
Further Results on Leader-follower Multi-agent Formation Control with
Prescribed Performance Guarantees

Fei Chen and Dimos V. Dimarogonas

Abstract— Distributed formation control for leader-follower
multi-agent systems under prescribed performance guarantees
is addressed in this paper. Leader-follower is meant in the sense
that a group of agents with external inputs are selected as
leaders in order to drive the group of followers in a way that
the entire system can achieve the target relative position-based
formation within certain prescribed performance transient
bounds. In previous work, we have proposed a distributed
control law for tree graphs to achieve consensus within certain
prescribed transient performance when the decay rate of the
performance functions is within a sufficient bound. In this
paper, we further discuss the general graphs with cycles. Some
necessary conditions on the graph topology are proposed in
order to achieve the target formation while satisfying the
prescribed performance bounds. We also discuss the roles of
the cycles for the convergence benefits in this leader-follower
framework. Finally, we illustrate the results with the simulation
examples.

I. INTRODUCTION

The class of relative position-based formation control [11]
is specified by desired relative positions between neighboring
agents, which plays an important role in achieving or main-
taining desired geometrical patterns via the cooperation of
multiple robots. In [11], the authors summarise the first and
second-order relative position-based formation protocols that
are extended from the first-order [12] and second-order [13]
consensus protocols, respectively.

In this work, we study relative position-based formation
control in a leader-follower framework, that is, one or
more agents are selected as leaders with external inputs in
addition to the first-order formation protocol. The remaining
agents are followers only obeying the first-order formation
protocol. Related research that has been done in the leader-
follower framework mainly focus on controllability of leader-
follower multi-agent systems [7] and also leader selection
problems [14], [5] to achieve optimal performance.

Prescribed performance control (PPC) was originally pro-
posed in [1] to prescribe the evolution of system output or
the tracking error within some predefined region. When it
comes to multi-agent systems, PPC for multi-agent average
consensus with single integrator dynamics is presented in [8].
Compared with classical results of consensus or formation
control for multi-agent systems, applying PPC for multi-
agent systems can achieve additional transient behavior be-
sides the consensus or formation purpose. Funnel control,
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which uses a similar idea as PPC was introduced in [6] for
reference tracking.

In such a leader-follower framework, we aim to design the
leaders only such that the entire system achieves a relative
position-based formation within certain performance bounds.
We apply a PPC law only to the leaders while the followers
will just follow the leaders by obeying the first-order forma-
tion protocol without any further control and knowledge of
the prescribed team bounds. Compared with [9], in which
the multi-agent system only has one leader that is treated as
a reference for the followers, we focus on a more general
framework in the sense that we can have more than one
leader and the leaders are designed to steer the leader-
follower multi-agent system achieving the target formation
within the prescribed performance bounds. The combination
of uncertain topologies, leader amount and leader positions
makes the problem tough to solve. Moreover, the leader
can only communicate with its neighboring agents. Prelim-
inary results of first and second-order consensus for leader-
follower multi-agent systems with prescribed performance
guarantees have been presented in [2], [3], respectively. In
this paper, we extend our previous results to more general
graphs with cycles and discuss how the cycles will benefit
the convergence results. The extension of general graphs with
cycles has more practical applications compared with our
previous results for tree graphs and offers a complete theory
for undirected graphs. The challenge of general graphs with
cycles is that we cannot utilize the positive definiteness of
the edge Laplacian for convergence analysis directly, thus
we need to partition the graph into a spanning tree and the
remaining edges that complete the cycles. We also derive
necessary conditions on the graph topologies under which we
can design the leaders to achieve the target formation within
certain prescribed performance bounds. This introduces for
the first time criteria on how to choose the leader amounts
and leader positions to meet the target formation while
satisfying the prescribed transient performance behavior. The
contributions of the paper can be summarized as: i) within a
general leader-follower framework, a distributed control law
is proposed for general graphs with cycles when the decay
rate of the performance functions is within a sufficient bound
and the convergence benefits of the cycles are discussed; ii)
necessary conditions on the graph topologies are proposed
such that under these conditions we can further design
the leaders to achieve the target formation with prescribed
performance guarantees.

The rest of the paper is organized as follows. In Section
II, preliminary knowledge is introduced and the problem



is formulated, while Section III presents the result of rel-
ative position-based formation control for leader-follower
multi-agent systems that contain cycles within prescribed
performance bounds. Further necessary conditions on the
graph topologies are discussed in Section IV. The results
are verified by some simulations and examples in Section V.
Section VI includes conclusions and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

An undirected graph [10] is defined as G = (V, E) with
the vertices set V = {1, 2, . . . , n} and the edges set E =
{(i, j) ∈ V×V | j ∈ Ni} indexed by e1, . . . , em. Here, m =
|E| is the number of edges andNi denotes the neighbourhood
of agent i such that agent j ∈ Ni can communicate with i. A
path is a sequence of edges connecting two distinct vertices.
A graph is connected if there exists a path between any pair
of vertices. By assigning an orientation to each edge of G
the incidence matrix D = D(G) = [dij ] ∈ Rn×m is defined.
The rows of D are indexed by the vertices and the columns
are indexed by the edges with dij = 1 if the vertex i is the
head of the edge (i, j), dij = −1 if the vertex i is the tail of
the edge (i, j) and dij = 0 otherwise. The graph Laplacian
of G is described as L = DDT . In addition, Le = DTD is
the so called edge Laplacian [15].

B. System Description

In this work, we consider a multi-agent system with
vertices V = {1, 2, . . . , n}. Suppose that the first nf agents
are followers while the last nl agents are leaders with VF =
{1, 2, . . . , nf}, VL = {nf + 1, nf + 2, . . . , nf + nl} and
n = nf + nl. Here and later on, the subscript “F”, “L”
stands for follower and leader vertices set, respectively. We
also denote the follower-follower edge set as EFF = {ek |
1 ≤ k ≤ m, k ∈ Z, ek = (i, j), i, j ∈ VF }.

Let pi ∈ R be the position of agent i, where we only
consider the one dimensional case, without loss of generality.
Specifically, the results can be extended to higher dimensions
with appropriate use of the Kronecker product. The target
relative position-based formation is described as follows:

F := {p | pi − pj = pdesij , (i, j) ∈ E}, (1)

where pdesij := pdesi − pdesj , (i, j) ∈ E is the desired relative
position between agent i and agent j, which is constant
and denoted as the difference between the absolute desired
positions pdesi , pdesj ∈ R. Here, pdesij is only needed to be
known and pdesi , pdesj are defined with respect to an arbitrary
reference frame and do not need to be known. The state
evolution of each follower i ∈ VF is governed by the first-
order formation protocol:

ṗi = −
∑
j∈Ni

(pi − pj − pdesij ), (2)

while for the leader i ∈ VL, it obeys the following first-order
formation protocol with an assigned external input ui ∈ R:

ṗi = −
∑
j∈Ni

(pi − pj − pdesij ) + ui. (3)

We denote p = [p1, . . . , pn]T , pdes = [pdes1 , . . . , pdesn ]T ∈
Rn as the respective stack vector of absolute positions and
target positions and u = [unf+1, . . . , unf+nl

]T ∈ Rnl is
the control input vector that contains the external inputs of
leader agents in (3). Denote p̄ = [p̄1, . . . , p̄m]T , p̄des =
[p̄des1 , . . . , p̄desm ]T ∈ Rm as the respective stack vector of
relative positions and target relative positions between the
pair of communication agents for the edge (i, j) = ek ∈ E ,
where p̄k , pij = pi − pj , p̄desk , pdesij = pdesi − pdesj , k =
1, 2, . . . ,m. It can be then verified that Lp = Dp̄ and
p̄ = DT p. In addition, if p̄ = 0, we have that Lp = 0.
Similarly, it holds that Lpdes = Dp̄des, p̄des = DT pdes.

By stacking (2) and (3), the dynamics of the leader-
follower multi-agent system is rewritten as:

Σ : ṗ = −L(p− pdes) +Bu, (4)

where L is the graph Laplacian and B =
[

0nf×nl

Inl

]
.

In the sequel, we denote x = p − pdes = [x1, . . . , xn]T

as the shifted absolute position vector with respect to pdes.
Accordingly, x̄ = p̄ − p̄des = [x̄1, . . . , x̄m]T is denoted as
the shifted relative position vector with respect to p̄des.

C. Prescribed Performance Control

The aim of PPC is to prescribe the evolution of the relative
position p̄i(t) within some predefined region described as

p̄desi − ρx̄i
(t) < p̄i(t) < p̄desi + ρx̄i

(t), (5)

or equivalently, to prescribe the evolution of the shifted
relative position x̄i(t) within

− ρx̄i
(t) < x̄i(t) < ρx̄i

(t). (6)

Here ρx̄i
(t) : R+ → R+ \ {0}, i = 1, 2, . . . ,m are positive,

smooth and strictly decreasing performance functions that
introduce the predefined bounds for the shifted relative
positions. One example choice is

ρx̄i
(t) = (ρx̄i0

− ρx̄i∞)e−lx̄i
t + ρx̄i∞ . (7)

with ρx̄i0
, ρx̄i∞ and lx̄i

positive parameters and ρx̄i∞ =
limt→∞ρx̄i(t) represents the tracking error at steady state.

Normalizing x̄i(t) with respect to the performance func-
tion ρx̄i

(t), we define the modulated error as ˆ̄xi(t) = x̄i(t)
ρx̄i

(t)

and the corresponding prescribed performance region as
Dx̄i

, {ˆ̄xi : ˆ̄xi ∈ (−1, 1)}. Then the modulated error is
transformed through a transformed function Tx̄i

that defines
the smooth and strictly increasing mapping Tx̄i

: Dx̄i
→ R,

Tx̄i(0) = 0. One example choice is

Tx̄i(ˆ̄xi) = ln

(
1 + ˆ̄xi
1− ˆ̄xi

)
. (8)

The transformed error is then defined as εx̄i
(ˆ̄xi) = Tx̄i

(ˆ̄xi)
It can be verified that if the transformed error εx̄i

(ˆ̄xi) is
bounded, then the modulated error ˆ̄xi is constrained within
the region Dx̄i

. This also implies the error x̄i evolves
within the predefined performance bounds (6). Differenti-
ating εx̄i(ˆ̄xi) with respect to time, we derive

ε̇x̄i
(ˆ̄xi) = JTx̄i

(ˆ̄xi, t)[ ˙̄xi + αx̄i
(t)x̄i] (9)



where

JTx̄i
(ˆ̄xi, t) ,

∂Tx̄i
(ˆ̄xi)

∂ ˆ̄xi

1

ρx̄i
(t)

> 0 (10)

αx̄i(t) , −
ρ̇x̄i(t)

ρx̄i
(t)

> 0 (11)

are the normalized Jacobian of the transformed function Tx̄i

and the normalized derivative of the performance function,
respectively.

D. Problem Statement

We aim to design a control strategy for the leader-follower
multi-agent system (4) such that it can achieve the target
formation F as in (1) and the evolution of the relative
positions between neighbouring agents should satisfy the
prescribed performance bounds (5).

Problem 1. Let the leader-follower multi-agent system Σ be
defined by (4) with the communication graph G = (V, E) and
the prescribed performance functions ρx̄i

, i = 1, 2, . . . ,m.
Derive a control strategy such that the controlled leader-
follower multi-agent system achieves the target formation F
as in (1) while satisfying (5).

III. LEADER-FOLLOWER FORMATION CONTROL WITH
PRESCRIBED PERFORMANCE GUARANTEES

In this section, we design the control for the leader-
follower multi-agent system (4) such that the system can
achieve the target formation F as in (1) within the prescribed
performance bounds (5). The respective performance func-
tions ρx̄i(t) and transformed functions Tx̄i(ˆ̄xi) are defined
as (7) and (8) without loss of generality. We assume that
communicating agents share information about their perfor-
mance functions ρx̄i

(t) and transformed functions Tx̄i
(ˆ̄xi).

Therefore, the communication between neighbouring agents
is bidirectional and the graph G is assumed undirected.

Since our target is the relative position-based formation
and, we first rewrite the dynamics (4) into the edge space
to characterise the dynamics of the relative positions. We
then rewrite (4) into the dynamics corresponding to followers
and leaders, respectively. In addition, since we consider a
general graph with circles that can be regarded as the union
of two edge-disjoint subgraphs on the same vertex set as
G = Gt ∪ Gc, where Gt is a spanning tree subgraph and
Gc contains the remaining edges that necessarily complete
the cycles in G [15]. The corresponding incidence matrix is
decomposed as follows

D =

[
Dt
F Dc

F

Dt
L Dc

L

]
, Dt =

[
Dt
F

Dt
L

]
, Dc =

[
Dc
F

Dc
L

]
, (12)

and DF =
[
Dt
F Dc

F

]
, DL =

[
Dt
L Dc

L

]
with Dt

F ∈
Rnf×(n−1), Dc

F ∈ Rnf×(m−n+1), Dt
L ∈ Rnl×(n−1), Dc

L ∈
Rnl×(m−n+1). That is, the incidence matrix D is decom-
posed by the rows into the first nf and the remaining last nl
rows, i.e., D =

[
DT
F DT

L

]T
[10] with DF , DL denoting the

incidence matrices with respect to the followers and leaders,
respectively. Moreover, it is also decomposed by the columns
into the first n−1 and the remaining last m−n+1 columns,

i.e., D =
[
Dt Dc

]
with Dt, Dc denoting the edges of the

spanning tree subgraph Gt and the remaining edges of Gc
that necessarily complete the cycles in G, respectively. Using
x = p− pdes and multiplying with DT on both sides of (4),
then the dynamics (4) are reorganised into the edge space as

Σe : ˙̄x = −Lex̄+DT
Lu, (13)

with Le being the edge Laplacian which is positive definite
if the graph is a tree [4]. Hence, we have that the edge
Laplacian Lte = DtTDt for the spanning tree subgraph Gt
is positive definite. For a general graph with cycles, the
edge Laplacian Le in (13) is only positive semi-definite,
but it can be represented by the edge Laplacian Lte of
its spanning tree Gt according to [15]. Specifically, the
columns of Dc are linearly dependent on the columns of
Dt, which can be expressed as Dc = DtT with T =
(DtTDt)−1DtTDc = (Lte)

−1DtTDc. Then we have that
D =

[
Dt Dc

]
=
[
Dt DtT

]
= Dt

[
In−1 T

]
. We

further denote the transformation matrix R as

R =
[
In−1 T

]
. (14)

Thus D = DtR and the relation between Le and Lte is
derived as Le = RTLteR.

For the edge dynamics (13), the proposed controller ap-
plied to the leader agents is the composition of the term
based on the prescribed performance of the positions of the
neighbouring agents:

uj = −
∑
i∈Φj

gx̄i
JTx̄i

(ˆ̄xi, t)εx̄i
(ˆ̄xi), j ∈ VL, (15)

where Φj = {i|(j, k) = i, k ∈ Nj}, i.e., the set of all the
edges that include agent j ∈ VL as a node, and gx̄i is a
positive scalar gain to be appropriately tuned. Then the stack
input vector is

u = −DLJTˆ̄x
Gx̄εˆ̄x, (16)

where ˆ̄x ∈ Rm is the stack vector of transformed errors
ˆ̄xi, Gx̄ ∈ Rm×m is the positive definite diagonal gain
matrix with entries the positive constant parameters gx̄i ,
JTˆ̄x

, JT (ˆ̄x, t) ∈ Rm×m is a time varying diagonal
matrix with diagonal entries JTx̄i

(ˆ̄xi, t) given in (10), and
εˆ̄x , ε(ˆ̄x) ∈ Rm is the stack vector with entries εx̄i

(ˆ̄xi).
Then the edge dynamics (13) with input (16) can be written
as

˙̄x = −Lex̄−DT
LDLJTˆ̄x

Gx̄εˆ̄x. (17)

In the sequel, we develop the following result and will use
Lyapunov-like methods to prove that the target formation
can be achieved and the prescribed performance can be
guaranteed.

Theorem 1. Consider the leader-follower multi-agent system
Σ with dynamics (4), the predefined performance functions
ρx̄i

as in (7) and the transformed functions Tx̄i
(ˆ̄xi) as in

(8) s.t. Tx̄i
(0) = 0, and assume that the initial conditions

p̄i(0) are within the performance bounds (5). If the following
condition holds:

γ̄ ≥ l = max
i=1,...,m

(lx̄i
), (18)



where l is the largest decay rate of ρx̄i
(t) and γ̄ is the

maximum value of γ that ensures the following block matrix
denoted as Γ satisfies Γ ≥ 0:[

Dt
L

T
Dt

L
1
2 (Lt

e−γ((RRT )−1−Dt
L

T
Dt

L))
1
2 (Lt

e−γ((RRT )−1−Dt
L

T
Dt

L)) γLt
e

]
.

(19)
Then the controlled system achieves the target formation (1)
and satisfies (5) when applying the control law (16).

Proof. Since the initial conditions p̄i(0) are within the per-
formance bounds (5), this is equivalent to that the initial
conditions x̄i(0) are within the performance bounds (6).
Consider the Lyapunov-like function

V (εˆ̄x, x̄) =
1

2
εTˆ̄xGx̄εˆ̄x +

γ

2
x̄T x̄. (20)

Then, V̇ = εTˆ̄xGx̄ε̇ˆ̄x + γx̄T ˙̄x. Replacing ε̇ˆ̄x by stacking the
components ε̇x̄i(ˆ̄xi) that are derived in (9), we obtain V̇ =
εTˆ̄xGx̄JTˆ̄x

( ˙̄x+αx̄(t)x̄) +γx̄T ˙̄x, where αx̄(t) is the diagonal
matrix with diagonal entries αx̄i

(t). According to (11) and
(7), we know that αx̄i

(t) < lx̄i
,∀t. We then partition the

edge state vector in (17) as x̄ =
[
x̄Tt x̄Tc

]T
with respect to

the spanning tree and the cycles and get that

x̄ =

[
x̄t
x̄c

]
= DTx =

[
DtT

DcT

]
x =

[
DtT

TTDtT

]
x

=

[
In−1

TT

]
DtTx =

[
In−1

TT

]
x̄t = RT x̄t.

We can further rewrite (17) as

RT ˙̄xt = −RTLteRRT x̄t −RTDt
L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x. (21)

Substituting (21) into V̇ , we can further derive that

V̇ =εTˆ̄xGx̄JTˆ̄x
(−RTLteRRT x̄t −RTDt

L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x

+ αx̄(t)RT x̄t) + γx̄Tt R(−RTLteRRT x̄t
−RTDt

L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x)

=− εTˆ̄xGx̄JTˆ̄x
RTLteRR

T x̄t + εTˆ̄xGx̄JTˆ̄x
αx̄(t)x̄

− εTˆ̄xGx̄JTˆ̄x
RTDt

L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x

− γx̄Tt RRTLteRRT x̄t
− γx̄Tt RRTDt

L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x
(22)

Adding and subtracting γεTˆ̄xGx̄JTˆ̄x
RT x̄t on the right hand

side of (22), we obtain

V̇ =− εTˆ̄xGx̄JTˆ̄x
(γIm − αx̄(t))x̄− εTˆ̄xGx̄JTˆ̄x

RTLteRR
T x̄t

− εTˆ̄xGx̄JTˆ̄x
RTDt

L
T
Dt
LRJTˆ̄x

Gx̄εˆ̄x

− γx̄Tt RRTLteRRT x̄t
+ γx̄Tt RR

T ((RRT )−1 −Dt
L
T
Dt
L)RJTˆ̄x

Gx̄εˆ̄x

=− εTˆ̄xGx̄JTˆ̄x
(γIm − αx̄(t))x̄− yTΓy

(23)
with y =

[
εTˆ̄xGx̄JTˆ̄x

RT x̄TRRT
]T

and Γ described as
(19). We have that Gx̄JTˆ̄x

is a diagonal positive definite
matrix; (γIm−αx̄(t)) is a diagonal positive definite matrix if

γ ≥ l = max(lx̄i
) > ᾱ = supαx̄i

(t). Since the transformed
function Tx̄i

(ˆ̄xi) is strictly increasing and Tx̄i
(0) = 0, we

have εx̄i
(ˆ̄xi)ˆ̄xi = Tx̄i

(ˆ̄xi)ˆ̄xi ≥ 0. Therefore, we get that
−εTˆ̄xGx̄JTˆ̄x

(γIm − αx̄(t))x̄ ≤ 0 holds. Then, in order for
V̇ ≤ 0 to hold, it suffices that γ ≥ l = max(lx̄i) >
supαx̄i

(t) and in addition, Γ should be positive semi-
definite. Then, based on condition (18), and choosing γ = γ̄,
we obtain −εTˆ̄xGx̄JTˆ̄x

(γ̄Im − αx̄(t))x̄ ≤ 0 and Γ ≥ 0.
Finally, we can conclude that V̇ ≤ 0 when γ = γ̄. This also
implies V (εˆ̄x, x̄) ≤ V (εˆ̄x(0), x̄(0)). Hence if x̄(0) is chosen
within the region Dx̄i

then V (εˆ̄x(0), x̄(0)) is finite, which
implies that V (εˆ̄x, x̄) is bounded ∀t. Therefore εˆ̄x, x̄ are
bounded and the boundedness of εˆ̄x implies that the relative
position x̄(t) evolves within the prescribed performance
bounds (6), ∀t. Then we can deduce the boundedness of
V̈ (εˆ̄x, x̄) based on the boundedness of εˆ̄x, ε̇ˆ̄x. The bounded-
ness of V̈ (εˆ̄x, x̄) implies the uniform continuity of V̇ (εˆ̄x, x̄),
which in turn implies that V̇ (εˆ̄x, x̄) → 0 as t → ∞ by
applying Barbalat’s Lemma. This implies x̄→ 0 as t→∞,
which also means that p̄→ p̄des as t→∞. Hence, the target
formation (1) is achieved while satisfying (5).

Remark 1. Note that conditions (18) and (19) are not
part of the control laws. (19) is determined by the matri-
ces Lte, D

t
L, R that characterise the leader-follower graph

topology, thus the existence of γ is determined by the
leader-follower graph topology. According to Theorem 1,
we can first solve (19) to obtain the maximum value γ̄ of
γ that ensures Γ ≥ 0. Then, the predefined largest decay
rate l of performance functions ρx̄i

(t) cannot exceed this
value γ̄. Nevertheless, Theorem 1 can be useful in practical
applications to predesign the maximum exponential decay
rate of the performance functions.

Remark 2. The result in this section indicates the trade-offs
between the largest decay rate of the performance functions
(7) and the leader amount and positions. Theorem 1 provides
a sufficient condition for a general graph with cycles, under
which the leader-follower multi-agent system (4) achieves the
target relative position-based formation within the prescribed
performance bounds (5). It can be seen that (18) may be
infeasible when the decay rate of the performance functions
(7) is too large. This means that we need to constrain
the decay rate of the performance functions in order to
achieve the target formation under prescribed performance
guarantees within the leader-follower framework. This is
reasonable since the followers only obey the first-order
formation protocol without any additional external input.

Remark 3. Theorem 1 also indicates how the cycles in a
graph will benefit the convergence result. Compared with our
previous work [2], we consider general graphs with cycles
here, which extends earlier results on trees. When R = In−1,
in this case the communication graph is a tree and Theorem
1 is exactly the result for tree graphs in [2]. Here, Theorem
1 indicates that once the spanning tree Gt can achieve the
target formation within the prescribed performance bounds,
then the whole graph G that contains the cycles and with the



same leader set VL can also achieve the target formation
without violating the prescribed performance bounds. This
means that adding cycles to the spanning tree will preserve
convergence and even benefit the convergence in the sense
that the prescribed performance bounds can have a higher
decay rate.

IV. NECESSARY CONDITIONS ON THE GRAPH TOPOLOGY

In this section, we derive necessary conditions on the
graph topologies for both tree graphs and general graphs
with cycles such that under these conditions we can design
the leaders to achieve the target formation with prescribed
performance guarantees.

We first discuss the tree graphs and then the results for
general graphs with cycles are built based on the results of
tree graphs. We first define a graph Gf = (Vf , Ef ) with only
followers, i.e., VfF = Vf , VfL = ∅ and EfFF = Ef . Suppose
that the leader-follower multi-agent system described by the
graph G = (V, E) contains Gf as a subgraph. Here, a
subgraph is defined as follows:

Definition 1. A graph G′ = (V ′, E ′) is a subgraph of the
graph G = (V, E) if the following conditions hold:
• V ′ ⊆ V and E ′ ⊆ E;
• for any i ∈ V ′F we have i ∈ VF and for any i ∈ V ′L we

have i ∈ VL;
• for any edge (i, j) ∈ E , i, j ∈ V ′, we have (i, j) ∈ E ′.

From now on, we denote x̄ as the edge state of Gf and
Le as the edge Laplacian of Gf . We know that the edge
dynamics of Gf are simply described as ˙̄x = −Lex̄ since the
leader set VfL is empty. Denote each column (corresponding
to an edge) of the incidence matrix of Gf by the vector
ei. Then (Le)ij = eTi ej = cij = 2 if i = j; cij = 0
if ei, ej share no nodes; cij = 1 if ei, ej share a single
node and have the same direction with respect to the sharing
node (i.e., both inward or outward the node); cij = −1 if
ei, ej share a single node but have different direction with
respect to the sharing node [15]. Based on this, we define the
neighbor of edge ei as N (ei) := {ej | |eTi ej | = 1}. Then
the following theorem is developed for tree graphs, which
proposes a necessary condition on the graph, under which
we can design the leaders to achieve the target formation
with prescribed performance guarantees.

Theorem 2. Consider the leader-follower multi-agent system
Σ described by the tree graph G = (V, E), a necessary
condition on G under which we can design the leaders
using (16) to achieve the target formation F as in (1)
while satisfying (5) is that: G does not contain a subgraph
Gf = (Vf , Ef ) with VfF = Vf such that there exists ei ∈ Ef
satisfying |N (ei)| ≥ 3.

Proof. The proof uses contradiction based on the entries of
the edge Laplacian Le of Gf . Suppose Gf is a subgraph of G
and there exists ei ∈ Ef satisfying |N (ei)| ≥ 3. Without loss
of generality, let us assume that e1 ∈ Ef satisfies N (e1) =
{e2, e3, e4} thus |N (ei)| = 3. Suppose that e2, e3, e4 all
share a single node with e1 but with different directions.

This can be assumed without loss of generality since we
can assign arbitrary directions to the edges. Then the state
evolution of e1 is derived as ˙̄x1 = −2x̄1 + x̄2 + x̄3 + x̄4.
We can see that when all x̄i, i = 1, 2, 3, 4 are initialised
arbitrarily close to the prescribed performance boundary
ρx̄i0 = ρ0, i = 1, 2, 3, 4, then ˙̄x1 = ρ0 > 0, thus x̄1 will
continue evolving to violate the performance bound. This
leads to a contradiction since no matter how we design the
leaders in G \ Gt, x̄1 will always increase to violate the
boundary. Hence, we can conclude that G should not contain
a subgraph Gf = (Vf , Ef ) with VfF = Vf such that there
exists ei ∈ Ef satisfying |N (ei)| ≥ 3.

Next, we generalise Theorem 2 to derive a necessary
condition for graphs with cycles under which we can design
the leaders to achieve the target formation without violating
the prescribed performance bounds. First of all, we perform
the following graph decomposition and call as complete
decomposition.

Definition 2. A graph G = (V, E) is decomposed as G =
∪ki=1Ci ∪ P , where Ci, i = 1, . . . , k are cycles and each Ci
does not contain a cycle subgraph that has less edges than
Ci; P is the set of the edges that do not belong to any cycle.
Then, we call each Ci a minimal cycle and this decomposition
a complete decomposition of G.

The complete decomposition decomposes a large scale
graph into some minimal cycles together with the remaining
edges that do not belong to any cycle. We can then derive the
necessary condition for G based on the decomposed minimal
cycles Ci and the remaining edges P . We denote here E(Ci)
as the edge set of the minimal cycle Ci with cardinality
|E(Ci)|. We further define a function f(x), x ≥ 3, x ∈ Z,
which will be used later to derive the necessary conditions
for general graphs with cycles:

f(x) =

{
x, 3 ≤ x ≤ 6, x ∈ Z;

6, x ≥ 7, x ∈ Z.
(24)

Now we derive the following theorem that proposes a nec-
essary condition on general graphs with cycles, under which
we can design the leaders to achieve the target formation
without violating the prescribed performance bounds.

Theorem 3. Consider the leader-follower multi-agent system
Σ described by the graph G = (V, E), a necessary condition
on G under which we can design the leaders using (16) to
achieve the target formation F as in (1) while satisfying (5)
is that: G does not contain a subgraph Gf = (Vf , Ef ) with
VfF = Vf and completely decomposed as Gf = ∪ki=1Ci ∪ P
such that there exists ei ∈ Ef satisfying∑

j∈Si

(f(|E(Cj)|)− 4) + |Ei| ≥ 3, (25)

where Si = {j | ei ∈ E(Cj)}, Ei = {ek | ek ∈ N (ei), ek /∈
Cj , j ∈ Si} and the function f(x) is defined as (24).

Proof. The proof is based on the discussion of the decom-
posed minimal cycles Ci and the remaining edges P . We



can resort to Theorem 2 to deal with P . Here, we first
discuss the result for a minimal cycle, e.g., C1 which has m
edges E(C1) = {e1, e2, . . . , em} and m ≥ 3. We will check
how the number of edges of the cycle affects convergence.
When m = 3, the state evolution of an arbitrary edge e1 is
˙̄x1 = −2x̄1 + x̄2 + x̄3, and since ei, i = 1, 2, 3 form a cycle,
we have that x̄1 + x̄2 + x̄3 = 0. Hence x̄2 + x̄3 = −x̄1

and ˙̄x1 = −2x̄1 − x̄1 = −3x̄1. This means that the cycle
that forms a triangle will show a higher convergence rate of
−3 for the edge dynamics. When m = 4, the state evolution
of an arbitrary edge e1 is ˙̄x1 = −2x̄1 + x̄2 + x̄4, since
ei, i = 1, 2, 3, 4 form a cycle, we have that

∑4
i=1 x̄i = 0.

Hence x̄2 + x̄4 = −x̄1 − x̄3 and ˙̄x1 = −2x̄1 − x̄1 − x̄3.
Consider the limit case, when x̄1 is arbitrarily close to the
prescribed performance boundary and x̄3 = −x̄1, we have
˙̄x1 = −2x̄1 − x̄1 + x̄1 = −2x̄1. This means that the
cycle which forms a square still show decay rate of −2
for the edge dynamics. When m = 5, the state evolution
of an arbitrary edge e1 is ˙̄x1 = −2x̄1 + x̄2 + x̄5, since
ei, i = 1, 2, 3, 4, 5 form a cycle, we have that

∑5
i=1 x̄i = 0.

Hence x̄2+x̄5 = −x̄1−x̄3−x̄4 and ˙̄x1 = −2x̄1−x̄1−x̄3−x̄4.
Consider the limit case, when x̄1 is arbitrarily close to the
performance bound and x̄3 = x̄4 = −x̄1, we then have
˙̄x1 = −2x̄1−x̄1+2x̄1 = −x̄1. This means that the cycle with
5 edges still show decay rate of −1 for the edge dynamics.
This means that we still have the freedom to add one more
edge that shares a node with e1. For m ≥ 6, the state
evolution of an arbitrary edge e1 is ˙̄x1 = −2x̄1 + x̄2 + x̄m,
and since ei, i = 1, 2, . . . ,m forms a cycle, we have that∑m
i=1 x̄i = 0. Then x̄2 + x̄m = −x̄1 −

∑m−1
i=3 x̄i and ˙̄x1 =

−2x̄1 − x̄1 −
∑m−1
i=3 x̄i. −

∑m−1
i=3 x̄i cannot be greater than

3x̄1 when x̄1 is arbitrarily close to the performance bound
since ei, i = 1, 2, . . . ,m need to form a cycle satisfying∑m
i=1 x̄i = 0. This means that for the cycle with m ≥ 6,

in the worst case we have ˙̄x1 = 0, thus in the limit case x̄1

will never evolve again to violate the performance boundary.
Till here, we can summarise that for a single cycle C1,
in the worst case the decay rate of the edge dynamics is
−2 + f(|E(C1)|)− 4 with the function f(x) defined in (24).
Then, based on the result for a single minimal cycle, we
build the result in the case that ei belongs to more than one
minimal cycles, i.e., ei is an edge of Cj , j ∈ Si. Then each
cycle Cj , j ∈ Si will contribute a decay rate of f(|E(Cj)|)−4
for ei. Since the cycles in Cj , j ∈ Si will not affect each
other in contributing to the decay rate of ei since they are
minimal cycles and are completely decoupled with respect to
ei, then the total decay rate of ei that belongs to more than
one minimal cycles is −2 +

∑
j∈Si

(f(|E(Cj)|)− 4), where −2

corresponds to the diagonal entry of the edge Laplacian −Le.
Finally, the remaining edges that affect the convergence of ei
are the edges that share a node with ei but not an edge of any
Cj , j ∈ Si, i.e., Ei = {ek | ek ∈ N (ei), ek /∈ Cj , j ∈ Si}.
Hence, Ei is composed of the edges in P that share a node
with ei and the edges that share a node with ei but belong
to other minimal cycles that do not include ei as an edge. In
the limit case, each of these edges will contribute a decay

rate of 1 to edge ei. Hence, the total decay rate of ei in
the worst case is −2 +

∑
j∈Si

(f(|E(Cj)|)− 4) + |Ei| and the

violation condition is −2 +
∑
j∈Si

(f(|E(Cj)|)− 4) + |Ei| ≥ 1,

i.e., exactly the inequality (25). This means that in the worst
case ei will continue evolving to violate the prescribed
performance bounds. Therefore, suppose that there exists
ei ∈ Ef satisfying (25), then we can conclude that ei will
evolve and violate the performance bound, which leads to
a contradiction since no matter how we design the leaders
in G \ Gt, x̄i will always evolve to violate the prescribed
performance bound. Hence, we can conclude that G should
not contain a subgraph Gf = (Vf , Ef ) with VfF = Vf such
that there exists ei ∈ Ef satisfying (25).

Remark 4. Actually, Theorem 2 and Theorem 3 indicate
that when considering the leader-follower multi-agent system
Σ to achieve the target formation within the prescribed
performance bounds, we should avoid cases such that (25)
holds when assigning leaders. They also propose a criterion
in choosing leaders to achieve the target formation with
prescribed performance guarantees, which can be further
applied to solve leader selection problems. Note that The-
orem 2 is a specific case of Theorem 3. That is, when the
graph is a tree, then the term

∑
j∈Si

(f(|E(Cj)|)− 4) vanishes

and |Ei| is the number of edges that share a node with ei,
i.e., |Ei| = |N (ei)|. This also leads to the violation condition
|N (ei)| ≥ 3 for tree graphs.

V. SIMULATIONS AND EXAMPLES

In this section, several simulation examples are presented
in order to verify the results. The simulations’ commu-
nication graphs are shown as Fig. 1A, where the leaders
and followers are represented by grey and white nodes,
respectively. We choose, without loss of generality, the same
ρx̄i

for all edges as ρx̄i
(t) = 4.9e−t + 0.1 and the same

transformed function Tx̄i as (8). In addition, the prescribed
performance bounds are depicted in black color in the
following simulation plots.
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Fig. 1: Communication graphs.

In Fig. 1A, we first consider a tree graph with respec-
tive follower and leader set as VF = {1, 2, 3, 4} and
VL = {5, 6, 7, 8, 9}; the edge set is E = {e1, . . . , e8}.
The positions of all the agents are initialised at the origin
and the target relative position-based formation is pdes53 =
[−4.8, 0]T , pdes52 = [2.4,−4.8]T , pdes62 = [4.8, 4.8]T , pdes76 =



[4.8,−4.8]T , pdes54 = [2.4, 4.8]T , pdes84 = [4.8,−4.8]T , pdes98 =
[4.8, 4.8]T , pdes51 = [4.8, 0]T . The simulation result in two
dimensions when applying the PPC law (16) is shown in Fig.
2. Here, all agents are initialised at origin and the blue lines
show the final relative positions of the agents. The dashed
lines indicate the evolution of the agents. It can be seen that
the target formation is achieved. In order to verify whether
the prescribed performance is guaranteed, we only plot the
evolution of the relative positions for edges e4, e5, e6, e7 in y-
direction due to space limitations, which are depicted in Fig.
3a. The red lines show the result without PPC, and we can
see that the trajectories violate the prescribed performance
bounds, which are improved by applying the PPC law (16).
The result when applying PPC law is shown as the blue lines
and we can observe that all the trajectories evolve within the
prescribed performance bounds.
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Fig. 2: Relative position-based formation control using PPC
for the tree graph.

As a comparison, we add two edges into the tree graph,
i.e., e9 and e10 to form two cycles in the communication
graph as shown in Fig. 1A by the dashed lines. All agents
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(a) Trajectories of the relative positions for the tree.
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(b) Trajectories of the relative positions for the graph with cycles.

Fig. 3: Trajectories of relative positions for e4, e5, e6, e7 in
y-direction.

are still initialised at the origin and the target relative
positions for edges e1, e2, . . . , e8 remain unchanged. We add
the target relative positions for edges e9, e10 as pdes73 =
[2.4, 4.8]T , pdes93 = [2.4,−4.8]T , which can also be derived
based on target relative positions of e1, e2, . . . , e7 since
they form the two cycles. The simulation result in two
dimensions for the graph with cycles when applying the PPC
law (16) is shown in Fig. 4. The target formation is also
achieved. We note that the trajectories violate the prescribed
performance bounds without PPC (red lines), which are
improved by applying the PPC law (16) as shown by the
blue lines. For both of the graphs, we can conclude that the
controlled leader-follower multi-agent system achieves the
target formation within the prescribed performance bound.
We can also find that the graph with cycles converges to the
target formation faster than the tree graph since the result of
the tree graph shows a larger overshoot. Here, both of the
decay rate of prescribed performance functions for the tree
and the graph with cycles is 1. This means that we do not
observe a larger decay rate of the performance functions for
the graph with cycles. This is due to that agent 5 connects
with 4 followers, which restricts the maximum allowable
decay rate of the performance functions. However, in order
to achieve a higher decay rate, we can suitably assign more
leaders or more cycles.
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Fig. 4: Relative position-based formation control using PPC
for the graph with cycles.

Finally, we consider an example to verify Theorem 2 and
Theorem 3. We investigate the same graph that contains
2 minimal cycles as shown in Fig. 1B with all agents as
followers, i.e., Gf = (Vf , Ef ). We check how the leader-
follower multi-agent system described by the graph G =
(V, E) will behave if it contains Gf as a subgraph. For
e8, it does not belong to any minimal cycle. Since e8 is
an edge of the star graph Gs = (Vs, Es) with Vs =
{1, 2, 3, 4, 5}, Es = {e1, e2, e5, e8}, which is a subgraph of
Gf . Based on Theorem 2, we have the violation condition
|N (e1)| ≥ 3 holds since e8 has 3 neighboring edges. Hence,
in the worst case, no matter how we design the leaders in
G, e8 will violate the prescribed performance bounds (7).
For e2, it belongs to the minimal cycle C1 on the top and



we have that |E(C1)| = 5. The number |E2| in (25) is 2
when considering the edge e2, which is composed of edges
e5, e8 because e8 does not belong to any minimal cycle and
e5 belongs to the bottom minimal cycle C2 that does not
contain e2. Hence the violation condition holds for e2 since∑
j∈S2

(f(|E(Cj)|)−4)+|E2| = f(|E(C1)|)−4+2 = 5−4+2 ≥

3. According to Theorem 3, we can conclude that in the worst
case, no matter how we design the leaders in G, e2 will
violate the prescribed performance bounds. We can derive a
similar result for edge e5 due to the graph symmetry. Then,
we consider e1, which belongs to both minimal cycles C1, C2.
We derive that

∑
j∈S1

(f(|E(Cj)|)− 4) + |E1| = f(|E(C1)|)−

4 + f(|E(C2)|) − 4 + 1 = 5 − 4 + 5 − 4 + 1 ≥ 3, thus
the violation condition (25) holds. For the remaining edges,
the violation condition does not hold according to Theorem
3. Next, if we only add an edge between agent 3 and 6,
i.e., e12 (dotted line in Fig. 1B). Then e2 voids the violation
condition since e2 belongs to a new minimal cycle with 4
edges, but the violation condition still holds for e1 since∑
j∈S1

(f(|E(Cj)|)−4)+|E1| = 4−4+5−4+2 ≥ 3. Then, if we

only add an edge between agent 2 and 3, i.e., e11 (dashed line
in Fig. 1B). Then e1 also voids the violation condition since
now

∑
j∈S1

(f(|E(Cj)|)−4)+ |E1| = 3−4+5−4+2 = 2 < 3.

One simple way for Gf to void the violation condition (25)
is to cut the edge e8.

VI. CONCLUSIONS

In this paper, we have addressed relative position-based
formation control problems of leader-follower multi-agent
systems with prescribed performance bounds. The general
case of graphs with cycles is treated and a distributed
prescribed performance control law is proposed for the
group of leaders in order to steer the followers such that
the entire system can achieve the target formation under
prescribed performance guarantees. For both tree graphs and
general graphs with cycles, necessary conditions on the graph
topologies are proposed such that under these conditions we
can design the leaders to achieve the target formation with
prescribed performance guarantees.

Future research includes applying other transient ap-
proaches and also investigating leader selection problems.
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