µc, (σc)2) for all the aux-
iliary environments. This modelling is based on the condi-
tion that the signal of emotion recognition normally follows
Gaussian distributions.57 Simultaneously, we use ζcp to train
randomly initialized πc to get a meta policy πc

meta. πc
meta

learns the inner structure of the problem, which makes
the adaptation during the interactive session much faster
and data-efficient. Finally, we conduct human experiments
and study different subjective measures along with inter-
action. We used MAML 58 as the meta-learning algorithm
M c and trust region policy optimization (TRPO)59 as the
optimization algorithm for all policies. MAML is a meta-
learning algorithm based on gradient optimization. From a
high-level perspective, meta-learning algorithms aim to im-
prove the adaptability of the learning model. In theory, this
kind of algorithm is able to generate good initialization pa-
rameters for the TRPO algorithm for a set of tasks. Good
parameter initialization allows TRPO to learn better and
perform well even with a small amount of data for train-
ing. An escape room scenario was then built to conduct
a between-subjects study, in which participants interacted
with a Pepper robota. The escape room was created in aug-

mented reality, and participants were required to wear a
Mixed Reality headset HoloLensb to see the walls of the vir-
tual maze, triggers, keys, and the exit door(see Figure 4).
The interaction consists of three parts: an instance of cona-
tion, an instance of affection, and an instance of cognition.
Each instance is triggered by the participant’s position in
the virtual maze, recorded from the HoloLens. For each
instance, the robot chooses one out of four actions, accord-
ing to a probability distribution provided by the algorithm.
Here, an action is implemented as a verbal question. After
the participant answers, the robot updates the probability
associated with the previous question and gives feedback
accordingly. After completing all the interaction steps, the
participant can escape the room, and a run is over.

For the control group, a statistical MAB algorithm
Exp3 (C1), implemented as in the previous studies, was
used. The experimental group interacted under our pro-
posed model, a policy gradient-based solution for the MAB
problem, together with meta-learning (C2).

Fig. 4. One of the interactive processes from a third-person
perspective. Participants wear a mixed reality headset through
which they can observe virtual objects (e.g., the keys, the blue
table, and the orange walls of the escape room) being augmented
into the real world. From this first interaction, through verbal
utterances, the participant starts to understand what the robot
wants to know, and the robot also begins to learn the partici-
pant’s preferences.

Bi-directional perceived trust is measured from the
participant’s point of view, i.e., how trustworthy they per-
ceive the robot, and how much they think the robot trusts
them in return. We evaluate the bi-directional perceived
trust by following Salem et al.’s work on trust evalua-
tion in HRI.60 For this purpose, two hypotheses are made:
H1: the perceived trust of a participant towards the robot
is higher in the meta-learning supported group and H2:
the perceived trust of a robot towards the participant is
higher in the meta-learning supported group. Among two
conditions, a statistically significant effect of the condi-

ahttps://www.softbankrobotics.com/emea/en/pepper
bhttps://www.microsoft.com/en-us/hololens
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tion was found on perceived trust towards the participant,
F (1, 22) = 16.44, p < .001, η2 = .428. Even though the
overall robot’s trust towards the participant depends on the
condition, the differences in dynamics of how the perceived
robot’s trust towards the participant changes in two condi-
tions are not statistically significant, F (3, 66) = 1.673, p =
.181, η2 = .071.

In summary, we designed an escape room scenario in
mixed reality to evaluate the proposed method and inves-
tigate its potential effects on the perceived bi-directional
trust. We point out that the meta-learning processes could
be understood as a basic trust model for fast adaptation.
This allows people who interact with robots to gain a per-
ception of trustworthiness towards the robot. Our results
show that not only did the algorithm adopt a higher learn-
ing rate after the meta-learning process, but it also in-
creased the participant’s perception on how trustworthy
the robot perceives them.

4.2. Summary

While working on this project, we tried to implement dif-
ferent scenarios to demonstrate that fluid human-machine
interaction can be achieved by adapting to human needs.
However, this adaptation can happen in different forms,
given that it is simple engineering, meta-learning, learning
of few, or just pure reward engineering. When the same
smooth interaction occurs multiple times in a task, basic
trust is generated. Although we have implemented differ-
ent scenarios to build human-robot interaction scenarios,
we use an escape room scenario as an example to illus-
trate the contribution of our research to socially conscious
human-robot co-adaptation.

As a scenario implemented in our project, this sce-
nario is typical of our overall project thinking direction. In
this direction, our project adopts different machine learn-
ing mechanisms to realize different dynamic processes of
socially aware human-robot co-adaption, including human-
robot interaction processes in continuous and discrete
control scenarios. These projects have collectively helped
us understand the trust and co-adaptation problems in
human-robot interaction, provided us with a deeper under-
standing of these problems, and inspired our future research
topics.

5. Multi-Modal Interaction

This section addresses how co-adaptation is addressed for
multimodal interaction between humans and robots. These
types of adaptation happen in verbal or non-verbal modal-
ities, depending on how the system interacts with the user
and what the mutual task is. In Section 5.1, we describe
our work in using behaviour trees and knowledge graphs to
model systems that can adapt to user behaviours through
verbal adaptation. Section 5.2 describes our approach for
non-verbal adaptation using behaviour trees and reinforce-
ment learning.

5.1. Modelling verbal adaptation using
behaviour trees and knowledge graphs

This sub-section addresses verbal adaptation from a robot
towards a reacting user. An example of the type of adap-
tation we describe here would be when a conversational
system adapts its speech to the user by repeating a mis-
understood utterance, or by changing the way it plans to
refer to an entity by knowing that the person is more likely
to understand a reference A than another reference B. Our
scenario for exploring this form of adaptation is one where
a robot is presenting a piece of art to a human, similar to a
museum setting, as seen in Figure 5. In such a setting, it is
important that the presenter (the robot) adapts the presen-
tation to the listener (the human), based on the feedback
it receives.

Fig. 5. The robot presenting a piece of art to a human listener.

Human(s)
Audience

Planner
Behaviour tree,

agenda,
knowledge graph

Control Law
Pathfinding through
presentation agenda
& knowledge graph

Agent Action
Speech synthesis,
gesture synthesis,

gaze synthesis

Speech, explicit
feedback

Backchannels,
implicit feedback

Perception of speech,
gestures, gaze, etc.

API calls
Property to

present

Monitoring, "speech is
80% done", "word X
is done", "gaze event

done", etc.

Feedback or absense of
feedback has implications

for grounding state

Fig. 6. Co-adaptation for Multi-Modal Interaction (verbal)

Figure 6 shows an adaptation of Figure 1 for the applica-
tion of multimodal presentation between a human and a
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robot. The data that flows from the robot to the user con-
sists of verbal and non-verbal feedback and communicative
information, presented as speech, gestures, facial or body
expressions, as well as gaze. The robot’s task is to interpret
such information given by the user to adapt its presenta-
tion, whereas the user’s task is to understand the informa-
tion being presented, and provide feedback which indicates
the user’s level of understanding.

The presentation system can be analysed by mapping
individual components to the blocks of Figure 6. From this
perspective, the planner component (the leftmost box in
the figure) of the system is a behaviour tree communicating
with a knowledge graph, which serves as a user model. The
shortest-term adaptation happens through a microplanner
component which is controlled by the behaviour tree using
information extracted from and stored in the knowledge
graph. The behaviour tree is shown in Figure 7.

Table 1. An example of the system output from Sec-
tion 5.1.1. GC is grounding criterion, att is atten-
tion, und is understanding and acc is acceptance
as described by Clark and Brennan36 and Clark.42

Speaker Speech Interpretation / action GC

Robot: Van Gogh died i- Att
User: Huh? Negative hea. Und
Robot: Vincent van Gogh... Alternative reference Und
User: I don’t recognise

that name. Negative und. Und
Robot: the artist... Und
User: Oh. Positive und. Und
Robot: died in 1890. Acc
User: ... Not meeting GC Acc
Robot: ... 130 years

ago. Alternative reference Acc
User: ... Not meeting GC Acc
Robot: Right? Eliciting acceptance Acc
User: Yeah, sure, I got it. Positive acceptance Acc

5.1.1. System components

A behaviour tree controls the presentation system’s be-
haviour priority. The primary motivation for using a be-
haviour tree for modelling this type of high-level behaviour
is that it allows the system to model the concepts of up-
ward evidence and downward completion, which are cen-
tral concepts in the theory of feedback and grounding in
human-human communication.42 According to Clark, pos-
itive feedback on a high level also implies positive feedback
on all lower levels, since it is impossible to accept or under-
stand an utterance if one has not also heard and attended
to it, and the same holds in reverse for negative feedback.
This basic correspondence is modelled in the coloured boxes
found in Figure 7.

In Figure 7, behaviour tree selectors and sequences are
used to prioritise first finding a user (top left), then inter-
acting with that user and giving them the turn if they are
trying to speak. If the user does not take the turn, the
robot takes it by first reacting to user feedback, if applica-
ble, and then ensuring joint attention, joint hearing, joint
understanding and joint acceptance in order, as defined by
Clark.42 The order of the operations emulates Clark’s up-
ward evidence. After these operations have been allowed to
modify the system’s planned utterance, it speaks (bottom
right).

To serve as a source of structured information for how
the behaviour tree retrieves and stores information about
the presentation and the users attending to that presen-
tation, a knowledge graph extracted from WikiData63

is used. This structure is used for two purposes. First,
is queried to give the system ways to refer to previously
grounded information when trying to present new informa-
tion. Second, it is itself used to store the user’s grounding
status (i.e., how well the user has understood the presented
facts) in terms of those pieces of information. Wikidata
and the similar DBPedia are both commonly used to drive
content-independent chatbots and dialogue systems.64–66

An example of how the state of grounded information
changes over the course of a presentation is shown in Table
1. The user gives verbal feedback indicating that they do
not know who Vincent van Gogh was. At first, this feedback
is unclear, resulting in a minor correction corresponding to
the middle box in Figure 6. As the human gives more clear
negative feedback indicating that they do not know who
van Gogh was, the system must re-start its utterance com-
pletely, using the referring expression the artist instead.
As the user responds positively to the completed line The
artist died in 1890, the knowledge graph is updated with
positive acceptance in regards to the statement that this is
true for the user, and the behaviour tree in Figure 7 moves
on with the presentation by choosing some other statement
to present, if possible and appropriate.

The types of feedback that update the knowledge
graph flow through either the blue edge labelled ‘speech,
explicit feedback’, or the red edge labelled ‘feedback or ab-
sence of feedback...’ in Figure 6. The former is used for
feedback that directly changes the state of the knowledge
graph, like if the user says “I don’t know who Vincent van
Gogh was.” The latter is used if the user’s implicit feedback
or absence of feedback does or does not meet the grounding
criterion set in the microplanner.

In the terminology of Levelt,67 microplanning is the
process through which a speaker chooses the way to present
a piece of information that takes the audience’s perspec-
tive into account. The behaviour tree shown in Figure 7
uses a microplanner component derived from this defini-
tion to store the utterance it has decided to present from
the knowledge graph. This corresponds to the middle box
labelled ‘Control Law’ in Figure 6. We use a basic theme-
rheme format for our utterances. The theme of an utterance
is the thing or person being talked about, and the rheme
is the statement being presented about the theme. Viewing
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Fig. 7. The behaviour tree driving the interactions described in Section 5.1. For a brief explanation of the tree, see Section 5.1.1.
The graphical representation of the tree is adapted from;61 rounded nodes represent queries and rectangular nodes represent actions.
Nodes with text in italics contain sub-trees that were omitted for space; for their implementation, see.62

the dialogue in terms of what is being spoken about and
what is being said about the theme maps well to a knowl-
edge graph. The rheme can be broken down into a verb-like
string and a reference to a noun phrase through the knowl-
edge graph. As the user gives or does not give feedback in
real time (‘backchannels, implicit feedback’ in Figure 6), as-
sumptions about the grounding state may be met or unmet,
which changes which references to the knowledge graph are
used, making the behaviour tree fill in the slots of the mi-
croplanner with alternative edges of the knowledge graph
if possible. This serves as the system’s primary short-term
adaptation.

5.1.2. Evaluation

To evaluate the presentation robot, 30 test participants
were recruited to interact with it as it presented a painting
(as seen in Figure 5). We compared two versions of the sys-
tem described as follows. In one version, the robot adapted
the order of its presentation to the feedback given by the
user. This feedback was classified by a Wizard of Oz. In the
other version, the robot would always proceed through its
presentation in the same way, ignoring any feedback from
the user. Each participant interacted with both versions,
using a within-group experiment design.

Subjective evaluations, performed using the God-
speed68 and Social Presence69 evaluations, showed that
users consistently preferred the adaptive system.70 When
users were asked what the differences between the two sys-
tems were, they answered in a way that generally indicated
that they did not pick up that one system was adapting to
them and the other not, which implies that the differences
in subjective evaluations were subconscious. We have also
shown that users prefer adaptations that relate to the type
of feedback that was given by the user.62

These results show that the types of feedback that flow
over the blue edges labelled ‘speech, explicit feedback’ and
‘backchannels, implicit feedback’ are useful for creating an
adaptive presentation system that adapts in a way that is
actually preferred by users.

To specifically evaluate the use of a knowledge graph
to adapt the presentation, an indirect study was performed
over Amazon’s Mechanical Turk crowdworker platform. A
simulated user was implemented that interacted with the
system in dialogues that followed certain pre-determined
scripts. In these dialogues, the simulated user behaved in a
predetermined manner where they would react with strong
or weak positive feedback to the system’s first presented
line, and then react with negative hearing or understand-
ing to the system’s second line. After the user responded
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negatively, the Mechanical Turk evaluators were given four
options for how the system should express its repair to the
utterance that had failed.

When the simulated user reacted with negative hear-
ing, we found a significant ordering effect where repeating
the failed utterance slowly was the most highly-ranked op-
tion. When the simulated user responded with negative un-
derstanding, an alternative reference that referred back to
the first thing the system had said was most highly-ranked.
This shows that users preferred different ways of repairing
failed utterances depending on both previously grounded
information and on the form of the feedback given by the
user, in this case the simulated user.62

5.2. Modeling non-verbal adaptation using
behavior tree and reinforcement learning

This section addresses co-adaptation in non-verbal human-
robot interaction. Here, we focus learning and adaptation
of system’s behavior to implement robot proactive behav-
ior as introduced in.47 As an example, consider a human-
robot setting in which the robot’s behavior is continuously
adapted using reinforcement learning to better coordinate
with a human partner. Our scenario for exploring this form
of adaptation is a collaborative human-robot packaging sce-
nario in which the robot proactively helps the human by
understanding the intention of the human partner by inter-
preting the body motion data captured by a body motion
capture suit.

In this task setting, the human partner has two options
to choose from: box type 1 or box type 2. Then, the human
picks up the box and moves it to the robot. The box can
be arbitrarily placed in two positions in front of the robot
based on the human’s preference. The robot observes the
position and type of the box by scanning it. Depending on
the type of box, the robot picks up the right item and puts
it inside the box. Then the human can either ask for more
items or wrap up the box. If more items are needed, the
human puts an air bubble wrap into the box, and the robot
puts more items inside the box. Otherwise, the human picks
up the wrap tape, and the robot lifts the box to help the
human to complete the wrapping. However, this plan adds
unnecessary delays to the task execution since the robot
behaves re-actively. The robot picks up the items for the
right box, after the box is placed and scanned. However,
the robot can gather this information well before the box
is placed on the table. The learning problem we address
here is to train a model that enables the robot to estimate
the state of the human in the task by observing raw body
motion data. Based on such modeling, the robot can make
proactive action decisions. Proactive decisions are made as
soon as the potential benefits of timely assistance outweigh
the risk of incorrectly acting on incomplete observations
which adds extra delays to the task completion to retract
the incorrect action.

In such a setting, it is important for the robot to learn a
general model of human body motion and adapt the model

to each person as different people not only differ in size,
but also in behavior and the way they complete a task.
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Fig. 8. Co-adaptation for Multi-Modal Interaction (non-
verbal)

Figure 8 shows an adaptation of Figure 1 for the ap-
plication of learning and adaptation of high-level human
intention in non-verbal collaborative settings. The robot
perceives non-verbal measures of human, in this example,
human body motion data, representing the state of the per-
son in the task. Besides, high-level task information is also
provided to the robot to correct its behavior in cases the
robot fails to be proactive or makes a wrong proactive deci-
sion. Such information is also used as the reward signal for
the robot to adapt its behavior using reinforcement learn-
ing. The human partner and the robot in turn perform their
share of the task and wait for the other partner to also com-
plete the part of the task. The joint adaptation is done to
enable the robot to perform proactive actions to reduce the
total waiting time of the task. The human partner adapts
to the robot by behaving such that the robot model can
interpret the behavior more accurately.

5.2.1. System components

A behavior tree is integrated in our learning framework
to structure the prior knowledge. The behavior tree is man-
ually designed and it contains a complete plan for the robot
to finish the task together with the human partner. How-
ever, the behavior tree performs the task completely re-
actively based on the feedback received from the task and
does not include any trainable or adaptable parameter.
Therefore, the performance of the system with the behavior
tree alone is not optimal.

In our work,47 we proposed to equip the behavior tree
with a Q-learning component that receives any temporal
measure of human body from different sensing modalities,
e.g., body motion data or gaze information that comprise
the information required to estimate the state of the person
in the collaborative task. The Q-learning node is integrated
into the behavior tree to make proactive action decisions.
The node optimizes a Q-function that receives an action
decision and multi-modal sensory observations, as well as
the state of the behavior tree as the input, and recurrently



September 20, 2022 9:51 output

12 Sofie Ahlberg et al

updates its internal state. It outputs a value to each pair
of the internal state and the action decision. The action
decisions come from an action set. For every action in the
set, a trained Q-function assigns a value proportional to the
expected amount of reduced waiting time when taking the
proactive action decision at the given time-step compared
to not taking any proactive decision. The state of a node
of a behavior tree can be either running, success, or failure.
The Q-learning node returns failure when it needs more
observation to make a proactive decision, i.e., when the ac-
tion “wait to collect more data” has the highest value. The
Q-learning node changes its status to running when an ac-
tion decision other than “wait to collect more data” has a
high positive value given the multi-modal observation until
the current time-step. Upon successful completion of the
proactive action decision, the node returns success.

5.2.2. Evaluation

We evaluate the learning framework on a collaborative
packaging task in which a person wears a Rokoko motion
capture suit and collaborates with an ABB YuMi robot. In
total, 7 students from the lab (4 males and 3 females in
the age range 24 to 32 years old) participated in this ex-
periment. We compare our method with a baseline method
that trains a supervised classifier. The implementation of
the baseline is described in the following.
Supervised learning baseline: Given the motion data as
input, we trained a classifier that outputs the right robot
action and a measure of uncertainty at every time-step.
When the uncertainty is higher than a threshold, the out-
put of the model is discarded and the command “wait to
collect more data” is executed. Otherwise, the action given
by the output of the model is executed. The entire network
is trained end-to-end with supervised learning by provid-
ing the correct action labels for every piece of multi-modal
sensory observations. The new node replaces the Q-learning
node.

We evaluated the efficiency of our proposed RL based
adaptation mechanism and compared it to the baseline pro-
vided a range of threshold values. Our proposed RL method
outperforms the baseline approaches in terms of the aver-
age reward. The best performance for the baseline method
is achieved by implementing the uncertainty measure us-
ing bootstrapping and dropout techniques and setting the
threshold to 0.3 (please refer to47 for complete details). In
this case, the average reward is about 2.9 seconds which is
considerably lower than the average reward given by the
proposed RL framework (3.4 seconds). Besides, please note
that the proposed RL framework does not require any su-
pervision, while the baseline methods are trained using an-
notated motion data.

6. Challenges and Future Work

In this section we address remaining challenges and direc-
tions for future investigations to improve upon co-adaptive

methods for human-robot co-existence.

6.1. Human-in-the-loop Planning and
Control with Safety Guarantees

Despite the significant results presented, there are still open
questions to be addressed for human-robot co-adaption in
the context of planning and control. First, much of the
presented work focuses on graph-based methods for devel-
oping safe-by-design plans that satisfy the high-level tem-
poral logic specifications. One known shortcoming of these
approaches is that they do not scale well with the num-
ber of states in the system. If the number of states in the
transition system is too large, the development of such safe-
by-design plans may be intractable. Future work needs to
address how such plans can be computed for larger systems.

Furthermore, the existing methods presented here are
dependent on a pre-defined task for the robot agents. In a
co-adaptive interaction scenario, this task would be given
and possibly modified online via communication with a hu-
man. Although natural language processing methods exist
to convert speech to text, the temporal logic specifications
themselves do not reflect true human speech. Temporal
logic offers a rich method of specifying tasks, but the more
complicated the task, the less “human-like” the specifica-
tion. For example, humans do not typically speak in com-
binations of “always”, “eventually”, “until”, “next”, and
“never”. Future work will investigate methods to convert
speech into correct-by-design task specifications to bridge
the gap between spoken human commands and temporal
logic specifications.

With regards to motion planning, much of the cur-
rent framework was designed for homogeneous groups of
robots with single integrator dynamics. Although some
initial progress was made towards heterogeneous multi-
agent planning, the method was more heuristic and does
not yet extend to a co-adaptive framework for hetero-
geneous robots. Furthermore, the focus on motion plan-
ning for single-integrator dynamics is restrictive. Future
work should address heterogeneous collaboration with more
complex robot dynamics (e.g., double integrator, Euler-
Lagrange) in the context of human-robot co-adaptation to
further improve performance.

Finally, the human preference learning considers so-
cial acceptability from the perspective of satisfying the
hard/soft tasks by letting the human emphasize to what
degree the soft task should be satisfied. This is somewhat
restrictive, and could be improved by also considering how
a human would prefer a task to be satisfied. In many cases,
there are multiple ways of satisfying high level tasks. The
proposed algorithm seeks the optimal plan based on pre-
defined weights on the edges of the transition system (e.g.
reflecting transition time or distance). However this opti-
mal plan may not be the human preference. Future work
should address how the weights of the system should be up-
dated online to consider human-preferred ways of satisfying
the task.



September 20, 2022 9:51 output

Co-adaptive Human-Robot Cooperation: Summary and Challenges 13

6.2. Co-adaptation and Trust

In Section 4 we discussed the mechanisms that enable
trusted co-adaptation processes and the related experimen-
tal studies on different co-adaptation mechanisms. How-
ever, there are still many areas for improvement. This is
mainly related to three aspects. The first part is the defini-
tion of trust mechanisms. The trust we define at a generic
level may not match well with the overall smooth com-
munication process of human-robot interaction. It is likely
that the feedback that satisfies the social needs of humans
does not necessarily represent a trusting relationship be-
tween humans and robots at a higher level of meaning. In
psychological terms, it is simply “basic trust”. The study
of higher-level trust relationships may require us to rethink
and expand our definition of the human-robot interaction
scenario.

The second aspect for improvement is the study of in-
teraction patterns. A better interaction model should take
into account all aspects of information in the interaction
process. In previous studies, we have considered mostly a
single model, but in future studies, multi-modality will be
our main focus. This will include natural language, image,
gaze, gestures, and other models related to the HRI pro-
cess. Considering this aspect does not only mean that we
will face more problems in data collection and deal with its
complexity, but also our algorithms need to take in more
inputs and sort out the relationship between them.

The third aspect is the study of the interaction algo-
rithm itself. Most of the previous interaction algorithms for
personalized adaptation used in HRI are based on general
reinforcement learning algorithms, which are not optimized
for the interaction modes and the co-adaptation required in
the interaction modes. We will consider how to optimize the
reinforcement learning algorithms to co-adapt faster during
the HRI.

These three components form the focus of future work
for co-adaptation and trust. They are also important prob-
lems to achieve better future human-robot interaction.

6.3. Multi-Modal Interaction

The solutions presented in Sections 5.1.1 and 5.1.2 address
how feedback can be interpreted and mapped to an un-
derstanding of the user. What is not addressed is how the
feedback that creates such an understanding is identified in
the first place, and categorised as negative or positive feed-
back on various grounding levels. Buschmeier and Kopp
have argued and created models for modelling user feed-
back over time as a Bayesian process where the user’s feed-
back is combined with their previous state to create a new
grounding state.71 While an approach like this does not nec-
essarily extend to our knowledge-aware scenario supported
by a graph, since the grounding state would have to be
quantified in terms of what parts of the knowledge graph a
user is reacting to, the general sentiment that feedback is
timing-dependent holds.

The modalities and types of feedback that are most
important for a presentation agent that mostly holds the
turn, taking responsibility for driving the interaction for-
ward towards some goal, may be different from those that
are important for a more open-ended conversational agent.
Back-channel signals (short signals that do not aim to take
the turn away, like ”uh-huh”, ”mhm” or a short nod72)
from the system towards the user are almost absent in the
presentation scenario, but are crucial in more equal com-
munication.

The knowledge graph representation presented in Sec-
tion 5.1.1 has the advantage of generalising and offloading
the generation of content to the knowledge on which the
presentation is based. However, it fails to represent informa-
tion that does not relate to grounding, but is also not quan-
tifiable in terms of commonly accepted information. Atti-
tudes towards facts or entities in the graph are not ground-
ing information. A user must have accepted that the robot
holds a piece of information to be true to have an opinion
on it. Pitchl et al. address this issue by adding edges to
their knowledge graph corresponding to information about
the user or the system (which are added to the graph as
nodes). However, they also represent what we would con-
sider grounding information in this way, which is unlike our
approach.73

In section 5.2, we presented a solution for learning
and adaptation based on reinforcement learning for non-
verbal human-robot collaboration settings. One limitation
of the introduced method is that it requires manual design
of the behavior tree. This limitation hinders the approach
to adapt the action-selection policy to changes in the task
without redesigning the behavior tree by an expert. An al-
ternative way to this is to learn the behavior tree based on
human user demonstrations. However, the main challenge
is that data-collection processes which include humans are
quite expensive. As a part of our future research, we will
study the approaches that enable the robot to infer a task
faster from human demonstrations.

Finally, in addition to future research directions
in “Human-in-the-loop Planning and Control”, “Co-
adaptation and Trust”, and “Multi-Modal Interaction”, fu-
ture work should also tackle the problem of combining each
of these subsections together for an interconnected frame-
work.

7. Conclusion

In this paper, we summarized a framework for co-adaptive
human-robot co-existence. This body of work was the
culmination of developments from the Swedish project
COIN: Co-adaptive human-robot interactive systems by the
Swedish Foundation for Strategic Research (SSF). We ad-
dressed three main concepts in the context of co-adaptation
including safe planning/control of robot systems, trust, and
multi-modal interaction. Regarding safe planning/control
methods, we summarized a methodology that allows hu-
man input in both high and low-level stages of the plan-
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ning/control setup and can adapt high-level tasks to hu-
man preference. We then discussed how to build multiple
natural and trusted human-robot co-adaptation scenarios.
By studying how to make the human-robot adaptation and
interaction process smoother, we established different inter-
active algorithms that take human feedback into account
in the robot’s learning and decision-making process. Fi-
nally, verbal and non-verbal methods were addressed for
co-adaptation in multi-modal interaction. For verbal-based
approaches, we have shown how a robot can present infor-
mation (e.g., related to a piece of art) to a human audience
and adapt that presentation based on the verbal feedback it
receives. We then addressed non-verbal interaction and pro-
posed a reinforcement learning-based framework to antici-
pate and adapt to human/task objectives. The framework
learns proactive behaviors by balancing between timely ac-
tions and the risk of making mistakes. The experiments
show that this form of adaptation enables faster coordi-
nation between human and robot partners by eliminating
unnecessary delays.

In addition to summarizing our methodologies, we
have outlined avenues for future investigation regarding co-
adaptation. With respect to safe planning/control, the next
steps include extensions to heterogeneous systems, large-
scale systems, addressing human-preferred methods of sat-
isfying tasks, and translating human speech to temporal
logic specifications. In the future implementation of large-
scale robotic systems, effective computing is as important
as physical human interaction and only if we are careful
with the modeling process of human feedback, can we have
the real human-in-the-loop thinking at the affective level.
For multimodal presentation agents, the main question re-
mains how to map feedback given by the audience to an
internal representation of the user’s level of understanding.
Such a representation can in turn be used to adapt what
the agent presents or how the agent presents it. A ques-
tion we have not addressed here is what different types of
feedback from the audience mean, i.e., if there are contexts
where outwardly positive feedback has an internal nega-
tive meaning because of context, or vice versa, and if this
changes depending on the presentation context (museum,
classroom, etc.) or the number of people in the audience
(one-on-one, a large classroom, a lecture hall, etc.). Future
research will be focused on learning the behavior tree to-
gether with the Q-learning node and test the method on
potentially more complex collaborative tasks.
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