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Abstract— This paper addresses the problem of distributed
control for leader-follower multi-agent systems under pre-
scribed performance guarantees. Leader-follower is meant in
the sense that a group of agents with external inputs are
selected as leaders in order to drive the group of followers
in a way that the entire system can achieve consensus within
certain prescribed performance transient bounds. Under the
assumption of tree graphs, a distributed control law is proposed
when the decay rate of the performance functions is within a
sufficient bound. Then, two classes of tree graphs that can have
additional followers are investigated. Finally, several simulation
examples are given to illustrate the results.

I. INTRODUCTION

The consensus problem has attracted great interest due to
its wide applications in cooperative control and formation
control. Consensus is achieved when a group of agents
converge to a common value. The first order consensus
protocol was first introduced in [10], while the second order
consensus protocol has been investigated in [13].

In this work, we study the consensus problem in a leader-
follower framework, that is, one or more agents are selected
as leaders with external inputs in addition to the first order
consensus protocol. The remaining agents are followers only
obeying the first order consensus protocol. Recent research
that has been done in the leader-follower framework can be
divided into two parts. The first part deals with the controlla-
bility of leader-follower multi-agent systems [14], [3], [12],
[5]. The second part targets leader selection [11], [4], which
involves the problems of how to choose the leaders among
the agents such that the leader-follower system satisfies
the requirements like controllability, optimal performance or
formation maintenance.

Prescribed performance control (PPC) was proposed in [1]
to prescribe the evolution of system output or tracking error
within some predefined region. For example, an agreement
protocol that can additionally achieve prescribed perfor-
mance for a combined error of positions and velocities is
designed in [8] for multi-agent systems with double integra-
tor dynamics, while PPC for multi-agent average consensus
with single integrator dynamics is presented in [6].

In this work, we are interested in how to design control
strategies for the leaders such that the leader-follower multi-
agent system achieves consensus within certain performance
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bounds. Compared with existing work of PPC for multi-
agent systems [8], we apply a PPC law only to the leaders
while most of the related work applies PPC to all the
agents to achieve consensus. Unlike other leader-follower
consensus approaches using PPC [7], in which the multi-
agent system only has one leader and the leader is treated
as a reference for the followers, we focus on a more general
framework in the sense that we can have more than one
leader and the leaders are designed in order to steer the
entire system achieving consensus within the prescribed
performance bounds. The difficulties in this work are due
to the combination of uncertain topologies, leader amount
and leader positions. In addition, the leader can only com-
municate with its neighbouring agents. The contributions of
the paper can be summarized as: i) within this general leader-
follower framework, under the assumption of tree graphs, a
distributed control law is proposed when the decay rate of
the performance functions is within a sufficient bound; ii)
the specific classes of chain and star graphs that can have
additional followers are investigated.

The rest of the paper is organized as follows. In Section
II, preliminary knowledge is introduced and the problem is
formulated, while Section III presents the main results, which
are further verified by simulation examples in Section IV.
Section V closes with concluding remarks and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Graph Theory

An undirected graph [9] G = (V, E) comprises of the
vertices set V = {1, 2, . . . , n} and the edges set E =
{(i, j) ∈ V × V | j ∈ Ni} indexed by e1, e2, . . . , em.
Here, m = |E| is the number of edges and Ni denotes the
agents in the neighbourhood of agent i that can commu-
nicate with i. The adjacency matrix A of G is the n × n
symmetric matrix whose elements aij are given by aij = 1,
if (i, j) ∈ E , and aij = 0, otherwise. The degree of vertex
i is defined as di =

∑
j∈Ni

aij . Then the degree matrix
is ∆ = diag(d1, d2, . . . , dn). The graph Laplacian of G is
L = ∆− A. A path is a sequence of edges connecting two
distinct vertices. A graph is connected if there exists a path
between any pair of vertices. By assigning an orientation
to each edge of G we can define the incidence matrix
D = D(G) = [dij ] ∈ Rn×m. The rows of D are indexed
by the vertices and the columns are indexed by the edges
with dij = 1 if the vertex i is the head of the edge (i, j),
dij = −1 if the vertex i is the tail of the edge (i, j) and
dij = 0 otherwise. Based on the incidence matrix, the graph
Laplacian of G can be described as L = DDT . In addition,



Le = DTD is the so called edge Laplacian [9] and cij
denotes the elemnts of Le.

B. System Description

In this work, we consider a multi-agent system with
vertices V = {1, 2, . . . , n}. Without loss of generality, we
suppose that the first nf agents are selected as followers
while the last nl agents are selected as leaders with respective
vertices set VF = {1, 2, . . . , nf}, VL = {nf + 1, nf +
2, . . . , nf + nl} and n = nf + nl.

Let xi ∈ R be the position of agent i, where we only
consider the one dimensional case, without loss of generality.
Specifically, the results can be extended to higher dimensions
with appropriate use of the Kronecker product. The state
evolution of follower i ∈ VF is governed by the first order
consensus protocol:

ẋi =
∑
j∈Ni

(xj − xi), (1)

while the state evolution of leader i ∈ VL is governed by the
first order consensus protocol with an external input ui ∈ R:

ẋi =
∑
j∈Ni

(xj − xi) + ui. (2)

Let x = [x1, . . . , xnf
, . . . , xn]T ∈ Rn be the stack

vector of absolute positions of all the agents and u =
[unf+1, . . . , unf+nl

]T ∈ Rnl be the control input vector .
Denote x̄ = [x̄1, . . . , x̄m]T as the stack vector of relative
positions between the pair of communicating agents (i, j) ∈
E , where x̄k , xij = xi − xj , k = 1, 2, . . . ,m. It can be
verified that Lx = Dx̄ and x̄ = DTx. Moreover, if x̄ = 0,
we have that Lx = 0. Stacking (1) and (2), the dynamics of
the leader-follower multi-agent system is rewritten as:

Σ : ẋ = −Lx+Bu, (3)

where L is the graph Laplacian and B =
[

0nf×nl

Inl

]
.

C. Prescribed Performance Control

The aim of PPC is to prescribe the evolution of the system
output or the tracking error within some predefined region
described as follows:

−Mijρij(t) < xij(t) < ρij(t) if xij(0) > 0 (4)

− ρij(t) < xij(t) < Mijρij(t) if xij(0) < 0 (5)

ρij(t) : R+ → R+ \{0} are positive, smooth and stirctly de-
creasing performance functions that introduce the predefined
bounds for the target system outputs or the tracking errors.
One example choice is ρij(t) = (ρij0 − ρij∞)e−lijt + ρij∞
with ρij0, ρij∞ and lij positive parameters and ρij∞ =
limt→∞ρij(t) represents the maximum allowable tracking
error at the steady state; Mij represents the maximum
allowed overshot.

Normalizing xij(t) with respect to the performance func-
tion ρij(t), we define the modulated error as x̂ij(t) =

xij(t)
ρij(t)

and the corresponding prescribed performance region Dij :

Dij , {x̂ij : x̂ij ∈ (−Mij , 1)} if xij(0) > 0 (6)

Dij , {x̂ij : x̂ij ∈ (−1,Mij)} if xij(0) < 0 (7)

Then the modulated error is transformed through the trans-
formed function Tij that defines the smooth and strictly
increasing mapping Tij : Dij → R and Tij(0) = 0. One
example choice is Tij(x̂ij) = ln

(
−Mij

x̂ij+1
x̂ij−Mij

)
. Hence

the transformed error is defined as εij(x̂ij) = Tij(x̂ij). It can
be verified that if the transformed error εij(x̂ij) is bounded,
then the modulated error x̂ij is constrained within the regions
(6), (7). This also implies the error xij evolves within the
predefined performance bounds (4) and (5), respectively.
Differentiating εij(x̂ij) with respect to time, we derive

ε̇ij(x̂ij) = JTij
(x̂ij , t)[ẋij + αij(t)xij ] (8)

where
JTij (x̂ij , t) ,

∂Tij(x̂ij)

∂x̂ij

1

ρij(t)
> 0 (9)

αij(t) , −
ρ̇ij(t)

ρij(t)
> 0 (10)

are the normalized Jacobian of Tij and the normalized
derivative of the performance function, respectively.

D. Problem Statement

In this work, we are interested in how to design a control
strategy for the leader-follower multi-agent system given by
(3) such that the controlled system can achieve consensus
while satisfying (4), (5). The control strategy is only applied
to the leaders and these drive the followers to guarantee the
entire multi-agent system meet the requirements. Formally,

Problem 1. Let the leader-follower multi-agent system Σ
defined by (3) with the communication graph G = (V, E) and
the prescribed performance functions ρij , (i, j) ∈ E . Derive
a control strategy such that the controlled leader-follower
multi-agent system achieves consensus and satisfies (4), (5).

III. MAIN RESULTS

In this section, we design the control for the leader-
follower multi-agent system (3) such that the system can
achieve consensus within the prescribed performance bounds

ρij(t) = (ρij0 − ρij∞)e−lijt + ρij∞. (11)

Here the performance functions are chosen as (11) with-
out loss of generality and the communication agents share
information about their performance functions and trans-
formation functions, that is, ρij(t) = ρji(t),Mij = Mji

and Tij(x̂ij) = −Tji(x̂ji). This means the communication
between the neighbouring agents are bidirectional and the
graph G is assumed undirected.

Consensus is achieved in the sense that the stack vector
x̄ of relative positions converges to zero as t → ∞. We
first rewrite the dynamics of the leader-follower multi-agent
system (3) into the edge space in order to characterise
the dynamics of the relative positions. We first rewrite (3)
into the dynamics corresponding to followers and leaders,
respectively. The corresponding incidence matrix is denoted
as D =

[
DT
F DT

L

]T
with DF , DL denoting the incidence



matrices that characterise how followers and leaders are
connected with other agents. Then (3) is reorganised as

Σ :

[
ẋf
ẋl

]
=

[
AF BF
BTF AL

] [
xf
xl

]
+

[
0nf×nl

Inl

]
u, (12)

where xf , xl represents respectively
[
x1 x2 · · · xnf

]T
,[

xnf+1 · · · xnf+nl

]T
and AF = DFD

T
F , BF =

DFD
T
L , AL = DLD

T
L . Multiplying with DT on both sides

of (12), we obtain the dynamics on the edge space as

Σe : ˙̄x = −Lex̄+DT
Lu, (13)

with the edge Laplacian Le. Le is positive definite if the
graph is a tree [2]. We thus here assume the following

Assumption 1. The leader-follower multi-agent system (3)
described by the graph G = (V, E) is a connected tree.

We consider tree graphs as a starting point since the
positive definiteness of Le is used in the analysis, and
motivated by the fact that they require less communication
load (less edges) for their implementation and show less
couplings between agents. Note however that further results
for a general graph could be built based on the results of
tree graphs, for example, through graph decompositions [15].
For the leader-follower multi-agent system (13), the proposed
controller applied to the leader agents is the composition of
the term based on prescribed performance of the positions
of the neighbours:

ui = −
∑
j∈Ni

gijJTij (x̂ij , t)εij(x̂ij), i ∈ VL, (14)

where gij = gji is a positive scalar gain to be appropriately
tuned. Then the stack input vector is

u = −DLJT (ˆ̄x, t)Gε(ˆ̄x), (15)

where ˆ̄x is the stack vector of transformed errors x̂ij , G ∈
Rm×m is a positive definite diagonal gain matrix with entries
gij . JT (ˆ̄x, t) ∈ Rm×m is a time varying diagonal matrix with
diagonal entries JTij

(x̂ij , t), ε(ˆ̄x) ∈ Rm is a stack vector
with entries εij(x̂ij). In the sequel, we develop the following
result and will use Lyapunov-like methods to prove that.

Theorem 1. Consider the leader-follower multi-agent system
Σ under Assumption 1 with dynamics (3), the predefined
performance functions ρij as in (11) and the transformation
function s.t. Tij(0) = 0,∀(i, j) ∈ E , and assume that the
initial conditions xij(0) are within the performance bounds
(4) or (5). If the following condition holds:

γ̄ ≥ l = max
(i,j)∈E

(lij), (16)

where l is the largest decay rate of ρij(t) and γ̄ is the
maximum value of γ that ensures:

Γ =

[
DT

LDL
1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
≥ 0.

(17)
Then, the controlled system achieves consensus and satisfies
(4) or (5) when applying the control (15).

Proof. Consider the Lyapunov-like function V (εˆ̄x, x̄) =
1
2ε
T
ˆ̄x
Gεˆ̄x + γ

2 x̄
T x̄, with εˆ̄x denoting ε(ˆ̄x) and JTˆ̄x

denoting
JT (ˆ̄x, t). Then, V̇ = εTˆ̄xGε̇ˆ̄x+γx̄T ˙̄x. Replacing ε̇ˆ̄x according
to (8), we obtain V̇ = εTˆ̄xGJTˆ̄x

( ˙̄x+ α(t)x̄) + γx̄T ˙̄x, where
α(t) is the diagonal matrix with diagonal entries αij(t).
According to (10) and (11), we know that αij(t) < lij ,∀t.
Substituting (13), (15), we can further derive that

V̇ =εTˆ̄xGJTˆ̄x
(−Lex̄−DT

LDLJTˆ̄x
Gεˆ̄x + α(t)x̄)

+ γx̄T (−Lex̄−DT
LDLJTˆ̄x

Gεˆ̄x)

=− εTˆ̄xGJTˆ̄x
Lex̄+ εTˆ̄xGJTˆ̄x

α(t)x̄

− εTˆ̄xGJTˆ̄x
DT
LDLJTˆ̄x

Gεˆ̄x − γx̄TLex̄
− γx̄TDT

LDLJTˆ̄x
Gεˆ̄x

(18)

Adding and subtracting γεTˆ̄xGJTˆ̄x
x̄ on the right hand side

of (18), we obtain

V̇ =− εTˆ̄xGJTˆ̄x
(γIm − α(t))x̄− εTˆ̄xGJTˆ̄x

DT
LDLJTˆ̄x

Gεˆ̄x

− εTˆ̄xGJTˆ̄x
Lex̄− γx̄TLex̄+ γεTˆ̄xGJTˆ̄x

(Im −DT
LDL)x̄

=− εTˆ̄xGJTˆ̄x
(γIm − α(t))x̄

− yT
[

DT
LDL

1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
y

=− εTˆ̄xGJTˆ̄x
(γIm − α(t))x̄− yTΓy

(19)
with yT =

[
εTˆ̄xGJTˆ̄x

x̄T
]
. Since G,JTˆ̄x

are both diagonal
and positive definite matrices, we have that GJTˆ̄x

is also a
diagonal positive definite matrix. (γIm−α(t)) is a diagonal
positive definite matrix if γ ≥ l = max(lij) > ᾱ =
supαij(t). Due to Tij(0) = 0, we have εij(x̂ij)x̂ij ≥ 0.
Then, by by setting γ := θ + ᾱ, with θ being a positive
constant we get −εTˆ̄xGJTˆ̄x

(γIm − α(t))x̄ ≤ −θεTˆ̄xGJTˆ̄x
x̄.

Then, according to (9), we further obtain −θεTˆ̄xGJTˆ̄x
x̄ =

−θεTˆ̄xG
∂εˆ̄x

∂ ˆ̄x
ˆ̄x ≤ 0. This holds because the transformed

function is smooth and strictly increasing and εij(x̂ij)x̂ij ≥
0. Therefore, in order for V̇ ≤ 0 to hold, it suffices that
γ ≥ l = max(lij) > supαij(t) and in addition, Γ should
be semi-positive definite. Here, in order for Γ ≥ 0 to be
feasible, we need the assumption that the communication
graph is a tree. Then, based on condition (16), and choosing
γ = γ̄, we obtain −εTˆ̄xGJTˆ̄x

(γ̄Im − α(t))x̄ ≤ 0 and Γ ≥ 0.
Finally, we can conclude that V̇ ≤ 0 when γ = γ̄. This also
implies V (εˆ̄x, x̄) ≤ V (εˆ̄x(0), x̄(0)). Hence if x̄(0)) is chosen
within the region (6) or (7) then V (εˆ̄x(0), x̄(0)) is finite,
which implies that V (εˆ̄x, x̄) is bounded ∀t. Therefore εˆ̄x, x̄
are bounded and the boundedness of the transformed error
εˆ̄x implies that the relative position x̄(t) evolves within the
prescribed performance bounds ∀t. Then we can prove the
boundedness of V̈ (εˆ̄x, x̄) based on the boundedness of εˆ̄x, ε̇ˆ̄x.
The boundedness of V̈ (εˆ̄x, x̄) implies the uniform continuity
of V̇ (εˆ̄x, x̄), which in turn implies that V̇ (εˆ̄x, x̄) → 0 as
t→∞ by applying Barbalat’s Lemma. This implies x̄→ 0
as t→∞ and consensus will be achieved.

Remark 1. (16) and (17) show the trade-off between the
largest decay rate of the performance bounds and the number
of leaders. We are interested in specifying the state of



the multi-agent system at the equilibrium. Denote xc =
1
n

∑n
i=1 xi as the centroid. In most of the work regarding

PPC [8], lim
t→∞

xc(t) = xc(0) = 1
n

∑n
i=1 xi(0). This is

because a PPC input for every agent exists. In our work,
the main difference is that when we choose some leaders,
we can achieve a varying equilibrium state of each agent
by tuning the gain matrix, which is quite useful in practical
design as we can decide where all the agents should gather.

In the sequel, we will discuss the results for two specific
classes of tree graphs: chain and star graph. First we con-
sider the chain graph, which is wildly used for instance in
autonomous vehicle platooning.

Definition 1. A chain Gc = (Vc, Ec) is a tree graph with
vertices set Vc = {1, 2, . . . , n}, n ≥ 2 and edges set Ec =
{(i, i + 1) ∈ Vc × Vc | i ∈ Vc \ {n}} indexed by ei =
(i, i+ 1), i = 1, 2, . . . , n− 1.

Note that (16) in Theorem 1 is a sufficient but not
necessary condition. For a chain graph, the matrix inequality
(17) may be actually infeasible when the graph has 2 or more
followers. This is reasonable because when there exist more
followers and the relative positions between them are close
to the performance boundary, these followers cannot perform
quickly by only obeying a first-order consensus protocol to
stay in the funnel due to lack of control. The following result
for Gc is derived.

Proposition 1. Consider the leader-follower multi-agent sys-
tem Σ described by (3) with the communication chain graph
Gc = (Vc, Ec) and the followers set VcF = {1, 2, . . . , nf},
the predefined performance functions ρij as in (11) and
the transformation function s.t. Tij(0) = 0,∀(i, j) ∈ E ,
and assume that the initial conditions xij(0) are within the
performance bounds (4) or (5). Then, the chain can only
have at most 3 followers (nf ≤ 3) in order to achieve
consensus within the prescribed performance bounds ρij(t)
when applying (15). Specifically,

max
(i,j)∈E

(lij) = l ≤ 2, nf = 2;

max
(i,j)∈E

(lij) = l ≤ 1, nf = 3
(20)

are the respective sufficient conditions under which the chain
achieves consensus and satisfies (4), (5) when applying (15).

Proof. When the chain graph has only one follower, that
is nf = 1, the result can be proved by using Theorem
1. Let γ̄ be the maximum value of γ that ensures (17)
holds. By further choosing the decay rate of the performance
functions (11) to satisfy (16), we can conclude that the
controlled system achieves consensus within the prescribed
performance bounds by applying (15) based on Theorem
1. When the chain has additional followers, the condition
in Theorem 1 may be infeasible since it is a sufficient but
not necessary condition. But for this kind of special chain
structure, we can resort to checking the edge dynamics (13)
directly. It can be shown that −Le has elements given by
cij = −2 when i = j, cij = 1 when |i− j| = 1 and cij = 0

otherwise when the graph is a chain. We then rewrite (13)
as [

˙̄xf
˙̄xl

]
=

[
A B
BT C

] [
x̄f
x̄l

]
+

[
0
D

]
u, (21)

where x̄f ∈ R(nf−1) represents the edges between followers,
while x̄l ∈ Rnl represents the edge that connects the leader
node {nf+1} and the follower node {nf}, and the edges be-
tween leaders. Both A ∈ R(nf−1)×(nf−1),C ∈ Rnl×nl have
the same structure as −Le but with different dimensions, B
has an element 1 at row (nf − 1), column 1 (bottom left
corner) that represents the connection between the follower
node {nf} and the leader node {nf +1}. 0 is a (nf−1)×nl
zero matrix. D ∈ Rnl×nl has elements given by dij = 1
when i = j, dij = −1 when i − j = 1 and dij = 0
otherwise. Then we can analyse the leader part x̄l and the
follower part x̄f separately. For x̄l, it can be proved that
x̄l achieves consensus within the performance bounds based
on the positive definiteness of DDT when applying control
(15). We further rewrite the follower part as

˙̄xf = Ax̄f + bx̄?, (22)

where b ∈ R(nf−1) is the first column of B, i.e., with the
last element equals to 1 and all other elements equal to 0.
x̄? represents the edge between the follower node {nf} and
the leader node {nf + 1}. We can further solve the state
evolution of (22) as follows:

x̄f (t) = eAtx̄f (0) +

∫ t

0

eA(t−τ)bx̄?(τ)dτ

= MT eΛtMx̄f (0) +

∫ t

0

eA(t−τ)bx̄?(τ)dτ,

= x̄0
f (t) +

∫ t

0

eA(t−τ)bx̄?(τ)dτ,

(23)

where x̄0
f (t) =

[
x̄0

1(t) x̄0
2(t) . . . x̄0

nf−1(t)
]T

is zero
input trajectories, that is when x̄?(t) = 0,∀t; A = MTΛM ,
where Λ is a diagonal matrix with diagonal entries negative
and equal to the eigenvalues of A, which is due to A
having the same structure as −Le, and M is the matrix
composed with the corresponding eigenvectors. Without loss
of generality, suppose all performance functions are the same
and described by

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞. (24)

When nf = 2, x̄f = x̄1 and A = −2, we have that

x̄0
1(t) = MT eΛtMx̄1(0) = e−2tx̄1(0) < ρ0e

−2t. (25)

Then, x̄1(t) is within the performance bound ρ(t), i.e.,
x̄1(t) < ρ(t),∀t, when l ≤ 2 and in addition,∫ t

0

e−2(t−τ)x̄?(τ)dτ < (ρ0 − x̄1(0))e−2t + ρ∞(1− e−2t),

(26)
which can be ensured by tuning a large enough gain g32

to the leader indexed by node 3. From (26), we know that
when the relative position between the two followers is close



to the boundary, we need to tune a larger gain for the leader
that connects the followers. When nf = 3, we can derive a
similar result. In particular, we now have that[

x̄0
1(t)
x̄0

2(t)

]
= MT eΛtM

[
x̄1(0)
x̄2(0)

]
< k

[
ρ0

ρ0

]
e−t, (27)

with k = 1, which implies that x̄0
i (t) < ρ0e

−t, i = {1, 2}.
Similarly, we can conclude that when l ≤ 1, and in addition
the tuning gain g43 for the leader indexed by node 4
is large enough, the controlled system achieves consensus
within the prescribed performance bounds. When nf ≥ 4,
it can be proved similarly that x̄0

i (t) < kρ0e
λmax(A)t, i =

{1, 2, . . . , nf − 1}, but with k > 1. This means that x̄0
i (t)

cannot be bounded by ρ0e
λmax(A)t for any initial conditions

within the performance bounds. Therefore, we can conclude
that in order to achieve consensus within the performance
bounds for all initial condition xij(0) within the performance
bounds (4) or (5), nf should be less or equal to 3.

Remark 2. Proposition 1 indicates that for a chain graph,
in order to achieve consensus within the prescribed perfor-
mance bounds, we can only have at most 3 consecutive
followers at the end of the graph. In addition, when the
initial relative position between 2 followers is close to the
prescribed performance boundary, we need to tune a large
enough gain for the leader that connects the followers.

Now we consider another specific class, in particular the
star graph Gs = (Vs, Es) which is defined as follows.

Definition 2. A star Gs = (Vs, Es) is a tree graph with
vertices set Vs = {1, 2, . . . , n}, n ≥ 2 where vertice n is
called the centering node, and the edges set Es = {(i, n) ∈
Vs × Vs | i ∈ Vs \ {n}} indexed by ei = (i, n), i =
1, 2, . . . , n− 1.

Proposition 2. Consider the leader-follower multi-agent
system Σ described by (3) with the communication star graph
Gs = (Vs, Es) and the leader set VsL = {n}, the predefined
performance functions ρij as in (11) and the transformation
function s.t. Tij(0) = 0,∀(i, j) ∈ E , and assume that the
initial conditions xij(0) are within the performance bounds
(4) or (5). If

max
(i,j)∈E

(lij) = l ≤ 1. (28)

Then, the controlled system achieves consensus and satisfies
(4) or (5) when applying the control (15).

Proof. For a star graph defined as Definition 2 with the
centering node n as the only leader, the edge Laplacian Le
and matrices DT

LDL, D
T
FDF have special structures. DT

LDL

has all elements equal to 1, while DT
FDF = Le−DT

LDL is
an identity matrix. Le has the elements given by cij = 2
when i = j, and cij = 1 otherwise. Under this special
structure of star graphs and according to Theorem 1, it can
be verified that (16) is always feasible with γ̄ = 1, and from
(28), we know the condition γ̄ ≥ l = max

(i,j)∈E
(lij) holds.

Finally, by applying Theorem 1, for a star graph, when the
performance functions (11) are chosen such that (28) holds,

then we can conclude that the controlled system achieves
consensus and satisfies (4) or (5) when applying (15).

We conclude this section with the following observations.
A sufficient condition for a general tree graph was derived
in Theorem 1, under which the leader-follower multi-agent
system (3) achieves consensus and satisfies (4), (5). It can
be seen that (16) may be infeasible when the decay rate of
the performance functions is too large. This is reasonable
since the followers only obey the first-order consensus pro-
tocol without any additional external input. And the decay
rate constraint differs for different graph topologies, leader
amount and leader positions.

IV. SIMULATIONS
In this section three simulation examples are presented

in order to verify the results of the previous sections. The
communication graphs are shown as Fig. 1, where the leaders
and followers are represented by grey and white nodes, re-
spectively. Regarding the prescribed performance functions,
for all (i, j) ∈ E , we choose Mij = 1 and Tij(x̂ij) =

ln
(
− x̂ij+1
x̂ij−1

)
. The prescribed performance bounds are cho-

sen as ρij(t) = 4.9e−lt + 0.1 with different decay rate l
for different simulation examples. In addition, prescribed
performance bounds are depicted in black.
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Fig. 1. Communication graphs with tree topologies.

In Fig. 1.(a), we first consider a tree graph with leaders set
as VL = {4, 5, 6}, and the relative positions are initialised as[
4.6 4.9 4.5 4.7 4.5

]T
. According to Theorem 1, the

matrix inequality is feasible with γ̄ = 1, hence it suffices
that l ≤ γ̄ = 1. The simulation result when applying the
PPC law (15) with a gain matrix G whose diagonal entries
are all equal to 1 is shown on the right side of Fig. 2. As
a comparison, the simulation result without PPC is shown
on the left side of Fig. 2. We can see from Fig. 2 that the
trajectories intersect the performance bound without extra
control, which can be improved by applying the PPC law.

In Fig. 1.(b), we consider a chain graph with followers
set as VF = {1, 2}, the relative positions are initialised as[
4.8 3 −2 1

]T
. The simulation results are shown in Fig.

3, where the left figure shows the simulation result without
additional control. Here the decay rate of the prescribed
performance function is 2. We can see that the trajectories
intersect the performance bound, which is improved as
shown in the middle figure by applying the PPC law (15)
with gain matrix G = diag(1, 10, 1, 1) and g32 = 10 is
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Fig. 2. The left figure shows the trajectories of relative positions without
PPC, while the controlled system with PPC law is shown in the right figure
under the communication graph as in Fig. 1.(a).

tuned for leader {3} that connects the followers. However, it
can be seen that the trajectories still intersect the performance
bound. We then increase g32 to 200, and the simulation result
is shown in the right figure. We can see that the controlled
system achieves consensus within the performance bound.
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Fig. 3. The left figure shows the trajectories of relative positions without
PPC, while the controlled system with PPC law but different gain matrix is
shown in the middle and right figure, respectively under the communication
graph as in Fig. 1.(b) with VF = {1, 2}.

In Fig. 1.(c), We consider a star graph with only one leader
as VL = {11}, and the relative positions are initialised as[
4 3 −2 −3 4.9 1 4.7 −4 1 4.8

]T
. The sim-

ulation result when applying PPC law (15) with a gain matrix
G whose diagonal entries are all equal to 1 is shown on the
right side of Fig. 4. As a comparison, the simulation result
without PPC is shown on the left side of Fig. 4.

V. CONCLUSIONS

In this paper, we have studied consensus problems of
leader-follower multi-agent systems with prescribed perfor-
mance bounds. Under the assumption of tree graphs, a
distributed prescribed performance control law has been
proposed for a group of selected leaders in order to drive the
followers such that the entire system can achieve consensus
under the prescribed performance guarantees. In addition,
two specific classes of chain and star graphs that can have
additional followers have been investigated.
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Fig. 4. The left figure shows the trajectories of relative positions without
PPC, while the controlled system with PPC law is shown in the right figure
under the communication graph as in Fig. 1.(c).

Future research directions include considering more gen-
eral graphs with circles and applying other transient ap-
proaches to this leader-follower framework.
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