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Abstract— Motivated by the recent interest in formal
methods-based control for dynamic robots, we discuss the appli-
cability of prescribed performance control to nonlinear systems
subject to signal temporal logic specifications. Prescribed per-
formance control imposes a desired transient behavior on the
system trajectories that is leveraged to satisfy atomic signal
temporal logic specifications. A hybrid control strategy is then
used to satisfy a finite set of these atomic specifications. Simula-
tions of a multi-agent system, using consensus dynamics, show
that a wide range of specifications, i.e., formation, sequencing,
and dispersion, can be robustly satisfied.

I. INTRODUCTION

Temporal logics have lately gained much attention in
robotic applications due to the possibility of formulating
complex temporal specifications leading to formal methods-
based control strategies [1]. These logics have for instance
been used in multi-agent systems to perform realistic real-
world tasks such as sequencing, coverage, surveillance, and
formation control. In this multi-agent setup, linear temporal
logic (LTL) [2] and metric interval temporal logic (MITL)
[3] have been used. These approaches abstract the physical
environment, including robot dynamics, and the temporal
logic formula into a finite-state automaton representing all
possible robot motions. Search algorithms are then used to
find a formula-satisfying discrete path that is subsequently
accomplished by continuous control laws. However, these
approaches may be subject to the state-space explosion
problem [4, Section 2.3].

Prescribed performance control (PPC) [5] explicitly takes
the transient and steady-state behavior of a tracking error
into account. A user-defined performance function prescribes
a desired temporal behavior that is then achieved by a
continuous state feedback control law.

Signal temporal logic (STL) [6] is a predicate logic, which
uses quantitative time properties and entails the definition
of a robustness measure, called space robustness [7]. This
measure indicates if a formula is marginally or greatly
satisfied by a signal. STL was introduced in the context
of monitoring, but not control. Control of systems subject
to STL is a difficult task due to the nonlinear, nonconvex,
noncausal, and nonsmooth semantics. Previous work on
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STL control synthesis has been considered [8], [9], [10] by
using model predictive control (MPC), while [11] explicitly
considers multi-agent systems. In this paper, we consider
a nonlinear system subject to a subset of STL. We recast
this constrained control problem into a PPC framework to
satisfy atomic temporal formulas. Subsequently, the hybrid
system framework in [12] is used to satisfy a finite set of
these atomic temporal formulas. To the best of the authors’
knowledge, the approach presented in this paper is the first
approach using a continuous state feedback control law.

The remainder of this paper is organized as follows:
Section II introduces notation and preliminaries. Section III
illustrates the underlying main idea and the problem defi-
nition. Section IV presents a control law satisfying atomic
temporal formulas, while Section V considers a finite set
of these atomic temporal formulas. Section VI presents
simulations of a centralized multi-agent system subject to
STL formulas, followed by a conclusion in Section VII.

II. NOTATION AND PRELIMINARIES

Scalars are denoted by lowercase, non-bold letters x and
column vectors are lowercase, bold letters x. The vector
0n consists of n zeros. True and false are denoted by >
and ⊥ with B := {>,⊥}; Rn is the n-dimensional vector
space over the real numbers R. The natural, non-negative,
and positive real numbers are N, R≥0, and R>0, respectively.

Let x ∈ Rn, u ∈ Rm, and w ∈ W be the state, input,
and additive noise of a nonlinear system

ẋ = f(x) + g(x)u + w, (1)

where W ⊂ Rn is a bounded set.
Assumption 1: The functions f : Rn → Rn and g : Rn →

Rn×m are locally Lipschitz continuous, and g(x)gT (x) is
positive definite for all x ∈ Rn.

A. Signal Temporal Logic (STL)

Signal temporal logic [6] is a predicate logic based on
continuous-time signals. STL consists of predicates µ that
are obtained after evaluation of a function h : Rn → R

as µ :=

{
> if h(x) ≥ 0

⊥ if h(x) < 0.
For instance, consider the

predicate µ := (x ≥ 1), which can be expressed by h(x) :=
x− 1. The STL syntax is given by

φ ::= > | µ | ¬φ | φ1 ∧ φ2 | φ1 U[a,b] φ2 ,

where µ is a predicate and φ1, φ2 are STL formulas. The
temporal until-operator U[a,b] is time bounded with time
interval [a, b] where a, b ∈ R≥0 ∪ ∞ such that a ≤ b. Let



(x, t) |= φ denote the satisfaction relation, i.e., if a signal
x : R≥0 → Rn, possibly a solution of (1) with x0 := x(0),
satisfies φ at time t. The semantics of STL are (x, t) |= µ
if and only if h(x(t)) ≥ 0, (x, t) |= ¬µ if and only if
¬((x, t) |= µ), (x, t) |= φ1 ∧ φ2 if and only if (x, t) |=
φ1 ∧ (x, t) |= φ2, and (x, t) |= φ1 U[a,b] φ2 if and only if
∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2 ∧∀t2 ∈ [t, t1], (x, t2) |=
φ1. The disjunction-, eventually-, and always-operator can
be derived as φ1∨φ2 = ¬(¬φ1∧¬φ2), F[a,b]φ = >U[a,b] φ,
and G[a,b]φ = ¬F[a,b]¬φ. Space robustness ρφ(x, t) [7] are
robust semantics for STL, given in Definition 1, for which
it holds that (x, t) |= φ if ρφ(x, t) > 0.

Definition 1: [7, Definition 3] The semantics of space
robustness are recursively given by:

ρµ(x, t) := h(x(t))

ρ¬φ(x, t) := −ρφ(x, t)

ρφ1∧φ2(x, t) := min
(
ρφ1(x, t), ρφ2(x, t)

)
ρF[a,b]φ(x, t) := max

t1∈[t+a,t+b]
ρφ(x, t1)

ρG[a,b]φ(x, t) := min
t1∈[t+a,t+b]

ρφ(x, t1).

The definitions of ρφ1∨φ2(x, t) and ρφ1 U[a,b] φ2(x, t) are
omitted due to space limitations. We abuse the notation as
ρφ
(
x(t)

)
:= ρφ(x, t) if t is not explicitly contained in

ρφ(x, t). For instance, ρµ
(
x(t)

)
:= ρµ(x, t) := h(x(t))

since h(x(t)) does not contain t as an explicit parameter.
However, t is explicitly contained in ρφ(x, t) if temporal
operators (eventually, always, or until) are used. In this paper,
conjunctions are approximated by smooth functions.

Assumption 2: The non-smooth conjunction ρφ1∧φ2(x, t)
in Definition 1 is approximated by a smooth function as
ρφ1∧φ2(x, t) ≈ − ln

(
exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))

)
.

Remark 1: The aforementioned approximation is an
under-approximation of the robust semantics in Defini-
tion 1, i.e., − ln

(
exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))

)
≤

min
(
ρφ1(x, t), ρφ2(x, t)

)
. This means that (x, t) |= φ1∧φ2

if − ln
(

exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))
)
> 0.

B. Prescribed Performance Control (PPC)

Prescribed performance control (PPC) [5] constrains a
tracking error e : R≥0 → Rn to a funnel. For instance,
consider e(t) := x(t) − xd(t) where xd : R≥0 → Rn is
a desired trajectory. To prescribe transient and steady-state
behavior to this error, we define the performance function γ.

Definition 2: [5] A performance function γ : R≥0 → R>0

is a continuously differentiable, bounded, positive, and non-
increasing function. We define γ(t) := (γ0−γ∞) exp(−lt)+
γ∞ where γ0, γ∞ ∈ R>0 with γ0 ≥ γ∞ and l ∈ R≥0.

The task is to synthesize a feedback control law such that,
given −γi(0) < ei(0) < Mγi(0), the errors ei satisfy

−γi(t) < ei(t) < Mγi(t) ∀t ∈ R≥0,∀i ∈ {1, . . . , n} (2)

with 0 ≤ M ≤ 1 and γi being a performance function as
in Definition 2; γi is a design parameter by which transient
and steady-state behavior of ei can be prescribed. Similar

to M in the right inequality of (2), another constant could
be added to the left inequality, which however will not be
considered here. Next, define the normalized error ξi := ei

γi
and the transformation function S in Definition 3.

Definition 3: [5] Let S : (−1,M) → R be a strictly
increasing function, hence injective and admitting an inverse.
In particular, we define S(ξ) := ln

(
− ξ+1
ξ−M

)
.

Dividing (2) by γi and applying the transformation func-
tion S results in an unconstrained control problem −∞ <
S
(
ξi(t)

)
< ∞ with the transformed error εi := S

(
ξi
)
. If

εi(t) is bounded for all t ∈ R≥0, then ei satisfies (2). This
is a consequence of the fact that S admits an inverse.

III. CASTING STL CONTROL INTO A PPC FRAMEWORK

In this paper, the following STL subset is considered

ψ ::= > | µ | ¬µ | ψ1 ∧ ψ2 (3a)
φ ::= G[a,b]ψ | F[a,b]ψ (3b)

θs1 ::=
N∧
i=1

φi with bn ≤ an+1, ∀n ∈ {1, . . . , N − 1} (3c)

θs2 ::= F[c1,d1]

(
ψ1 ∧ F[c2,d2]

(
ψ2 ∧ F[c3,d3](. . . ∧ φN )

))
(3d)

θ ::= θs1 | θs2 , (3e)

where µ is a predicate and ψ1, ψ2 are formulas of class ψ,
whereas φi with i ∈ {1, . . . , N} are formulas of class φ with
time intervals [ai, bi]. We refer to ψ as non-temporal formu-
las. Due to the previous discussion, we write ρψ

(
x(t)

)
:=

ρψ(x, t) and sometimes even omit t resulting in ρψ(x). In
contrast, φ and θ are referred to as temporal formulas due
to the use of always- and eventually-operators. We further
refer to formulas (3b) by the term atomic temporal formulas,
while formulas in (3e) are denoted as sequential formulas.
Note that (3e) either consists of (3c) or (3d).

Assumption 3: Each formula of class ψ that is contained
in (3b), (3c), and (3d) is: 1) s.t. ρψ(x) is concave and 2) well-
posed in the sense that (x, 0) |= ψ implies ‖x(0)‖ <∞.

Remark 2: Part 2) of Assumption 3 is not restrictive since
ψAss.3 := (‖x‖ < c), where c is a sufficiently large positive
constant, can be combined with the desired ψ so that ψ ∧
ψAss.3 is well-posed.

The first objective in this paper is to synthesize a con-
tinuous feedback control law u(x, t) for atomic temporal
formulas φ in (3b) such that ρφ(x, 0) > r where r ∈ R≥0
is a robustness measure and x : R≥0 → Rn is the closed-
loop solution of (1) with initial condition x0. Additionally,
we will upper bound ρφ(x, 0) < ρmax with ρmax ∈ R>0.
For φ in (3b) with the corresponding ψ, we achieve r <
ρφ(x, 0) < ρmax by prescribing a temporal behavior to
ρψ
(
x(t)

)
through the design parameters γ and ρmax as

− γ(t) + ρmax < ρψ
(
x(t)

)
< ρmax. (4)

The connection between the non-temporal ρψ
(
x(t)

)
and

the temporal ρφ(x, 0) is made by the performance function γ.
In fact, γ prescribes temporal behavior that, in combination
with ρψ

(
x(t)

)
, mimics ρφ(x, 0) as illustrated next.
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(a) Funnel for φ1 = F[0,∞)ψ1 s.t. ρφ1(x, 0) > r with r := 0
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(b) Funnel for φ2 = G[0,∞)ψ2 s.t. ρφ2(x, 0) > r with r := 0

Fig. 1: Connection between ρψ
(
x(t)

)
and ρφ(x, 0)

Example 1: Fig. 1a visualizes the idea for the eventually-
operator φ1 := F[0,∞)ψ1, while Fig. 1b expresses the always-
operator φ2 := G[0,∞)ψ2. Note that these figures show the
funnel in (4), hence imposing prescribed temporal behavior
on ρψ

(
x(t)

)
. It is easy to verify that if ρψ1

(
x(t)

)
∈

(−γ1(t) + ρ1,max, ρ1,max) and ρψ2
(
x(t)

)
∈ (−γ2(t) +

ρ2,max, ρ2,max) for all t ∈ R≥0 as in Fig. 1, i.e. (4) is
satisfied, then φ1 and φ2 are satisfied. For instance, in Fig. 1a
the lower funnel −γ1(t)+ρ1,max forces ρψ1

(
x(t)

)
> r := 0

by no later than approximately 4.5 time units. Thus, the
formulas φ1 := F[0,∞)ψ1 or also φ3 := F[2,5]ψ1 are satisfied,
which means that ρφ1(x, 0) > 0 and ρφ3(x, 0) > 0.

The choice of the design parameters γ, ρmax, and r will
be discussed in Section IV. Therefore, define the global
optimum of ρψ(x) as ρψopt := supx∈Rn ρ

ψ(x); ρψ(x) is
continuous and concave due to Assumption 2 and 3, which
makes the calculation of ρψopt straightforward. If ρψopt > 0, it
holds that φ is feasible, i.e., ∃x : R≥0 → Rn s.t. (x, 0) |= φ.

Assumption 4: The optimum of ρψ(x) is s.t. ρψopt > 0.
Equation (4) can now be written as

−γ(t) < ρψ
(
x(t)

)
− ρmax < 0, (5)

which resembles (2) by defining the one-dimensional error
e(x) := ρψ(x) − ρmax and M := 0. The normalized error
is defined as ξ(x, t) := e(x)

γ(t) , while the transformed error is

ε(x, t) := S
(
ξ(x, t)

)
= ln

(
− ξ(x, t) + 1

ξ(x, t)

)
. (6)

As a notational rule, when talking about the solution x(t)
of (1) at time t, we use e(t), ξ(t), and ε(t), while we
use e(x), ξ(x, t), and ε(x, t) when we talk about x as a
state. Hence, (5) can be written as −γ(t) < e(t) < 0,

which in turn leads to −1 < ξ(t) < 0. Applying the
transformation function S to this inequality finally results
in −∞ < ε(t) < ∞. In order to have a feasible problem,
the condition ξ

(
x(0), 0

)
∈ Ωξ := (−1, 0) needs to hold.

The second objective in this paper is to consider sequential
formulas θ as in (3e). Therefore, the hybrid system frame-
work of [12] will be used. The problem definition is now:

Problem 1: Consider the system given in (1) subject to
a STL formula θ as in (3e). Design a piecewise-continuous
feedback control law u(x, t) such that 0 ≤ r < ρθ(x, 0) <
ρmax, i.e., (x, 0) |= θ.

Our problem solution consists of a three-step procedure:
First, a continuous feedback control law u(x, t) is designed
in Theorem 1 such that (4) is satisfied. Second, γ is designed
in Theorem 2 such that r < ρφ(x, 0) < ρmax if u(x, t) from
Theorem 1 is used. Third, Theorem 3 states a hybrid control
strategy such that r < ρθ(x, 0) < ρmax.

IV. CONTROL LAW FOR ATOMIC TEMPORAL FORMULAS

We first derive a control law u(x, t) in the next theorem
such that ρψ

(
x(t)

)
satisfies (4) with ε(x, t) as in (6).

Theorem 1: Consider the system (1) and a formula φ as in
(3b) with the corresponding ψ. If ξ

(
x0, 0

)
∈ Ωξ := (−1, 0),

ρmax ∈
(

max
(
0, ρψ(x0)

)
, ρψopt

)
, and Assumptions 1-4 are

satisfied, then the control law

u(x, t) := −ε(x, t)gT (x)
∂ρψ(x)

∂x
(7)

guarantees that (4) is satisfied for all t ∈ R≥0 with all closed-
loop signals being well-posed, i.e., continuous and bounded.
Proof: The proof can be found in [13].

Next, γ is designed such that the control law (7) results
in 0 ≤ r < ρφ(x, 0) < ρmax. Define the variable

t∗ ∈

{
a if φ = G[a,b]ψ

[a, b] if φ = F[a,b]ψ.
(8)

Our goal is to enforce r < ρψ
(
x(t)

)
< ρmax for all t ≥ t∗

by the choice of γ. This will lead to r < ρφ(x, 0) < ρmax
by the choice of t∗. We select r ∈ [0, ρmax) and define
feasibility of a formula φ with respect to r, x0, and t∗.

Definition 4: A formula φ as in (3b) is feasible with
respect to r, x0, and t∗ if and only if: 1) t∗ > 0 or 2)
t∗ = 0 and ρψ(x0) > r.

For the design of γ assume that φ is feasible w.r.t. r, x0,
and t∗ and recall that γ(t) := (γ0−γ∞) exp(−lt)+γ∞. The
crucial part of Theorem 1 is the assumption that ξ(x0, 0) ∈
Ωξ. It is possible to choose γ0 such that ξ(x0, 0) ∈ Ωξ, which
is equivalent to −1 < ρψ(x0)−ρmax

γ(0) < 0. It should also hold
that −γ0 +ρmax ≥ r if t∗ = 0 due to (4) and since we want
r < ρψ

(
x(t)

)
for all t ≥ t∗. This is illustrated in Fig. 1b

with t∗ = 0 (since φ2 = G[0,∞)ψ2) and r := 0 and where
it should hence hold that −γ0 + ρmax ≥ 0 is satisfied as
indicated by the dashed line. To conclude, γ0 is

γ0 ∈

{(
ρmax − ρψ(x0),∞

)
if t∗ > 0(

ρmax − ρψ(x0), ρmax − r
]

if t∗ = 0.
(9)



At t = ∞, it is required that max(−γ0 + ρmax, r) ≤
−γ∞ + ρmax < ρmax, where the left inequality enforces
that −γ + ρmax is a non-decreasing function, which in turn
leads to γ being non-increasing. The right inequality stems
from (4). Therefore, we set

γ∞ ∈
(

0,min
(
γ0, ρmax − r

)]
. (10)

For the calculation of l, three cases need to be distin-
guished: 1) ρψ(x0) > r, 2) ρψ(x0) ≤ r and t∗ > 0, and 3)
ρψ(x0) ≤ r and t∗ = 0. Case 3) can be excluded since φ is
assumed to be feasible w.r.t. r, x0, and t∗. Next, select l as

l ∈

R≥0 if − γ0 + ρmax ≥ r

−
ln
(
r+γ∞−ρmax
−(γ0−γ∞)

)
t∗

if − γ0 + ρmax < r, t∗ > 0,

(11)

which ensures that −γ(t∗) + ρmax ≥ r. Under (7), this
consequently leads to ρψ

(
x(t)

)
> r for all t ≥ t∗ since

γ is non-increasing.
Theorem 2: Consider the system (1) and a formula φ as

in (3b). If Assumptions 1-4 hold, r ∈ [0, ρmax), the control
law in (7) is used, and φ is feasible w.r.t. r, x0, and t∗, then
choosing γ0, γ∞, and l as in (9), (10), and (11), respectively,
ensures that 0 ≤ r < ρφ(x, 0) < ρmax, i.e., (x, 0) |= φ.

Proof: The proof can be found in [13].

V. CONTROL STRATEGY FOR SEQUENTIAL FORMULAS

In this section, we develop a hybrid control strategy for
sequential formulas θ as in (3e), which either correspond
to θs1 or θs2 as in (3c) or (3d), respectively. Note that
both of these consist of N atomic temporal formulas: θs1
entails N atomic temporal formulas φi with [ai, bi] for all
i ∈ {1, . . . , N}. Similarly, θs2 boils down to N − 1 atomic
temporal formulas φi = F[ai,bi]ψi with i ∈ {1, . . . , N − 1},
ai :=

∑i
k=1 ck, bi :=

∑i
k=1 dk, and φN . For instance,

F[c1,d1]

(
ψ1∧F[c2,d2](ψ2∧F[c3,d3]ψ3)

)
is satisfied if and only

if F[c1,d1]ψ1∧F[c1+c2,d1+d2]ψ2∧F[c1+c2+c3,d1+d2+d3]ψ3 :=
F[a1,b1]ψ1 ∧F[a2,b2]ψ2 ∧F[a3,b3]ψ3 is satisfied. To conclude,
θ consists of N atomic temporal formulas φi with i ∈
{1, . . . , N}. Each φi entails a robustness function denoted by
ρψi(x) and corresponding design parameters ti,∗, ri, ρi,max,
and γi(t) = (γi,0 − γi,∞) exp(−lit) + γi,∞ in accordance
with t∗, r, ρmax, and γ in Section IV. Each φi will be
processed one at a time. If φi has been satisfied, the next
atomic temporal formula φi+1 becomes active and a switch
takes place. Denote the time sequence of these switching
times by {∆1 := 0,∆2, . . . ,∆N} where ∆i ≤ ∆i+1. Note
that ti,∗, ri, ρi,max, γi,0, γi,∞, and li need to be calculated
during runtime at each switching time ∆i. Furthermore, set

p :=

{
1 if θ = θs1

0 if θ = θs2
and mi :=

{
1 if φi = G[ai,bi]ψi

0 if φi = F[ai,bi]ψi.
A hybrid control strategy in the framework introduced in

Definition 5 will be used to process each φi sequentially.
Definition 5: [12] A hybrid system is a tuple H :=

(C,F,D,G), where C, D, F , and G are the flow and

jump set and the possibly set-valued flow and jump map,
respectively. The discrete and continuous dynamics are{

ż ∈ F (z) if z ∈ C
z+ ∈ G(z) if z ∈ D.

Define pf :=
[
t∗ r ρmax γ0 γ∞ l

]T
, gathering

all parameters defining the funnel in (4), and the hybrid
state z :=

[
q xT t ∆ pTf

]T ∈ {1, . . . , N + 1} ×
Rn × R8

≥0 =: Z . Note that ∆ is the value of the latest
switching time. In adherence to the terminology in [12],
we interchangeably call switches jumps. The discrete state
q indicates which formula φq is currently active, while
q = N+1 indicates the final discrete state when θ has already
been satisfied. In the proof of Theorem 1, it was shown that
x(t) ∈ Ω′x for all t ∈ R≥0, where Ω′x is a compact set.
Let Ω′q,x denote Ω′x corresponding to the formula φq . Next,
define the sets Xq := {x ∈ Rn|rq < ρψq (x) < ρq,max} and
Yq := [0, bq

p +
(∑q

i=1 di
)1−p − 1] × tq,∗ × rq × ρq,max ×

γq,0×γq,∞× lq . Note that p determines if [aq, bq] or [cq, dq]
is used. For all q ∈ {1, . . . , N} and similarly to (8), set

tq,∗ ∈


aq if p = 1,mq = 1

[aq, bq] if p = 1,mq = 0

cq if p = 0,mq = 1

[cq, dq] if p = 0,mq = 0.

(12)

Define the set Dq that indicates satisfaction of φq and leads
to a jump to process φq+1. For q ∈ {1, . . . , N}, we have

Dq :=

{
q ×Xq × (bq

p + dq
1−p − 1− p∆)× Yq if mq = 1

q ×Xq × ([aq
p + cq

1−p − 1, tq,∗]− p∆)× Yq else,

which indicates that ρφq (x,∆q) > rq if z ∈ Dq . This
follows since x ∈ Xq at t = bq

p+dq
1−p−1−p∆ for mq = 1

or x ∈ Xq at t ∈ ([aq
p + cq

1−p − 1, tq,∗]− p∆) for mq = 0
under the control law (7) indicates that φq is satisfied. Note
that ∆ only takes effect if p = 1 (θ = θs1 ) to ensure that
φq is satisfied within [aq, bq], while for p = 0 (θ = θs2 )
the formula φq+1 is directly processed next when φq is
satisfied. Further define DN+1 := (N+1)×Ω′N,x×T ×YN
for T := bN

p + (
∑N
i=1 di)

1−p − 1, which is needed for a
technical reason in the proof of Theorem 3. Similarly, define
the continuous domain Cq for q ∈ {1, . . . , N} as

Cq :=

{
q × Ω′q,x × [0, bq

p + dq
1−p − 1− p∆]× Yq if mq = 1

q × cl(Ω′q,x \ X )× [0, tq,∗ − p∆]× Yq else,

where cl(·) denotes the closure. Also define CN+1 := (N +
1)×Ω′N,x× [0, T ]×YN . Finally, the jump and flow sets are

D := ∪N+1
i=1 Di

C := ∪N+1
i=1 Ci.

The flow map is given by

F :=
[
0
(
f(x) + g(x)uq + w

)T
1 07

T
]T

with the control law in (7) as uq = −εqgT (x)∂ρ
ψq (x)
∂x for

all q ∈ {1, . . . , N} and uN+1 = −εNgT (x)∂ρ
ψN (x)
∂x ,

where εq corresponds to ε based on φq . By
abbreviating q′ := q + 1, define ps(q) :=



[
q′ xT 0 ∆q′ tq′,∗ rq′ ρq′,max γq′,0 γq′,∞ lq′

]T
and finally set the jump map to

G :=

{
ps(q) if q /∈ {N,N + 1},z ∈ D[
N + 1 xT 0T2 pf

T
]T

if q ∈ {N,N + 1},z ∈ D,

with ∆q′ := ∆ + t, accumulating the elapsed time. Select
tq′,∗ as in (12) and ρq′,max ∈

(
max(0, ρψq′ (x)), ρ

ψq′
opt

)
,

rq′ ∈ [0, ρq′,max) as in the assumptions of Theorem
1 and 2, respectively. The parameters γi,0, γi,∞, and
li need to be chosen as in (9), (10), and (11): γq′,0 ∈{

(ρq′,max − ρψq′ (x),∞) if tq′,∗ − p∆q′ > 0

(ρq′,max − ρψq′ (x), ρq′,max − rq′ ] if tq′,∗ − p∆q′ = 0
,

γq′,∞ ∈
(

0,min
(
γq′,0, ρq′,max − rq′

)]
, and

lq′ ∈


R≥0 if − γq′,0 + ρq′,max ≥ rq′

−
ln
( r
q′+γq′,∞−ρq′,max
−(γ

q′,0−γq′,∞)

)
tq′,∗−p∆q′

if: • −γq′,0 + ρq′,max < rq′ ,

• tq′,∗ − p∆q′ > 0.

The initial state is set to z0 :=[
1 x0

T 0 0 t1,∗ r1 ρ1,max γ1,0 γ1,∞ l1
]T

.
Now, we are ready to state the main result of this section.

Theorem 3: Consider the system (1) and a formula θ
as in (3e). The hybrid system H := (C,F,D,G) re-
sults in r := min(r1, . . . , rN ) < ρθ(x, 0) < ρmax :=
min(ρ1,max, . . . , ρN,max), i.e., (x, 0) |= θ, if each φq in
θ is feasible w.r.t. rq , x(∆q), and tq,∗ + |p− 1|∆q .

Proof: The proof can be found in [13].

VI. SIMULATIONS

We consider a multi-agent system employing the well-
known consensus protocol with additional free inputs. The
consensus protocol can be seen as the desire of the group
to stay close to each other. Consider M agents where each
agent j ∈ {1, . . . ,M} obeys the dynamics ẋj = vj with
xj ∈ R2. The consensus protocol is then included as vj :=
−
∑
k∈Nj (xj−xk)+uj whereNj denotes the neighborhood

of the agent j. Denoting x :=
[
x1

T . . . xM
T
]T

and u :=[
u1

T . . . uM
T
]T

, we can express the dynamics as

ẋ = −(L⊗ I2)x + u, (13)

where L is the graph Laplacian. Comparing (13) with (1)
reveals that f(x) = −(L⊗I2)x and g(x) = IM⊗I2 = I2M ,
where IM is the M ×M identity matrix, i.e., Assumption 1
is trivially satisfied. More specifically, assume three agents

α1, α2, and α3 with L :=

 1 −1 0
−1 2 −1
0 −1 1

. Denote the

robot position with xj :=
[
xj,1 xj,2

]T
for j ∈ {1, 2, 3}.

The initial positions are x1(0) :=
[
1.1 3.1

]T
, x2(0) :=[

2 0.5
]T

, and x3(0) :=
[
7 1.5

]T
. We also have five

goal positions A, B, C, D, and E, which are located at
pA :=

[
6 4

]T
, pB :=

[
1.2 9

]T
, pC :=

[
1.2 7

]T
,

pD :=
[
1.2 5

]T
, and pE :=

[
8 7

]T
. We use

(
‖xj −

pA‖∞ < c
)

=
(
|xj,1 − pA,1| < c

)
∧
(
|xj,2 − pA,2| < c

)
=(

xj,1 − pA,1 < c
)
∧
(
− xj,1 + pA,1 < c

)
∧
(
xj,2 − pA,2 <

c
)
∧
(
− xj,2 + pA,2 < c

)
to ensure that ‖xj − pA‖∞ =

max(|xj,1 − pA,1|, |xj,2 − pA,2|) < c.
The robots are subject to the following sequential tasks:

1) Robot α1 moves to A within 7 − 10 seconds. 2) Within
the next 10 − 20 seconds, α1, α2, and α3 move to B,
C, and D, respectively. 3) α1 moves to E within 5 − 15
seconds. Additionally α2 and α3 form a triangular formation.
4) α2 and α3 always keep at least a distance of 1 from α1

and disperse. More specifically, we have: θ := F[7,10](ψ1 ∧
F[10,20](ψ2∧F[5,15](ψ3∧φ4))) with ψ1 :=

(
‖x1−pA‖∞ <

0.1
)
∧ψAss.3, ψ2 :=

(
‖x1−pB‖∞ < 0.1

)
∧
(
‖x2−pC‖∞ <

0.1
)
∧
(
‖x3−pD‖∞ < 0.1

)
∧ψAss.3, ψ3 :=

(
‖x1−pE‖∞ <

0.1
)
∧
(
1 < x1,1 − x2,1 < 1.2

)
∧
(
1 < x1,1 − x3,1 <

1.2
)
∧
(
1 < x2,2 − x1,2 < 1.2

)
∧
(
1 < x1,2 − x3,2 <

1.2
)
∧ ψAss.3, and φ4 := G[0,12]

(
(1 < x1,1 − x2,1) ∧ (1 <

x2,2−x1,2)∧ (1 < x1,1−x3,1)∧ (1 < x1,2−x3,2)∧ψAss.3
)

with ψAss.3 := (‖x‖∞ < 100) to enforce Assumption 3.
The simulation result for the first two formulas, i.e., ψ1

and ψ2, are displayed in Fig. 2a and 2b, respectively. For
ψ1, the consensus dynamics bring the agents together, while
the performance function γ1 forces α1 to approach and reach
A. For the second task in Fig. 2b, each agent individually
reaches its goals B, C, and D. The third task is shown in
Fig. 2c, where the robots initially gather and eventually form
a triangular formation, while α1 approaches E. In Fig. 2d,
dispersion of the multi-agent system can be seen. Note that
these tasks are achieved successively and we used, for the
convenience of the reader, four separate figures. The full
trajectory in one figure can be seen in [13, Fig. 2]. To see that
time bounds have been respected, Fig. 3 displays the funnels
w.r.t. time. The control inputs are bounded and piecewise-
continuous, shown in [13, Fig. 4b]. To conclude, θ is satisfied
with r := 0.05 < ρθ(x, 0). Note that due to the precision
that we chose, e.g., F[7,10]

(
‖x1 − pA‖∞ < 0.1

)
, r can not

exceed 0.1. We remark that the control law is centralized and
that simulations have been performed in real-time, which is
possible due to the easy-to-implement feedback control law.

VII. CONCLUSION

We considered nonlinear systems subject to a subset of
signal temporal logic specifications. The imposed transient
and steady-state behavior of the prescribed performance
control approach was leveraged to satisfy atomic temporal
formulas. A hybrid control strategy was then used to ensure
that a finite set of atomic temporal formulas is satisfied. A
salient feature is that the feedback control law is piecewise-
continuous and robust with respect to disturbances and the
specification, i.e., the specification is satisfied with a user-
defined robustness.

Future work will include the extension of the derived
methods to decentralized multi-agent systems with couplings
in various forms. In this respect, local and global specifica-
tions will be subject of our work, as well as the feasibility
of these coupled specifications. Furthermore, an extension of
the expressivity, i.e., the signal temporal logic subset under
consideration, will be investigated.
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Fig. 2: Trajectories of the three robots.
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