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Abstract— Temporal logics provide a formalism for express-
ing complex system specifications. A large body of literature has
addressed the verification and the control synthesis problem for
deterministic systems under such specifications. For stochas-
tic systems or systems operating in unknown environments,
however, only the probability of satisfying a specification has
been considered so far, neglecting the risk of not satisfying the
specification. Towards addressing this shortcoming, we consider,
for the first time, risk metrics, such as (but not limited to) the
Conditional Value-at-Risk, and propose risk signal temporal
logic. Specifically, we compose risk metrics with stochastic
predicates to consider the risk of violating certain spatial
specifications. As a particular instance of such stochasticity, we
consider control systems in unknown environments and present
a determinization of the risk signal temporal logic specification
to transform the stochastic control problem into a deterministic
one. For unicycle-like dynamics, we then extend our previous
work on deterministic time-varying control barrier functions.

I. INTRODUCTION

Temporal logic-based control studies the problem of con-
trolling a dynamical system such that a complex specifi-
cation, expressed as a temporal logic formula, is satisfied.
Linear temporal logic (LTL) allows to impose qualitative
temporal properties and has been used in [1]–[3]. More
recently, signal temporal logic (STL) has been considered
[4]. STL allows to impose quantitative temporal properties,
hence being more expressive than LTL. One can additionally
associate quantitative semantics with an STL specification
which give a real-valued answer to the question whether
or not a specification is satisfied, indicating the robustness
(severity) of the satisfaction (violation) [5], [6]. Control
approaches under STL specifications result in mixed integer
linear programs [7] or in nonconvex optimization programs
[8], [9]. Reinforcement learning-based approaches for par-
tially unknown systems have appeared in [10], [11]. An
efficient automata-based framework is proposed in [12] to
decompose the STL specification into STL subspecifications
that can be sequentially implemented by low-level feedback
control laws, such as those in [13], [14] which are based on
time-varying control barrier functions. Unlike other works,
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[12] directly provides satisfaction guarantees in continuous
time. The underlying assumption in [2], [3], [7]–[14] is,
however, that the environment is known. For LTL, [15] and
[16] assume that the environment is modeled as a semantic
map using learning-enabled perception [17] that assign a
mean and a variance to each object in the environment. Target
beliefs in surveillance games and markov decisions process-
based approaches are respectively presented in [18] and
[19]. Probabilistic computational tree logic and distribution
temporal logic [20] account for state distributions and can
take chance constraints into account, but do only consider
qualitative temporal properties and do not consider risk
metrics as proposed in this work. For STL, literature is sparse
and the works in [21] and [22] consider chance constraints.

Our first contribution is to define risk signal temporal
logic (RiSTL) by incorporating risk metrics [23], such as
(but not limited to) the Conditional Value-at-Risk [24],
into a temporal logic framework. In particular, we define
risk predicates that encode the risk of not satisfying a
stochastic STL predicate. On top of these risk predicates,
we use the traditional Boolean and temporal operators as
in STL. We also propose quantitative semantics for such
specifications. The second contribution is to show that, under
certain conditions, an RiSTL specification can be translated
into an STL specification. We show that these conditions
can efficiently be checked for linear predicates, while we
argue that, for more general forms, they can be checked
numerically. This translation is sound since satisfaction of the
STL specification implies satisfaction of the RiSTL specifi-
cation. As a particular instance of stochasticity, we consider
control systems in unknown environments so that, using this
transformation, the stochastic control problem is mapped into
a deterministic one. Any existing control method for systems
under STL specifications can then be used. We extend, as a
third contribution, our previous work on time-varying control
barrier functions [13], [14] to solve the control problem for
unicycle-like dynamics. We emphasize that this is the first
work considering unknown environments for continous-time
systems under STL alike specifications.

II. PRELIMINARIES AND PROBLEM FORMULATION

True and false are > and ⊥ with B := {>,⊥}; N (µ̃, Σ̃)
denotes a multivariate normal distribution with mean vector
µ̃ and variance matrix Σ̃. Proofs are given in the appendix.

A. Risk Signal Temporal Logic (RiSTL)

Let x : R≥0 → Rn and X ∈ Rñ. Signal temporal
logic (STL) [4] is based on signals x(t) and predicates



µSTL : Rn × Rñ → B. Let h : Rn × Rñ → R be a
continuously differentiable function, also called predicate
function. A predicate µSTL(x(t),X) is satisfied at time t
if and only if x(t) is such that h(x(t),X) ≥ 0 when X
is a deterministic vector. In this paper, however, X is non-
deterministic and a random variable. Consider the probability
space (Ω,SΩ, PΩ) where Ω is the sample space, SΩ is the
Borel σ-algebra of Ω, and PΩ : SΩ → [0, 1] is a probability
measure. Then X is a measurable function X : Ω → Rñ.
Letting S denote the Borel σ-algebra of R, the probability
space (Rñ,S ñ, PX) can be associated with X where, for
S ∈ S ñ, PX : S ñ → [0, 1] with PX(S) := PΩ(X−1(S))
and X−1(S) := {ω ∈ Ω|X(w) ∈ B}. Similarly, for a
given x(t), one can associate the probability space (R,S, P )
with h(x(t),X). We now propose an extension to STL that
takes chance and risk constraints into account and which
we call risk signal temporal logic (RiSTL). For a given
probability δ ∈ (0, 1), the truth value of a chance predicate
µCh : Rn × Rñ → B at time t is obtained as

µCh(x(t),X) :=

{
> if P (h(x(t),X) ≥ 0) ≥ δ
⊥ otherwise

(1)

where P (h(x(t),X) ≥ 0) denotes the probability that
h(x(t),X) ≥ 0, which is the probability of satisfying
µSTL(x(t),X). We further consider risk predicates based
on risk metrics as advocated in [23], [24] and motivated
by the fact that chance predicates do not take the left tail
of the distribution of h(x(t),X) into account. Risk metrics
allow to exclude behavior which is deemed more risky than
other behavior (see Example 1 for further motivation). Let
H denote the set of all random variables derived from
(Ω,SΩ, PΩ). Formally, a risk metric is a mapping R : H →
R. We are interested in R(−h(x(t),X)) to argue about the
risk of not satisfying µSTL(x(t),X). The truth value of a
risk predicate µRi : Rn × Rñ → B at time t is obtained as

µRi(x(t),X) :=

{
> if R(−h(x(t),X)) ≤ γ
⊥ otherwise

(2)

for γ ∈ R. Note that R(·) can take different forms with
desireable properties such as monotonicity, translational in-
variance, positive homogeneity, subadditivity, law invariance,
or commotone additivity [23]. The syntax of RiSTL is

φ ::= > | µCh | µRi | ¬φ | φ′ ∧ φ′′ | φ′ U[a,b] φ
′′ (3)

where φ′ and φ′′ are RiSTL formulas and where U[a,b]

is the until operator with a ≤ b < ∞. Also define
φ′ ∨φ′′ := ¬(¬φ′ ∧¬φ′′) (disjunction), F[a,b]φ := >U[a,b] φ
(eventually), and G[a,b]φ := ¬F[a,b]¬φ (always).

Remark 1: RiSTL allows to impose specifications like
“the risk of avoiding an obstacle is always less than γ”.
It is, however, not possible to impose “the risk of always
avoiding an obstacle is less than γ”. While the latter may be
more general, we argue that the choice of chance and risk
constraints as in (1) and (2) is more tractable considering that
the system in (4) operates in continuous time and allows to
map the stochastic into a deterministic control problem.

Let (x,X, t) |= φ denote the satisfaction relation, i.e., if x
satisfies φ at t for a particular X . We recursively define the
RiSTL semantics as (x,X, t) |= µCh iff P (h(x(t),X) ≥
0) ≥ δ, (x,X, t) |= µRi iff R(−h(x(t),X)) ≤ γ,
(x,X, t) |= ¬φ iff ¬((x,X, t) |= φ), (x,X, t) |= φ′ ∧ φ′′
iff (x,X, t) |= φ′ ∧ (x,X, t) |= φ′′, and (x,X, t) |=
φ′ U[a,b] φ

′′ iff ∃t′′ ∈ [t + a, t + b] s.t. (x,X, t′′) |= φ′′ ∧
∀t′ ∈ [t, t′′],(x,X, t′) |= φ′. For a particular X , φ is
satisfiable if ∃x : R≥0 → Rn such that (x,X, 0) |= φ.
Quantitative semantics for RiSTL are denoted by ρφ(x,X, t)
and recursively defined as

ρµ
Ch

(x,X, t) := P (h(x(t),X) ≥ 0)− δ,

ρµ
Ri

(x,X, t) := γ −R(−h(x(t),X)),

ρ¬φ(x,X, t) := −ρφ(x,X, t),

ρφ
′∧φ′′(x,X, t) := min(ρφ

′
(x,X, t), ρφ

′′
(x,X, t)),

ρφ
′ U[a,b] φ

′′
(x,X, t) := max

t′′∈[t+a,t+b]
min(ρφ

′′
(x,X, t′′),

min
t′∈[t,t′′]

ρφ
′
(x,X, t′)),

ρG[a,b]φ(x,X, t) := min
t′∈[t+a,t+b]

ρφ(x,X, t′),

ρF[a,b]φ(x,X, t) := max
t′∈[t+a,t+b]

ρφ(x,X, t′).

It holds that (x,X, t) |= φ if ρφ(x,X, t) > 0 which follows
due to [6, Prop. 16]. For R(·), we use, in this paper, the
expected value (EV), the Value-at-Risk (VaR), and the Con-
ditional Value-at-Risk (CVaR). The EV of −h(x(t),X) is
E[−h(x(t),X)] which provides a risk neutral risk measure.
More risk averse measures are the VaR and the CVaR as in
[24]. The VaR of −h(x(t),X) for β ∈ (0, 1) is defined as

V aRβ(−h(x(t),X)) :=

min(d ∈ R|P (−h(x(t),X) ≤ d) ≥ β).

Note in particular that the probability that −h(x(t),X) >
V aRβ(−h(x(t),X)) is 1− β. If the cummulative distribu-
tion function of h(x(t),X) is smooth, as in this case, the
CVaR of −h(x(t),X) for probability β is given by

CV aRβ(−h(x(t),X)) := E[−h(x(t),X))|
− h(x(t),X)) > V aRβ(−h(x(t),X))].

Risk predicates are fundamentally different from chance
predicates and may be advantageous, as illustrated next.

Example 1: Let x :=
[
xx xy

]T ∈ R2 and
X ∼ N (µ̃, Σ̃) with X :=

[
XT
O1 XT

O2 XT
R1

]T
=[

XO1,x XO1,y XO2,x XO2,y XR1,x XR1,y

]T ∈ R6

(see Fig. 1). The uncertainty of XO1 and XO2 differs in
the left and right part of Fig. 1 and is larger in the right
part (see dotted circles). The specification is to always avoid
the obstacles indicated by XO1 and XO2, while eventually
reaching the region indicated by XR1. Let UN ∈ {Ch,Ri}
and φUN := G[0,6](φ

UN
O1 ∧ φUN

O2) ∧ F[0,6]φ
UN
R1 where

φUN
O1 := µUN

1 ∨ µUN
2 ∨ µUN

3 ∨ µUN
4



Fig. 1: Let X have mean µ̃ :=
[
0.75 2 − 0.75 2 0 4

]T
and variance Σ̃ := 0.75 · diag(1, 1, 1, 1, 1, 1) in the left and
Σ̃ := 0.75 · diag(2, 2, 2, 2, 1, 1) in the right figure.

φUN
O2 := µUN

5 ∨ µUN
6 ∨ µUN

7 ∨ µUN
8

φUN
R1 := µUN

9 ∧ µUN
10 ∧ µUN

11 ∧ µUN
12

encode avoidance of XO1 and XO2 and reachability of
XR1, respectively. For µUN

1 , µUN
2 , µUN

3 , and µUN
4 , define

h1(x,X) := XO1,x−ε−xx, h2(x,X) := −XO1,x−ε+xx,
h3(x,X) := XO1,y− ε−xy , h4(x,X) := −XO1,y− ε+xy
for ε := 0.5. Define the remaining hi(x,X) for µUN

i with
i ∈ {5, . . . , 12} similarly. Now each µUN

i for i ∈ {1, . . . , 12}
is either interpreted as a chance predicate (UN = Ch)
with δi := 0.5 or as a risk predicate (UN = Ri) with
R(·) := CV aRβi(·), γi := 1.5, and βi := 0.8. Fig. 1
shows the trajectories x1(t) (blue) and x2(t) (red). In the
left part, both ρφ

Ch
and ρφ

Ri
indicate that x2(t) satisfies

φUN more (note that ρφ
Ch

(x2,X, 0) > ρφ
Ch

(x1,X, 0) and
ρφ

Ri
(x2,X, 0) > ρφ

Ri
(x1,X, 0)). The intuition here is that

x1(t) (blue) does not reach the center of XR1 as opposed to
x2(t) (red) so that x2(t) is favoured in both cases since this
trajectory satisfies the reachability specification φUN

R1 better
when the uncertainty in XO1 and XO2 is low. In the right
part, however, this uncertainty grows; ρφ

Ch
still suggests that

x2(t) is the favorable trajectory, while now ρφ
Ri

, being more
risk sensitive, suggest that x1(t) is more favorable. The
reason for this behavior is that the relative importance of
the avoidance specifications φUN

O1 and φUN
O2 increases and is

more taken into account by the risk predicates.

B. Nonholonomic Systems under RiSTL Specifications

Let z(t) :=
[
x(t)T θ(t)

]T ∈ R3 where x(t) and θ(t)
are the position and orientation of a unicycle modeled as in

ż(t) = f(z(t)) + g(z(t))u+ c(z(t), t), z(0) ∈ R3 (4)

with control input u :=
[
u1 u2

]T ∈ R2. The functions

f(z) :=

[
fx(z)
fθ(z)

]
g(z) :=

cos(θ) 0
sin(θ) 0

0 1

 c(z, t) :=

[
cx(z, t)
cθ(z, t)

]

are locally Lipschitz continuous in z and piecewise contin-
uous in t; f(z) is a known function with bounded fθ(z)
while c(z, t) is unknown but bounded, i.e., ‖c(z, t)‖ ≤ C
for known C ≥ 0. Consider the RiSTL fragment

ψ ::= > | µCh | µRi | ψ′ ∧ ψ′′ (5a)
φ ::= G[a,b]ψ | F[a,b]ψ | ψ′ U[a,b] ψ

′′ | φ′ ∧ φ′′ (5b)

where ψ′ and ψ′′ are Boolean formulas of the form (5a),
whereas φ′ and φ′′ are of the form (5b). For specifications φ
of the form (5), it holds that (x,X, t) |= φ if ρφ(x,X, t) ≥
0, not requiring a strict inequality. The full RiSTL language
as in (3) can be dealt with when combining the proposed
control laws with timed automata theory [12]. Assume that
the satisfaction of φ in (5) depends on x and X , but not
on θ. Assume also that φ consists of M chance and risk
predicates µPr

m(x,X) and µRi
m(x,X) for m ∈ {1, . . . ,M}

with associated predicate functions hm(x,X).
Assumption 1: Each hm(x,X) is concave in x.

Let each µPr
m(x,X) be associated with δm and each

µRi
m(x,X) be associated with Rm(·), βm, and γm. We

assume that the mean µ̃, the covariance matrix Σ̃, and the
probability density function pX(X) of X is known.

Problem 1: Let φ be an RiSTL formula as in (5). Design
a control law u(z, t) for the system in (4) s.t. ρφ(x,X, t) ≥
r ≥ 0, i.e., (x,X, t) |= φ, where r is maximized.

III. PROPOSED PROBLEM SOLUTION

Not that, for a fixed x, each hm(x,X) has a mean µ̃hm
(x)

and a variance Σ̃hm
(x). Let phm

(h,x) denote the probability
density function of hm(x,X) for a fixed x.

A. Determinization of RiSTL Specifications

Note that P (hm(x,X) ≥ 0) and R(−hm(x,X)) depend
on x. For given δm, βm ∈ (0, 1) and γm ∈ R, define the sets

XCh
m (δm) := {x ∈ B|P (hm(x,X) ≥ 0) ≥ δm}

XEV
m (γm) := {x ∈ B|E[−hm(x,X)] ≤ γm}

XVaR
m (βm, γm) := {x ∈ B|V aRβm(−hm(x,X)) ≤ γm}

XCVaR
m (βm, γm) := {x ∈ B|CV aRβm(−hm(x,X)) ≤ γm}

where B is an arbitrarily big compact and convex set, as
further explained in Section III-B; XCh

m (δm) defines all x
in B for which the probability that hm(x,X) ≥ 0 is
greater or equal than δm, while XEV

m (γm), XVaR
m (βm, γm),

and XCVaR
m (βm, γm) define all x in B for which the EV,

VaR, and CVaR of −hm(x,X) is less or equal than γm,
respectively. For a design parameter cm ∈ R, define

Xm(cm) := {x ∈ B|hm(x, µ̃)− cm ≥ 0}

where the mean µ̃ of X is used. The set Xm(cm) is compact
and convex since hm(x, µ̃) is concave in x. If XCh

m (δm) ⊇
Xm(cm), then x ∈ Xm(cm) implies x ∈ XCh

m (δm) (similarly
for XEV

m (γm), XVaR
m (βm, γm), and XCVaR

m (βm, γm)). In this
case, an RiSTL formula can be determinized into an STL
formula using hm(x, µ̃) − cm instead of P (hm(x,X) ≥
0)− δm and γm − R(−hm(x,X)), mapping the stochastic
control problem into a deterministic one (see Section III-B).



X ∼ N (0, 1)

hm(x < 0,X) ∼ N (−x, 1)

hm(x > 0,X) ∼ N (−x, 1) P (hm(−1.3,X) ≥ 0) = 0.9

V aR0.8(−hm(0,X)) = 0.842−hm(0,X) ∼ N (0, 1)

Fig. 2: Illustrating Example 2 and the calculation of cm.

Example 2: Consider X ∼ N (0, 1) and the predicate
µm(x,X) with predicate function hm(x,X) := X − x.
It holds that Xm(cm) := (−∞,−cm] since µ̃ = 0. Note that
hm(x,X) ∼ N (−x, 1) as in Fig. 2 where smaller x lead
to larger P (hm(x,X) ≥ 0) (indicated by the red area under
the red curve). Consequently, XCh

m (δm) = (−∞,x′] where:
1) x′ = 0 if δm = 0.5, 2) x′ < 0 if δm > 0.5, and 3) x′ > 0
if δm < 0.5. The idea is then, for a given δm, to find cm
such that Xm(cm) ⊆ XCh

m (δm), e.g., for δm := 0.9 it holds
that x′ = −1.3 (see Fig. 2) so that cm ≥ 1.3. Similarly,
let βm := 0.8 so that XVaR

m (0.8, γm) = (−∞,x′] where: 1)
x′ = 0 if γm = 0.842, 2) x′ < 0 if γm < 0.842, and 3)
x′ > 0 if γm > 0.842. For γm = 0.842, it holds that x′ = 0
so that cm ≥ 0 achieves Xm(cm) ⊆ XVaR

m (βm, γm).
Checking these set inclusions is, in general, nonconvex.

When hm(x,X) is linear in x, we can obtain the next result.
Lemma 1: Assume hm(x,X) = vTx + h′(X) for v ∈

Rn and for h′ : Rñ → R, then

XCh
m (δm) ⊇ Xm(cm) iff P (hm(x∗,X) ≥ 0) ≥ δm

XEV
m (γm) ⊇ Xm(cm) iff E[−hm(x∗,X)] ≤ γm

XVaR
m (βm, γm) ⊇ Xm(cm) iff V aRβm(−hm(x∗,X)) ≤ γm

XCVaR
m (βm, γm) ⊇ Xm(cm) iff CV aRβm(−hm(x∗,X)) ≤ γm

where x∗ := argmin
x∈Xm(cm)

vTx (a convex program).

Note in particular that, for hm(x,X) as in Lemma 1,
V aRβm

(−hm(x∗,X)) and CV aRβm
(−hm(x∗,X)) can be

efficiently computed [24, Thm. 1].
The RiSTL formula φ is now translated into an STL

formula ϕ by replacing chance and risk predicate in φ by

µSTL
m (x(t), µ̃) :=

{
> if hm(x(t), µ̃)− cm ≥ 0

⊥ otherwise.
(6)

The semantics of the STL formula ϕ are, besides the evalua-
tion of predicates in (6), the same as for the RiSTL formula
φ [4]. We also define quantitative semantics ρϕ(x, µ̃, t) by
letting ρµ

STL
m (x, µ̃, t) := hm(x(t), µ̃)−cm and then following

the recursive definition of RiSTL as introduced in Section II-
A [5]. The following assumption is necessary for Xm(cm)
to be non empty and hence for ϕ to be satisfiable.1

Assumption 2: For each m ∈ {1, . . . ,M}, there exists
x ∈ Rn so that hm(x, µ̃) − cm > 0. Furthermore, for
each ψ′ ∧ ψ′′ in ϕ (recall (5a)), there exists x ∈ Rn so
that ρψ

′∧ψ′′(x, µ̃, 0) > 0.

1More formally, necessity holds when the “>” are replaced with “≥”.

Note that Assumption 2 can efficiently be checked since
hm(x, µ̃) is concave in x. It can always be satisfied by a
sufficiently small cm and hence poses an upper bound on
cm. The next assumption is sufficient to ensure soundness in
the sense that (x,X, 0) |= ϕ implies (x,X, 0) |= φ.

Assumption 3: For each m ∈ {1, . . . ,M}, XPr
m(δm) ⊇

Xm(cm), XEV
m (γm) ⊇ Xm(cm), XVaR

m (βm, γm) ⊇ Xm(cm),
or XCVaR

m (βm, γm) ⊇ Xm(cm) depending on the predicate.
Increasing cm shrinks the set Xm(cm) so that Assump-

tion 3 (verifiable by Lemma 1) poses a lower bound on cm.
Theorem 1: Let Assumption 3 hold. If x : R≥0 → Rn is

such that (x,X, 0) |= ϕ, it follows that (x,X, 0) |= φ.
Finding a set of cm that satisfies Assumptions 2 and 3 may

induce conservatism since the level sets of Xm(cm) may
not be aligned with the level sets of XCh

m (δm), XEV
m (γm),

XVaR
m (βm, γm), and XCVaR

m (βm, γm). The next result shows
when such conservatism can be avoided and alleviates find-
ing a set of cm that satisfy Assumptions 2 and 3.

Lemma 2: Assume that hm(x,X) = vTx + h′(X) for
v ∈ Rn and for h′ : Rñ → R. Then there exists a design
parameter cm so that Xm(cm) = XCh

m (δm), Xm(cm) =
XEV
m (γm), Xm(cm) = XVaR

m (δm), or Xm(cm) = XCVaR
m (δm).

B. Control Barrier Functions for Unicycle Dynamics
Theorem 1 allows to map the stochastic control problem

into a deterministic one. The proposed control method is
based on time-varying control barrier functions where a
function b(x, µ̃, t) encodes the STL formula ϕ [13]. Given
that Assumptions 2 and 3 hold, we impose conditions on the
function b(x, µ̃, t) as in [13, Steps A, B, and C] that account
for the STL semantics of ϕ; [14] presents a formally correct
procedure to construct such b(x, µ̃, t). Define C(µ̃, t) :=
{x ∈ R2|b(x, µ̃, t) ≥ 0} and note that (x, µ̃, 0) |= ϕ if
x(t) ∈ C(µ̃, t) for all t ≥ 0 according to [13]; C(µ̃, t) is
ensured to be bounded so that we let D be an open and
bounded set with D containing C(µ̃, t) for all t ≥ 0. It is also
ensured that x(0) ∈ C(µ̃, 0). In [13] and [14], the function
b(x, µ̃, t) is concave in the first argument and piecewise
continuous in the third argument with discontinuities at times
{s0 := 0, s1, . . . , sq} for some finite q.

Theorem 2: Let the design parameters cm be so that As-
sumptions 2 and 3 hold and let b(x, µ̃, t) be constructed for
ϕ as in [14]. If, for α > 0 and for all (z, t) ∈ D×(sj , sj+1),
there exists a continuous control law u(z, t) such that

∂b(x, µ̃, t)

∂z
(f(z) + g(z)u(z, t)) +

∂b(x, µ̃, t)

∂t

≥ −αb(x, µ̃, t) +
∥∥∥∂b(x, µ̃, t)

∂z

∥∥∥C, (7)

then ρφ(x,X, 0) ≥ r for some r ≥ 0, i.e., (x,X, 0) |= φ.
For unicycle-like dynamics in (4), the constraint in (7)

may not be feasible in case that
∂b(x, µ̃, t)

∂z
g(z) =

∂b(x, µ̃, t)

∂xx
cos(θ) +

∂b(x, µ̃, t)

∂xy
sin(θ)

is equal to the zero vector. We use a near-identity diffeomor-
phism as in [25] by the coordinate transformation

p := x+ lR(θ)e1



where l > 0 is a design parameter and where R(θ) :=[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and e1 :=

[
1 0

]T
. Note that ẋ =

fx(z) +R(θ)e1u1 + cx(z, t) so that we can derive that

ṗ = fx(z) + gp(z)u+ cx(z, t)

where gp(z) :=

[
cos(θ) − sin(θ)l
sin(θ) cos(θ)l

]
has full rank [25, Lem.

1]. Consider next the modified predicate

µ̄STL
m (x(t), µ̃) :=

{
> if hm(x(t), µ̃)− cm − χm ≥ 0

⊥ otherwise
(8)

for χm > 0. The STL formula ϕ is now transformed into the
STL formula ϕ̄ by replacing each predicate µSTL

m (x(t), µ̃) in
ϕ by µ̄STL

m (x(t), µ̃). We then choose a sufficiently small χm
for each m ∈ {1, . . . ,M} so that Assumption 2 holds for the
modified predicate function hm(p, µ̃)− cm−χm and ϕ̄ and
then construct b(p, µ̃, t) for ϕ̄ as in [14]. We remark that we
do not induce any conservatism and that choosing such χm is
always possible. Note that each hm(x, µ̃) is locally Lipschitz
continuous with Lipschitz constant Lmh on the domain D so
that |hm(x, µ̃) − hm(p, µ̃)| ≤ Lmh l. We then select l such
that l ≤ χm / Lmh for each m ∈ {1, . . . ,M}. Consequently,
hm(p, µ̃)− cm − χm ≥ 0 implies hm(x, µ̃)− cm ≥ 0.

Theorem 3: Let the design parameters cm be so that
Assumptions 2 and 3 hold, set χm and l as instructed above,
and let b(p, µ̃, t) be constructed for ϕ̄ as in [14]. If α is as
in [14, Lemma 4], then the control law u(z, t) given as

u(z, t) := argmin
u∈R2

uTu (9a)

∂b(p, µ̃, t)

∂p
(fx(z) + gp(z)u) +

∂b(p, µ̃, t)

∂t

≥ −αb(p, µ̃, t) +
∥∥∥∂b(p, µ̃, t)

∂p

∥∥∥C, (9b)

ensures ρφ(x,X, 0) ≥ r for some r ≥ 0, i.e., (x,X, 0) |= φ.
In order to maximize r, one can find the set of cm that

results in the largest r. This may, however, result in a tedious
search. Another idea, possibly not obtaining the best r but
maximizing r to some extent, is to obtain a set of cm so that
Assumptions 2 and 3 hold and, instead of (9), solve(
u(z, t), ε(z, t)

)
:= argmin

(u,ε)∈R2×R≥0

uTu− ε (10a)

∂b(p, µ̃, t)

∂p
(fx(z) + gp(z)u) +

∂b(p, µ̃, t)

∂t

≥ −αb(p, µ̃, t) +
∥∥∥∂b(p, µ̃, t)

∂p

∥∥∥C + ε.

(10b)

Note that (10) is feasible for each (z, t) ∈ D × R≥0 and,
similarly to the proof of Theorem 3, it can be shown that
u(z, t) is continuous. Let εr := inf(z,t)∈D×R≥0

ε(z, t) and

Cr(µ̃, t) := {p ∈ R2|b(p, µ̃, t) ≥ εr / α}.

Lemma 3: The control law u(z, t) in (10) renders the set
Cr(µ̃, t) forward invariant and attractive.

Based on Lemma 3, we next find a lower bound on r.
Therefore, we need the following result.

XR1XR2
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XO1

µSTL
1µSTL

2

µSTL
3

µSTL
7

µSTL
6

µSTL
5

µSTL
4

1

2

3

4

5

6

x(0)

Fig. 3: The RiSTL task φ contains the black chance and
risk predicates µPr

1 , µ
Pr
2 , µ

Ri
3 , . . . , µ

Ri
7 . The determinized STL

predicates µSTL
1 , . . . , µSTL

7 , contained in ϕ, are shown in red.

Corollary 1: The control law u(z, t) in (10) results in
ρϕ(x, µ̃, 0) ≥ εr / α if p(0) ∈ Cr(µ̃, 0).

Let us next define

Xr
m(cm) := {x ∈ B|hm(x, µ̃)− cm ≥ εr / α}

for which Xr
m(cm) ⊆ Xm(cm) with strict inclusion if εr > 0.

Let r := min(r1, . . . , rM ) with rm := supr∈R r s.t. CS
where CS ∈ {XCh

m (r + δm) ⊇ Xr
m(cm),XEV

m (γm − r) ⊇
Xr
m(cm),XVaR

m (βm, γm − r) ⊇ Xr
m(cm),XCVaR

m (βm, γm −
r) ⊇ Xr

m(cm)} depending on the type of the predicate.
The next result follows by Corollary 1 and the definitions
of Xr

m(cm), r, and the quantitative semantics of φ.
Theorem 4: The control law u(z, t) in (10) results in

ρφ(x, µ̃, 0) ≥ r.

IV. SIMULATIONS

Consider the dynamics in (4) with f(z) := 0

and c(z) := 0.5 ·
[
−sat(xx) −sat(xy) 0

]T
with

x :=
[
xx xy

]T ∈ R2 and where sat(x) = x if
|x| ≤ 1 and sat(x) = 1 otherwise so that C = 0.5.
Furthemore, let X :=

[
XT
O1 XT

O2 XT
R1 XT

R2

]
=[

XO1,y XO2,x XO2,y XR1,x XR1,y XR2,x XR2,y

]T
where X ∼ N (µ̃, Σ̃) with µ̃ :=[
10 5 8 8 9 2 9

]T
and Σ̃ :=

diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05). Let

φ := F[0,5](φ
Pr
R1 ∧ F[0,4]φ

Pr
R2) ∧G[0,9](φ

Ri
O1 ∧ φRi

O2)

where φPr
R1 := µPr

1 and φPr
R1 := µPr

2 denote the probability of
reaching regions indicated by XR1 and XR2 and φRi

O1 :=
µRi

3 and φRi
O2 := µRi

4 ∨ µRi
5 ∨ µRi

6 ∨ µRi
7 encode the risk of

colliding with obstacles indicated by XO1 and XO2.2 We
use δ1 := δ2 := 0.85 and γm := 0 and βm := 0.9 for each
m ∈ {3, . . . , 7} while using CVaR. We obtain XCh

m (δm) ⊇
Xm(cm) for m ∈ {1, 2} if cm := 0.08 and XCVaR

m (βm, γm) ⊇
Xm(cm) for m ∈ {3, . . . , 7} if cm := 0.85, see Fig. 3. Note
that the system is never allowed to go around the obstacle
XO2 from above which is deemed too risky. The RiSTL task
φ and hence the STL tasks ϕ and ϕ̄ can not be encoded using
the fragment in (5). We instead use the framework in [12] to
decompose ϕ̄ into subtasks ϕ̄i := G[0,bi]µ

STL
inv,i ∧ F[bi]µ

STL
reach,i

2In particular, for ε1 := 0.75 and ε2 := 0.5 we define h1(x,X) := ε1−
‖x−XR1‖, h2(x,X) := ε1−‖x−XR2‖, h3(x,X) := −xy+XO1,y ,
h4(x,X) := −xx + XO2,x − ε2, h5(x,X) := xx − XO2,x − ε2,
h6(x,X) := xy −XO2,y − ε2, and h7(x,X) := −xy +XO2,y − ε2.



Fig. 4: Simulation results.

for i ∈ {1, . . . , 6} with bi < bi+1 where each ϕ̄i can be
encoded in (5). Sequentially satisfying each ϕ̄i guarantees
satisfaction of ϕ̄, and consequently satisfaction of φ. For an
initial condition x(0) |= µ̄STL

3 ∧ µ̄STL
4 ∧ ¬µ̄STL

5 ∧ ¬µ̄STL
6 ∧

¬µ̄STL
7 =: µSTL

init , the algorithm in [12] provides the sequence
indicated by the blue waypoints in Fig. 3. For instance, the
first trajectory is constrained by µSTL

inv,1 := µSTL
init , µSTL

reach,1 :=

µ̄STL
3 ∧ µ̄STL

4 ∧ ¬µ̄STL
5 ∧ ¬µ̄STL

6 ∧ µ̄STL
7 , and b1 := 1.5. The

simulation results are shown in Fig. 4. For i = 1, we obtain
εr = 2.65 and it is visible that the system always tries to
maximize r and hence the distance to the obstacles (see for
instance the trajectory from 5.5 to 6.5 sec).

V. CONCLUSION

We presented risk signal temporal logic (RiSTL) by com-
posing risk metrics with stochastic predicates to quantify
the risk by which a predicate is not satisfied. We then
considered unicycle-like dynamics in uncertain environments
and showed that the stochastic control problem can be
transformed into a deterministic one, which we solved by
using time-varying control barrier functions.

APPENDIX

Proof of Lemma 1: Note that −hm(x,X) has mean
µ̃−hm

(x) := −vTx − E[h′(X)] and variance Σ̃−hm
,

which is a function of h′(X) that does not depend on x.
Let F−hm

(h,x) be the cumulative distribution function of
−hm(x,X) with F−hm(h,x) = P (−vTx−h′(X) ≤ h) =
P (−h′(X) ≤ h+vTx) = F−h′(h+vTx) where F−h′(h+
vTx) is the cumulative distribution function of −h′(X).
Hence, p−hm

(h,x) = p−h′(h + vTx), i.e., p−hm
(h,x) is

of the same type for each x only shifted by vTx.
Ch) Note that XCh

m (δm) ⊇ Xm(cm) if and only if
min

x∈Xm(cm)
P (hm(x,X) ≥ 0) ≥ δm by definition. Now

argmin
x∈Xm(cm)

P (hm(x,X) ≥ 0) = argmin
x∈Xm(cm)

P (−hm(x,X) ≤ 0)

= argmin
x∈Xm(cm)

P (−h′(X) ≤ vTx) = argmin
x∈Xm(cm)

F−h′(v
Tx)

(a)
= argmin
x∈Xm(cm)

vTx = x∗

where (a) holds since F−h′(vTx) is nondecreasing. Hence,
min

x∈Xm(cm)
P (hm(x,X) ≥ 0) = P (hm(x∗,X) ≥ 0).

EV) Note that XEV
m (γm) ⊇ Xm(cm) if and only if

max
x∈Xm(cm)

E[−hm(x,X)] ≤ γm by definition. Now

argmax
x∈Xm(cm)

E[−hm(x,X)] = argmax
x∈Xm(cm)

∫ ∞
−∞

hp−hm(h,x)dh

= argmax
x∈Xm(cm)

∫ ∞
−∞

hp−h′(h+ vTx)dh
(b)
= argmin
x∈Xm(cm)

vTx = x∗

where (b) holds since x∗ maximizes p−h′(h+vTx) for each
h ∈ (−∞,∞), which maximizes the integral. Consequently,

max
x∈Xm(cm)

E[−hm(x,X)] = E[−hm(x∗,X)].

VaR) Note that XVaR
m (βm, γm) ⊇ Xm(cm) if and only if

max
x∈Xm(cm)

V aRβm
(−hm(x,X)) ≤ γm by definition. Now

argmax
x∈Xm(cm)

V aRβm(−hm(x,X))

= argmax
x∈Xm(cm)

min(d ∈ R|P (−hm(x,X) ≤ d) ≥ βm)

= argmax
x∈Xm(cm)

min(d ∈ R|F−h′(d+ vTx) ≥ βm)

= argmax
x∈Xm(cm)

h∗0 − vTx = argmin
x∈Xm(cm)

vTx = x∗

where h∗0 := min(d ∈ R|F−h′(d) ≥ βm). Hence,
max

x∈Xm(cm)
V aRβm

(−hm(x,X)) = V aRβm
(−hm(x∗,X)).

CVaR) Note that XCVaR
m (βm, γm) ⊇ Xm(cm) if

and only if max
x∈Xm(cm)

CV aRβm
(−hm(x,X)) ≤

γm. Noting p−hm
(h,x) = p−h′(h + vTx), it

holds that argmax
x∈Xm(cm)

CV aRβm
(−hm(x,X)) =

argmax
x∈Xm(cm)

V aRβm
(−hm(x,X)) = x∗. Con-

sequently, max
x∈Xm(cm)

CV aRβm(−hm(x,X)) =

CV aRβm(−hm(x∗,X)).
Proof of Theorem 1: Due to Assumption 3, x ∈ Xm(cm)

implies x ∈ XPr
m(δm), x ∈ XEV

m (γm), x ∈ XVaR
m (βm, γm), or

x ∈ XCVaR
m (βm, γm). Since the semantics of STL and RiSTL

only differ on the predicate level and φ does not contain
negations, (x,X, 0) |= ϕ implies (x,X, 0) |= φ.

Proof of Lemma 2: The proof follows by noting that all
x that satisfy vTx = ν for some ν ∈ R result in the same
P (hm(x,X) ≥ 0), E[−hm(x,X)], V aRβ(−hm(x,X)),
and CV aRβ(−hm(x,X)), respectively. In other words,
the level sets of P (hm(x,X) ≥ 0), E[−hm(x,X)],
V aRβ(−hm(x,X)), and CV aRβ(−hm(x,X)) form again
hyperplanes with normal vector v. Noting that the level sets
of Xm(cm) also result in a hyperplane with normal vector v
that can be shifted by cm completes the proof.

Proof of Theorem 2: Recall that z(t) :=
[
x(t)T θ(t)

]T
.

Since u(z, t) is continuous, there exist solutions z :
[0, τmax) → D to (4) with τmax > 0. Now, (7) im-
plies ∂b(x,µ̃,t)

∂z (f(z) + g(z)u(z, t) + c(z, t)) + ∂b(x,µ̃,t)
∂t ≥

−αb(x, µ̃, t) so that, for all t ∈ (0,min(τmax, s1)),
ḃ(x(t), µ̃, t) ≥ −αb(x(t), µ̃, t). Due to [26, Lem. 4.4], the
Comparison Lemma [26, Ch. 3.4], and since b(x(0), µ̃, 0) ≥
0, it follows that b(x(t), µ̃, t) ≥ 0, i.e., x(t) ∈ C(µ̃, t), for all



t ∈ [0,min(τmax, s1)). If τmax ≥ s1, it holds x(t) ∈ C(µ̃, t)
for all t ∈ [s1,min(τmax, s2)). By [14], for each sj with
j ∈ {1, . . . , q}, it holds that limτ→s−j

C(µ̃, τ) ⊆ C(µ̃, sj) so
that x(s1) ∈ C(µ̃, s1). This argument can be repeated unless
τmax < sj for some j; however, b(x(t), µ̃, t) ≥ 0 implies
that x(t) ∈ B for the compact set B ⊂ Rn and for all
t ∈ [0, τmax); θ(t) will evolve in a compact set since fθ(z)
and cθ(z, t) are bounded so that τmax = ∞ [26, Thm. 3.3].
By [13], x(t) ∈ C(µ̃, t) for all t ≥ 0 so that (x, µ̃, 0) |= ϕ,
i.e., ρϕ(x, µ̃, 0) ≥ r′ for some r′ ≥ 0. Hence, (x, µ̃, 0) |= φ,
i.e., ρφ(x, µ̃, 0) ≥ r for some r ≥ 0, by Theorem 1.

Proof of Theorem 3: If (z, t) ∈ R3 × (sj , sj+1) with
∂b(p,µ̃,t)

∂p gp(z) 6= 0, (9) is feasible and u(z, t) is locally
Lipschitz continuous at (z, t) [27, Thm. 8]. Note that
∂b(p,µ̃,t)

∂p gp(z) = 0 if and only if ∂b(p,µ̃,t)
∂p = 0 since gp(z)

has full rank. If (z, t) ∈ R3× (sj , sj+1) with ∂b(p,µ̃,t)
∂p = 0,

(9b) is satisfied since ∂b(p,µ̃,t)
∂t ≥ −αb(p, µ̃, t) + χ for

some χ > 0 due the choice of α so that u(z, t) := 0.3

Due to continuity of ∂b(p,µ̃,t)
∂t and αb(p, µ̃, t), there exists a

neighborhood U around (p, t) so that, for each (p′, t′) ∈ U ,
∂b(p′,µ̃,t′)

∂t ≥ −αb(p′, µ̃, t′)) and consequently u(p′, t′) =
0. Hence, u(z, t) is continuous on R3 × (sj , sj+1) so that,
similarly to the proof of Theorem 2, ρϕ̄(p, µ̃, 0) ≥ 0
which implies ρϕ(p, µ̃, 0) ≥ min(χ1, . . . , χM ) by (6) and
(8) and the syntax of φ (and consequently ϕ) in (5) that
exclude disjunctions and negations. By the choice of l, this
implies (x, µ̃, 0) |= ϕ so that again (x,X, 0) |= φ, i.e.,
ρφ(x,X, 0) ≥ r for some r ≥ 0, as in proof of Theorem 3.

Proof of Lemma 3: First note that, for each solution
p : R≥0 → Rn that arises under u(z, t), ḃ(p(t), µ̃, t) ≥
−αb(p(t), µ̃, t) + εr due to (10b). For εr ≥ 0 and α > 0, the
initial value problem v̇(t) = −αv(t) + εr with v(0) ≥ εr / α
has the solution v(t) = exp(−αt)(v(0)− εr / α) + εr / α ≥
εr / α. By the Comparison Lemma [26, Ch. 3.4], it follows
that b(p(t), µ̃, t) ≥ v(t) ≥ εr / α so that p(t) ∈ Cr(µ̃, t) for
all t ≥ 0 if p(0) ∈ Cr(µ̃, 0). If v(0) ∈ R, v(t) → ε / α as
t→∞ so that attractivity of Cr(µ̃, t) follows under u(z, t)
by again using the Comparison Lemma.

Proof of Corollary 1: Due to Lemma 3 and since
p(0) ∈ Cr(µ̃, 0), it holds that b(p(t), µ̃, t) ≥ εr / α for
all t ≥ 0. By the construction of b(p, µ̃, t) and [13] it
follows that ρϕ̄(p, µ̃, 0) ≥ εr / α so that ρϕ(p, µ̃, 0) ≥
min(χ1, . . . , χM ) + εr /α. Since, for each m ∈ {1, . . . ,M},
hm(p, µ̃)−cm−χm ≥ εr/α implies hm(x, µ̃)−cm > εr/α
by the choice of l, it follows that ρϕ(x, µ̃, 0) ≥ εr / α.
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