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Abstract— Motivated by the recent interest in formal
methods-based control for dynamic robots, we discuss the appli-
cability of prescribed performance control to nonlinear systems
subject to signal temporal logic specifications. Prescribed per-
formance control imposes a desired transient behavior on the
system trajectories that is leveraged to satisfy atomic signal
temporal logic specifications. A hybrid control strategy is then
used to satisfy a finite set of these atomic specifications. Simula-
tions of a multi-agent system, using consensus dynamics, show
that a wide range of specifications, i.e., formation, sequencing,
and dispersion, can be robustly satisfied.

I. INTRODUCTION

Temporal logics have lately gained much attention in
robotic applications due to the possibility of formulating
complex temporal specifications leading to formal methods-
based control strategies [1]. These logics have for instance
been used in multi-agent systems to perform realistic real-
world tasks such as sequencing, coverage, surveillance, and
formation control. In this multi-agent setup, linear temporal
logic (LTL) [2] and metric interval temporal logic (MITL)
[3] have been used. These approaches abstract the physical
environment, including robot dynamics, and the temporal
logic formula into a finite-state automaton representing all
possible robot motions. Search algorithms are then used to
find a formula-satisfying discrete path that is subsequently
accomplished by continuous control laws. However, these
approaches may be subject to the state-space explosion
problem [4, Section 2.3].

Prescribed performance control (PPC) [5] explicitly takes
the transient and steady-state behavior of a tracking error
into account. A user-defined performance function prescribes
a desired temporal behavior that is then achieved by a
continuous state feedback control law.

Signal temporal logic (STL) [6] is a predicate logic, which
uses quantitative time properties and entails the definition
of a robustness measure, called space robustness [7]. This
measure indicates if a formula is marginally or greatly
satisfied by a signal. STL was introduced in the context
of monitoring, but not control. Control of systems subject
to STL is a difficult task due to the nonlinear, nonconvex,
noncausal, and nonsmooth semantics. Previous work on
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STL control synthesis has been considered [8], [9], [10] by
using model predictive control (MPC), while [11] explicitly
considers multi-agent systems. In this paper, we consider
a nonlinear system subject to a subset of STL. We recast
this constrained control problem into a PPC framework to
satisfy atomic temporal formulas. Subsequently, the hybrid
system framework in [12] is used to satisfy a finite set of
these atomic temporal formulas. To the best of the authors’
knowledge, the approach presented in this paper is the first
approach using a continuous state feedback control law.
The remainder of this paper is organized as follows:
Section II introduces notation and preliminaries. Section III
illustrates the underlying main idea and the problem defi-
nition. Section IV presents a control law satisfying atomic
temporal formulas, while Section V considers a finite set
of these atomic temporal formulas. Section VI presents
simulations of a centralized multi-agent system subject to
STL formulas, followed by a conclusion in Section VII.

II. NOTATION AND PRELIMINARIES

Scalars are denoted by lowercase, non-bold letters x and
column vectors are lowercase, bold letters 2. The vector
0,, consists of n zeros. True and false are denoted by T
and L with B := {T, L}; R™ is the n-dimensional vector
space over the real numbers R. The natural, non-negative,
and positive real numbers are N, R>(, and R, respectively.

Let x € R", u € R™, and w € W be the state, input,
and additive noise of a nonlinear system

&= f(z) +g9(x)u+w, (1)

where VW C R™ is a bounded set.

Assumption 1: The functions f : R — R™ and g : R” —
R™*™ are locally Lipschitz continuous, and g(z)g” (x) is
positive definite for all x € R".

A. Signal Temporal Logic (STL)

Signal temporal logic [6] is a predicate logic based on
continuous-time signals. STL consists of predicates p that

are obtained after evaluation of a function h : R — R
Tif h(x) >0 . .

as u = . For instance, consider the
L if h(x) < 0.

predicate p := (z > 1), which can be expressed by h(x) :=

x — 1. The STL syntax is given by

¢ u=Tp|=d]d1Ad2| d1Uay @2,

where y is a predicate and ¢1, ¢o are STL formulas. The
temporal until-operator U, p is time bounded with time
interval [a,b] where a,b € Rx>o U oo such that a < b. Let



(z,t) = ¢ denote the satisfaction relation, i.e., if a signal
x : R>o — R™, possibly a solution of (1) with ¢ := x(0),
satisfies ¢ at time ¢. The semantics of STL are (x,t) = p
if and only if h(x(t)) > 0, (z,t) E —u if and only if
—((z,t) = p), (x,t) = ¢1 A ¢2 if and only if (z,t) =
¢1 A (x,t) = ¢2, and (x,t) = @1 U, ¢2 if and only if
dty € [t—f—a,t—i—b] S.t. (iL‘,t1> ): P Nty € [t,tl], (:Ilﬂfg) ):
¢1. The disjunction-, eventually-, and always-operator can
be derived as ¢ V ¢ = ~(~61 A=), Fiu6 = T Ujq ) 6,
and G, 3¢ = —F|q,5)7¢. Space robustness p®(x,t) [7] are
robust semantics for STL, given in Definition 1, for which
it holds that (z,t) = ¢ if p?(x,t) > 0.

Definition 1: [7, Definition 3] The semantics of space
robustness are recursively given by:

P (2,1) == h(2(t))

p“ﬁ(iL‘,t) = _p¢($’t)
p?1 92 (. t) := min (pq51 (z,t), p? (w,t))
pllen®(x t):=  max p?(x,t)
t1€[t+a,t+b]
pG[U,,b]tﬁ(w’t = min ¢($at1)

P
t1€[t+a,t+b]

The definitions of p®1V%2(x,t) and p® Yieb 92(x, 1) are
omitted due to space limitations. We abuse the notation as
p?(x(t)) := p®(wm,t) if t is not explicitly contained in
p?(x,t). For instance, p*(x(t)) := pt(x,t) = h(x(t))
since h(x(t)) does not contain ¢ as an explicit parameter.
However, t is explicitly contained in p®(x,t) if temporal
operators (eventually, always, or until) are used. In this paper,
conjunctions are approximated by smooth functions.

Assumption 2: The non-smooth conjunction p®1\%2(x, )
in Definition 1 is approximated by a smooth function as
p?1 12 (x,t) = —In (exp(—p® (,1)) + exp(—p?(z,1))).

Remark 1: The aforementioned approximation is an
under-approximation of the robust semantics in Defini-
tion 1, ie, —In (exp(—p? (x,t)) + exp(—p?2(x,t))) <
min (p?* (z,t), p? (x,t)). This means that (x,t) = 1 A do
if —1In (exp(—p?*(x,t)) + exp(—p?2(x,t))) > 0.

B. Prescribed Performance Control (PPC)

Prescribed performance control (PPC) [5] constrains a
tracking error e : R>g — R" to a funnel. For instance,
consider e(t) := x(t) — x4(t) where &4 : R>g — R™ is
a desired trajectory. To prescribe transient and steady-state
behavior to this error, we define the performance function ~.

Definition 2: [5] A performance function v : R>o — Ry
is a continuously differentiable, bounded, positive, and non-
increasing function. We define v(t) := (70 —"700) exp(—It) +
Yoo Where g, Yoo € Rsg With g > voo and I € Rx.

The task is to synthesize a feedback control law such that,
given —v;(0) < €;(0) < M~;(0), the errors e; satisfy

—7i(t) <e;(t) < Mvy(t) VteRso,Vie{l,...,n} (2)

with 0 < M < 1 and ~; being a performance function as
in Definition 2; ~; is a design parameter by which transient
and steady-state behavior of e; can be prescribed. Similar

to M in the right inequality of (2), another constant could
be added to the left inequality, which however will not be
considered here. Next, define the normalized error &; := %
and the transformation function S in Definition 3.

Definition 3: [5] Let S : (=1,M) — R be a strictly
increasing function, hence injective and admitting an inverse.
In particular, we define S(§) :=In &—;4}\14)

Dividing (2) by ; and applying the transformation func-
tion S results in an unconstrained control problem —oo <
S (fl(t)) < oo with the transformed error ¢; := S (&) If
€;(t) is bounded for all ¢ € Rxg, then e; satisfies (2). This

is a consequence of the fact that .S admits an inverse.

ITI. CASTING STL CONTROL INTO A PPC FRAMEWORK
In this paper, the following STL subset is considered

Y ou= T [ p | op ] Ao (3a)

¢ = G | Flay¥ (3b)
N

6 = N ¢i with b, < ani1, Vne{1,...,N =1} (3c)
=1

052 .= F[C1,d1] (¢1 A F[CQ,dQ] (wg N F[C&dg](. AAN ¢N))>
(3d)
0= 0" | 0°, (3e)

where p is a predicate and 11, ¥o are formulas of class 1,
whereas ¢; with ¢ € {1,..., N} are formulas of class ¢ with
time intervals [a;, b;]. We refer to ¢ as non-temporal formu-
las. Due to the previous discussion, we write p¥ (z(t)) :=
p¥(x,t) and sometimes even omit ¢ resulting in p¥(x). In
contrast, ¢ and 6 are referred to as temporal formulas due
to the use of always- and eventually-operators. We further
refer to formulas (3b) by the term atomic temporal formulas,
while formulas in (3e) are denoted as sequential formulas.
Note that (3¢) either consists of (3¢) or (3d).

Assumption 3: Each formula of class ¢ that is contained
in (3b), (3¢c), and (3d) is: 1) s.t. p¥ () is concave and 2) well-
posed in the sense that (z,0) |= ¢ implies ||z (0)| < oo.

Remark 2: Part 2) of Assumption 3 is not restrictive since
Yass.s = (||&]] < ¢), where ¢ is a sufficiently large positive
constant, can be combined with the desired ¢ so that ) A
Pass.3 18 well-posed.

The first objective in this paper is to synthesize a con-
tinuous feedback control law w(a,t) for atomic temporal
formulas ¢ in (3b) such that p?(x,0) > r where r € R>q
is a robustness measure and = : R>g — R"™ is the closed-
loop solution of (1) with initial condition xy. Additionally,
we will upper bound p?(x,0) < pmaz With praz € Rsg.
For ¢ in (3b) with the corresponding 1, we achieve r <
p®(x,0) < pmar by prescribing a temporal behavior to
p¥ (x(t)) through the design parameters v and pq, as

— (1) + pmaz < p¥ (®(1)) < Pmas- )

The connection between the non-temporal p¥ (z(t)) and
the temporal p?(z, 0) is made by the performance function .
In fact, v prescribes temporal behavior that, in combination
with p¥ ((t)), mimics p?(x,0) as illustrated next.
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(b) Funnel for ¢2 = Gio,00)%2 s.t. p?2(2,0) > r with r := 0

Fig. 1: Connection between p¥ (x(t)) and p?(x,0)

Example 1: Fig. 1a visualizes the idea for the eventually-
operator ¢1 := Fjg o)t1, while Fig. 1b expresses the always-
operator ¢o := G[g )12. Note that these figures show the
funnel in (4), hence imposing prescribed temporal behavior
on p¥(z(t)). It is easy to verify that if p¥'(z(t)) €
(=71 (t) + pl,mamapl,max) and pd}2 (:C(t)) € (=) +
P2.mazs P2.maz) for all ¢ € Rsp as in Fig. 1, ie. (4) is
satisfied, then ¢; and ¢ are satisfied. For instance, in Fig. la
the lower funnel —71 (t) + p1,maq forces p¥* (x(t)) > r =0
by no later than approximately 4.5 time units. Thus, the
formulas ¢1 := Fjg )91 or also ¢3 := Fjy 5191 are satisfied,
which means that p?*(z,0) > 0 and p??(x,0) > 0.

The choice of the design parameters 7, pmqz, and r will
be discussed in Section IV. Therefore, define the global
optimum of p¥(z) as pl, = Supgers p¥(2); p¥(x) is
continuous and concave due to Assumption 2 and 3, which
makes the calculation of pfpt straightforward. If pfpt >0, it
holds that ¢ is feasible, i.e., 3z : R>g — R” s.t. (2, 0) |= ¢.

Assumption 4: The optimum of p? () is s.t. pl,, > 0.

Equation (4) can now be written as

—(t) < pd) (:I:(t)) = Pmaz < 0, )

which resembles (2) by defining the one-dimensional error
e(x) := p¥(€) — pmasr and M := 0. The normalized error
is defined as &(x, t) := <2 while the transformed error is

y(t)’
o B E(x,t)+1
e(x,t) = S(E(x,1)) =In ( - W)

As a notational rule, when talking about the solution x(t)
of (1) at time ¢, we use e(t), &(t), and €(t), while we
use e(x), &(x,t), and e(x,t) when we talk about x as a
state. Hence, (5) can be written as —v(t) < e(t) < 0,

(6)

which in turn leads to —1 < £(¢t) < 0. Applying the
transformation function S to this inequality finally results
in —oo < €(t) < oo. In order to have a feasible problem,
the condition &(x(0),0) € Q¢ := (—1,0) needs to hold.

The second objective in this paper is to consider sequential
formulas @ as in (3e). Therefore, the hybrid system frame-
work of [12] will be used. The problem definition is now:

Problem 1: Consider the system given in (1) subject to
a STL formula 6 as in (3e). Design a piecewise-continuous
feedback control law wu(z,t) such that 0 < r < p’(z,0) <
Pmaz- 1., (2,0) = 6.

Our problem solution consists of a three-step procedure:
First, a continuous feedback control law w(x, t) is designed
in Theorem 1 such that (4) is satisfied. Second, y is designed
in Theorem 2 such that 7 < p?(x,0) < pas if u(x,t) from
Theorem 1 is used. Third, Theorem 3 states a hybrid control
strategy such that r < p?(x,0) < pmas.

IV. CONTROL LAW FOR ATOMIC TEMPORAL FORMULAS

We first derive a control law w(x,t) in the next theorem
such that p¥ (x(t)) satisfies (4) with €(x, ¢) as in (6).

Theorem 1: Consider the system (1) and a formula ¢ as in
(3b) with the corresponding . If £(xo,0) € Q¢ := (—1,0),
Pmaz € (max (O,pw(wo)),pfpt), and Assumptions 1-4 are
satisfied, then the control law

dp? (z)
ox
guarantees that (4) is satisfied for all £ € R> with all closed-
loop signals being well-posed, i.e., continuous and bounded.
Proof: The proof can be found in [13]. [ ]

Next, v is designed such that the control law (7) results
in 0 <7 < p?(x,0) < pimas. Define the variable

a if qb = G[a,b]w
[a7 b} if o = F[a,b]qz[L

Our goal is to enforce 7 < p¥ (x(t)) < pmax for all t > t,
by the choice of . This will lead to r < p?(x,0) < pPmaz
by the choice of t.. We select r € [0, pyar) and define
feasibility of a formula ¢ with respect to r, g, and t,.

Definition 4: A formula ¢ as in (3b) is feasible with
respect to r, xg, and t, if and only if: 1) ¢, > 0 or 2)
t. =0 and p¥(xo) > 7.

For the design of v assume that ¢ is feasible w.r.t. r, o,
and ¢, and recall that y(¢) := (70 — Yoo ) €xp(—1t) + Voo The
crucial part of Theorem 1 is the assumption that (g, 0) €
Q. It is possible to choose 7 such that {(x¢, 0) € Q¢, which
is equivalent to —1 < ;ﬁ(m@% < 0. It should also hold
that —vo + pmax > 7 if t. = 0 due to (4) and since we want
r < p¥(w(t)) for all ¢ > ¢,. This is illustrated in Fig. 1b
with £, = 0 (since g2 = Gg,o0)%2) and r := 0 and where
it should hence hold that —vg 4+ pmae: > 0 is satisfied as
indicated by the dashed line. To conclude, 7 is

(pmaa: - Pw (330)7 OO)
Yo €
0 {(pmax - Pw (150), Pmaz — ’I”]

(x)

U(.’E,t) = —6(:13,t)g (7N

t, € ®)

ift, >0

9
if t. =0. &



At t = oo, it is required that max(—yy + Pmaz, ) <
—Yoo + Pmazr < Pmaz, Where the left inequality enforces
that —y 4 pmaz 1S @ non-decreasing function, which in turn
leads to v being non-increasing. The right inequality stems
from (4). Therefore, we set

Yoo € (0,min (30, pmaz — 1) (10)

For the calculation of [, three cases need to be distin-
guished: 1) p¥ (o) > 7, 2) p¥(x0) < r and t, > 0, and 3)
p¥(x0) < r and t, = 0. Case 3) can be excluded since ¢ is
assumed to be feasible w.r.t. r, &g, and t,. Next, select [ as

Rx>o
TEq m(thmoems)
—+”“’ if — 0 + pmaz <71t >0,
(11)
which ensures that —7(ts) + Pmaz > 7. Under (7), this
consequently leads to p¥(x(t)) > r for all ¢ > t, since
~ is non-increasing.

Theorem 2: Consider the system (1) and a formula ¢ as
in (3b). If Assumptions 1-4 hold, r € [0, pmaz), the control
law in (7) is used, and ¢ is feasible w.r.t. r, o, and t,, then
choosing vy, Vs, and [ as in (9), (10), and (11), respectively,
ensures that 0 < r < p®(x,0) < pmaz, i.€., (x,0) = .

Proof: The proof can be found in [13]. |

if =% + Pmaz =T

V. CONTROL STRATEGY FOR SEQUENTIAL FORMULAS

In this section, we develop a hybrid control strategy for
sequential formulas 6 as in (3e), which either correspond
to 6°* or 6°2 as in (3c) or (3d), respectively. Note that
both of these consist of N atomic temporal formulas: 6°!
entails N atomic temporal formulas ¢; with [a;,b;] for all
i€ {1,...,N}. Similarly, 62 boils down to N — 1 atomic
temporal formulas ¢; = Fl,, p,19; With i € {1,...,N =1},
ai = Y1 Ck bj == > p_,dy, and ¢y. For instance,
Fie, ) (1/)1 A Fley.dp) (2 /\F[Cg,dg]llig)) is satisfied if and only
if F[Chlh]wl /\F[C1 +e2,d1 +d2]¢2 /\F[C1+02+C37d1+d2+d3],¢)3 =
Flay 01%1 A Flag po)%2 A Fla, b3 s satisfied. To conclude,
0 consists of N atomic temporal formulas ¢; with ¢ €
{1,..., N}. Each ¢; entails a robustness function denoted by
p¥i(x) and corresponding design parameters i Tis Piymazs
and v;(t) = (7,0 — Vi,00) €xp(—Iit) + 7i,00 in accordance
with t., 7, pmaz, and v in Section IV. Each ¢; will be
processed one at a time. If ¢; has been satisfied, the next
atomic temporal formula ¢;; becomes active and a switch
takes place. Denote the time sequence of these switching
times by {A; :=0,A,,...,Ax} where A; < A;41. Note
that t; «, T3, Pimaz> Vi,0 Vi,co» and {; need to be calculated
during runtime at each switching time A;. Furthermore, set

_Jrifo=6= Lif ¢i = Gla, p,)¥i
P=Y0ir o =g 0 if ¢; = Fla, i

A hybrid control strategy in the framework introduced in
Definition 5 will be used to process each ¢; sequentially.

Definition 5: [12] A hybrid system is a tuple H :=
(C,F,D,QG), where C, D, F, and G are the flow and

and m; :=

jump set and the possibly set-valued flow and jump map,
respectively. The discrete and continuous dynamics are

z2eF(z) ifzelC
zt €G(z) ifzeD.

T .
Define Dy = [t* T Pmaz VO VYoo l] , gathering
all parameters defining the funnel in (4), and the hybrid
state z == [¢ T t A pﬂT € {1,...,N + 1} x
R™ x R, =: Z. Note that A is the value of the latest
switching time. In adherence to the terminology in [12],
we interchangeably call switches jumps. The discrete state
g indicates which formula ¢, is currently active, while
g = N+1 indicates the final discrete state when 6 has already
been satisfied. In the proof of Theorem 1, it was shown that
x(t) € Q, for all t € Rx(, where €, is a compact set.
Let €2, , denote §;, corresponding to the formula ¢,. Next,

define the sets X, := {x € R"|r, < p¥1(x) < pgmax} and
Vg :=1[0,b" + (X7, di)l_p — 1] X tgu X Tg X Pgmaz X
V4,0 X Yq,00 X lg. Note that p determines if [aq, by] or [cq, dg]
is used. For all ¢ € {1,..., N} and similarly to (8), set

aq ifp=1mg=1

tq,* c [aq’bq] lfp = 17mq =0 (12)
Cq ifp=0,mg=1
[cq,dg] if p=0,mq = 0.

Define the set D, that indicates satisfaction of ¢, and leads
to a jump to process ¢q+1. For ¢ € {1,..., N}, we have

oo X XX (b? +dg P —1—pA)yx Y, ifmg=1
T ) g x Xy x ([agP 4+ g 7P — 1, tg..] — pA) X Y, else,

which indicates that p®i(z,A,) > r, if 2 € D,. This
follows since @ € X, att = b,”+d,' P —1—pA form, = 1
orx € Xy att € ([agf +cg' 7P — 1, ty.] — pA) for mg =0
under the control law (7) indicates that ¢, is satisfied. Note
that A only takes effect if p = 1 (6 = 531) to ensure that
¢q is satisfied within [ag, by], while for p = 0 (8 = 6%2)
the formula ¢, is directly processed next when ¢, is
satisfied. Further define D1 := (N +1) x QQ\,m xT x VN
for T := by? + (Zfil d;)*~P — 1, which is needed for a
technical reason in the proof of Theorem 3. Similarly, define
the continuous domain C, for ¢ € {1,..., N} as

Cax Qe x[0,b7 +dg' TP —1—pA] X Y, if mg =1

Ca = {q X cl(Q 2 \ X) X [0,tg, — pA] X Yy else,

where cl(-) denotes the closure. Also define Cn11 := (IV +
1) x Qly 5 x [0,T] x Y. Finally, the jump and flow sets are
D :=UNi'D;

C = uNtic,.

The flow map is given by

F = [0 (f(w)+g(w)uq+w)T 1 07T}T

with the control law in (7) as u, = —quT(w)% for

all ¢ € {1,...,N} and un41 feNgT(m)%
where €, corresponds to e

based on ¢,. B};
abbreviating ¢ = ¢ + 1, define p,(q) =



ld 2" 0 Ay ty. 1y
and finally set the jump map to

{

with Ay := A + ¢, accumulating the elapsed time. Select

ty. as in (12) and pymae € (max(0,p%r (x)), pott),
rg € [0,Pq maz) as in the assumptions of Theorem
1 and 2, respectively. The parameters <;o, 7ioco, and
l; need to be chosen as in (9), (10), and (11): vy 0 €

(Pgtmaz — PP (), 00) if tg . —pAgy >0
(pq’,maac - pwq/ (m)qu’,maa: - Tq’] if tq',* - pAq’ =0’

Vg’ ,00 € (O, min (7q’,07 Pq’ ;max — Tq’):| , and

Pq’;maz  Vq',0 Vq',c0 lq/

p,(q) ifg¢ {N,N+1},z€ D
T
[N+1 7 o pr} ifge {N,N+1},z€ D,

RZO if — Yq’,0 + Pq’ ;mazx > Tq
In (Tvq/Jrﬂyq'wooipq',mam
l, e (Vg 0~ ¢! ,00) ‘o
q _ tq,q* *PAZ/ if: @ =y 0+ Pg’ mas < Tqs
o tq/,* —pAq' > 0.
The initial state is set to 20 =

[1 wOT 0 0 tl,* 1 Plmaz 71,0 Vl,00 ll]T
Now, we are ready to state the main result of this section.

Theorem 3: Consider the system (1) and a formula 6
as in (3e). The hybrid system H := (C,F,D,G) re-
sults in 7 := min(ry,...,ry) < p°(x,0) < praz =
min(p1,maz; - - - PN,maz ), 1.6, (€,0) = 6, if each ¢, in
0 is feasible w.r.t. 4, (A,), and ¢4 + |[p — 1|A,.

Proof: The proof can be found in [13]. [ ]

VI. SIMULATIONS

We consider a multi-agent system employing the well-
known consensus protocol with additional free inputs. The
consensus protocol can be seen as the desire of the group
to stay close to each other. Consider M agents where each
agent j € {1,..., M} obeys the dynamics &; = v; with
x; € R?. The consensus protocol is then included as v; :=
— Y ren; (Tj—xx)+u; where Nj denotes the neighborhood

T

of the agent j. Denoting @ := [x1 a:MT]T and u :=

T .
[u” upnT]", we can express the dynamics as

t=—(L®L)x+u, (13)

where L is the graph Laplacian. Comparing (13) with (1)
reveals that f(z) = —(L®I2)x and g(x) = In ® 12 = Lopr,
where I, is the M x M identity matrix, i.e., Assumption 1
is trivially satisfied. More specifically, assume three agents

1 -1 0
a1, ag, and a3 with L := |—1 2 —1|. Denote the
0 -1 1
robot position with x; := [z} .’lfj,Q:IT for j € {1,2,3}.
The initial positions are x;(0) := [1.1 3.1]T, z2(0) =

2 0.5]", and 3(0) := [7 1.5]". We also have five
goal positions A, B, C, D, and F, which are located at

ps = [6 4", py = 12 9", po = [12 7],
pp = [12 53T, and py = BS 7]T. We use (||z; —
Pallo <€) = (|7j1 —paal <) A(lzj2 —pas| <c) =

Tj1—pa1 <c)A(—xj1+paq < C) A (ﬂﬁj,z —paz <

]T

¢) A —xj2+paz < c) to ensure that [[x; — pyllec =
max(|zj1 —paal,|vj2 —paql|) <e.

The robots are subject to the following sequential tasks:
1) Robot a; moves to A within 7 — 10 seconds. 2) Within
the next 10 — 20 seconds, a1, <o, and a3 move to B,
C, and D, respectively. 3) a; moves to E within 5 — 15
seconds. Additionally o, and 3 form a triangular formation.
4) ae and a3 always keep at least a distance of 1 from o
and disperse. More specifically, we have: 0 := F7 10(¢1 A
Fr10,20] (2 A Fis 15 (3 A ¢a))) with ¢y = (|l —palleo <
0.1 /\wAss.S’ wQ = (le _pBHoo < 0~1)/\§|$2—Pc|oo <
0.1)A(les—Pplloc < 0.1)AYasss, b3 := ([|#1—Ppllec <
0.1) A (1 < 211 — T21 < 1.2) Al < r11 — T31 <
1.2) A (1 < X2 —X12 < 12) Al < T12 — T32 <
1.2) A hass.s, and ¢y := Gpo12)((1 < 11 —22.1) A (1 <
Top—w12) A1 <z11—231)A(1 < 212—232) AVAss.3)
with ¥ 4453 1= (]|&|lcc < 100) to enforce Assumption 3.

The simulation result for the first two formulas, i.e., 11
and 19, are displayed in Fig. 2a and 2b, respectively. For
1)1, the consensus dynamics bring the agents together, while
the performance function ~y; forces a; to approach and reach
A. For the second task in Fig. 2b, each agent individually
reaches its goals B, C, and D. The third task is shown in
Fig. 2c, where the robots initially gather and eventually form
a triangular formation, while o approaches E. In Fig. 2d,
dispersion of the multi-agent system can be seen. Note that
these tasks are achieved successively and we used, for the
convenience of the reader, four separate figures. The full
trajectory in one figure can be seen in [13, Fig. 2]. To see that
time bounds have been respected, Fig. 3 displays the funnels
w.r.t. time. The control inputs are bounded and piecewise-
continuous, shown in [13, Fig. 4b]. To conclude, 6 is satisfied
with 7 := 0.05 < p%(x,0). Note that due to the precision
that we chose, e.g., Fi710)(|/|[®1 — pallso < 0.1), r can not
exceed 0.1. We remark that the control law is centralized and
that simulations have been performed in real-time, which is
possible due to the easy-to-implement feedback control law.

VII. CONCLUSION

We considered nonlinear systems subject to a subset of
signal temporal logic specifications. The imposed transient
and steady-state behavior of the prescribed performance
control approach was leveraged to satisfy atomic temporal
formulas. A hybrid control strategy was then used to ensure
that a finite set of atomic temporal formulas is satisfied. A
salient feature is that the feedback control law is piecewise-
continuous and robust with respect to disturbances and the
specification, i.e., the specification is satisfied with a user-
defined robustness.

Future work will include the extension of the derived
methods to decentralized multi-agent systems with couplings
in various forms. In this respect, local and global specifica-
tions will be subject of our work, as well as the feasibility
of these coupled specifications. Furthermore, an extension of
the expressivity, i.e., the signal temporal logic subset under
consideration, will be investigated.
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