
A Learning Framework for Versatile STL Controller Synthesis

Peter Varnai and Dimos V. Dimarogonas1

Abstract— In this paper, we aim towards providing a prac-
tical framework for learning to satisfy signal temporal logic
(STL) task specifications for systems with partially unknown
dynamics. We consider STL tasks whose satisfaction can be
guaranteed by enforcing a priori known temporal specifications
imposed on the atomic propositions that compose them. First,
a neural network is trained offline as a control policy to satisfy
such temporal specifications while also minimizing a target
cost, such as the input energy of the system. The obtained
controller then serves as a guide that aids exploration while
learning to satisfy any specific STL task optimally using policy
improvement, greatly increasing the sample efficiency of the
procedure. The promise of the approach towards a versatile
STL learning framework is demonstrated through simulations.

I. INTRODUCTION

This paper considers synthesizing controllers for systems
with partially unknown dynamics in order to minimize a
target cost while satisfying time-dependent tasks. The tasks
are given in the form of temporal logic (TL) specifications
[1], which allow the expression of complex behaviors such as
surveilling regions of interest and periodically to recharging.
Control strategies for satisfying TL tasks in known environ-
ments have been looked into in detail (e.g., [2], [3]), while
control synthesis in unknown and stochastic environments
has also gained considerable attention recently [4]–[7]. The
focus is generally placed on task satisfaction itself in a robust
manner, though some works also consider real-time plan
revision [8] or added target costs [9]. Here, we consider both
aspects and aim to develop a sample efficient framework for
the optimal policy synthesis of solving a variety of TL tasks.

In this work, the temporal tasks are formulated using STL
[10], where the logical predicates are defined over functions
of the system state. STL is particularly suited for learning
methods as it is equipped with various robustness metrics
that quantify how well the task is satisfied. This constitutes
a reward that can be efficiently exploited, such as by using Q-
learning [5], [11] or policy improvement techniques [12]. The
former relies on trajectory histories of the system to generate
an optimal policy, while the latter must restart the learning
process at every initial state of the system. Both approaches
solve a single STL task. To the authors’ knowledge, this is
the first work towards a sample-efficient learning framework
capable of dealing with a variety of STL task specifications.

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, the Swedish Research Council (VR), the SSF COIN
project, and the EU H2020 Co4Robots project.

1Both authors are with the Division of Decision and Control Systems,
School of Electrical Engineering and Computer Science, KTH Royal Insti-
tute of Technology, 114 28 Stockholm, Sweden. varnai@kth.se (P.
Varnai), dimos@kth.se (D. V. Dimarogonas)

The proposed approach is based on policy improvement
[12], where a parameterized controller is iteratively updated
towards the optimum using a multitude of sampled sys-
tem trajectories. Our previous work [13] has shown that
the efficiency of this algorithm is greatly improved when
augmented with prescribed performance control (PPC)-based
control [3] to guide the learning. This controller aids STL
task satisfaction, leading to more sample-efficient exploration
towards minimizing the target cost. Here, this idea is further
extended by training a guiding controller that already aims
to minimize the target cost while satisfying the STL task,
further increasing the effectiveness of exploration.

A secondary goal is for the learning framework to be
readily adaptable to a variety of task specifications, allowing
the system to appropriately react to real-time task changes.
To this end, the trained guide controller does not focus
on a particular STL task, but on satisfying any robustness
specification imposed on the evolution of atomic propositions
composing possible STL formulas. This allows an effective
transfer of gathered offline experience to specific STL for-
mulas online, provided that a good estimate of robustness
specifications guaranteeing the satisfaction of the formula
are known. We assume such specifications are available a
priori, but give ideas for their construction in future work.

The rest of the paper is organized as follows. Section II
gives a brief introduction to STL and policy improvement.
The problem statement is formulated in Section III, followed
by the details of our solution approach in Section IV and a
simulation study in Section V. Finally, Section VI concludes
with the main take-aways and considerations for future work.

II. PRELIMINARIES

A. Signal temporal logic (STL)

STL is a form of temporal logic defined over real-valued
and real-time signals [14]. The underlying atomic predicates
µ are either true(>) or false(⊥) depending on the sign of
a corresponding function hµ(x); µ = > if hµ(x) ≥ 0 and
µ = ⊥ if hµ(x) < 0. Boolean and temporal operators then
allow the definition of more complex STL expressions φ:

φ := > | µ | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2. (1)

The notation (x, t) � φ expresses that a signal x(t) satisfies
the task φ at time t. This can be determined in a recursive
fashion using the following semantics [3]: (x, t) � µ iff
hµ(x(t)) ≥ 0; (x, t) � ¬φ iff ¬((x, t) � φ); (x, t) � φ1∧φ2

iff (x, t) � φ1 ∧ (x, t) � φ2; and finally, (x, t) � φ1U[a,b]φ2

iff ∃t1 ∈ [t+a, t+b] such that (x, t1) � φ2 and (x, t2) � φ1

for all t2 ∈ [t, t1]. The time bounds of the until operator U

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

Fig. 1: Sample robustness specifications guaranteeing satis-
faction of the STL task studied in Example 1.

satisfy a ≤ b; the operators eventually and always are then
expressed by F[a,b]φ = >U[a,b]φ and G[a,b]φ = ¬F[a,b]¬φ.

In STL, it is possible to measure how well a for-
mula is satisfied using various notions of robustness met-
rics [10]. Here, we use the spatial robustness metric
ρ whose definition is as follows for the formulas used
herein: ρµ(x, t) = hµ(x(t)), ρ¬φ(x, t) = −ρφ(x, t),
ρφ1∧φ2(x, t) = min

(
ρφ1(x, t), ρφ2(x, t)

)
, ρF[a,b]φ(x, t) =

maxt′∈[t+a,t+b] ρ
φ(x, t′), and for the always operator

ρG[a,b]φ(x, t) = mint′∈[t+a,t+b] ρ
φ(x, t′). A formula φ is

satisfied by the signal x(t) at time t if the corresponding
robustness metric ρφ(x, t) ≥ 0.

The atomic predicates µ themselves are equipped with a
robustness measure. A temporal specification φ can be made
to be satisfied by properly controlling the evolution of these
measures in time, which motivates the following definition.

Definition 1 (Robustness specification). The robustness
specification of an atomic proposition µ is defined by a curve
γµ(t) and is satisfied if ρµ(x(t)) ≥ γµ(t) holds for all t.

Example 1. Consider the task φ = F[0,5]µ1 ∧ G[0,5](µ1 ⇒
F[2,4]G[0,1]µ2). In words, the task describes that µ1 must
happen within 5s, and any time it does, µ2 must hold for an
entire second starting sometime between 2−4s afterwards. A
plausible robustness specification for how µ1 and µ2 should
evolve in order to guarantee satisfaction of φ is depicted in
Fig. 1. Note that there are many pairs of specification curves
which provide such a guarantee.

B. Policy improvement with path integrals (PI2)

Consider the following optimization problem:

min
θ
J(τπθ[0,T]), (2)

where πθ is a control policy parameterized by θ ∈ Rp, τπθ[0,T]

is the generated system trajectory1 obtained by following this
policy, T is the problem horizon, and J(·) is a cost to be
minimized. The PI2 algorithm is a learning algorithm used
to solve such problems by exploring the parameter space
and updating θ until a (locally) optimal solution is found.
Originally introduced in [15], PI2 was proven to converge for
specific objectives and is known to perform well for others.

1A system trajectory τ[0,T] denotes the collection of the state and input
signals x(t) and u(t) during the time interval t ∈ [0, T].

In our PI2 framework, the policy is a function of the
system state and time and is expressed in the form2:

πθ(xt, t) = û(xt, t) + kt(θ). (3)

The first term, û(xt, t), is a base control action aiming to
guide the exploration towards minimizing the given cost J .
The second term, kt(θ), is a parameterized feedforward term
which enables exploration towards the optimum. We assume
this parametrization allows for degrees of freedom in every
instance of time, i.e., θ = {θ0, . . . , θT }.

The PI2 algorithm used in this paper to solve problems of
form (2) and to handle STL task specifications is based on
our previous work [13]; a concise description is as follows:
• The algorithm is initialized with parameter estimates
θ

(0)
t for t ∈ [0, T] and a Gaussian distribution defined

by a covariance C
(0)
t around each mean θ(0)

t .
• In the (k)-th iteration, N parameters θ̃t,i, i = 1, . . . , N ,

are sampled from the distribution around each θ
(k)
t ,

generating N trajectories by following each policy θ̃t,i.
Each sample is assigned a weight wi based on its
corresponding cost Ji = J(τ θ̃t,i). Parameterizations
leading to lower costs are given larger weights in order
to move the solution towards the optimum.

• Finally, the policy parameters are updated using the
weighted average θ

(k+1)
t =

∑N
i=1 wiθ̃t,i and the pre-

vious steps are repeated a given K number of times.
In the context of STL, PI2 is advantageous since it

relies on a cost associated to entire trajectories, such as the
robustness metric of a temporal task φ (which is determined
at the end of the task’s time horizon). Aiming to satisfy φ
with an imposed minimal robustness ρφ ≥ ρmin ≥ 0, the
cost of interest C(τ) is augmented with a penalty term to
obtain the objective of the optimization problem (2) as:

J(τ) := Jλ(τ, ρφ) = C(τ) + Pλ(ρφ). (4)

The penalty function Pλ is such that as λ → ∞, we have
Pλ(ρφ) → ∞ for ρφ < ρmin and Pλ(ρφ) → 0 for ρφ ≥
ρmin. The robustness constraint ρφ ≥ ρmin is thus treated as
a soft constraint and is moved towards a hard constraint by
gradually increasing λ throughout the PI2 iterations.

III. PROBLEM FORMULATION
A. System and task description

The system under consideration is given by the nonlinear
dynamics:

ẋ = f(x) + g(x)u, x(0) = x0, (5)

where x ∈ Rn and u ∈ U ⊆ Rm are the system state and
input, respectively. The functions f(x) and g(x) are assumed
to be locally Lipschitz continuous; the latter is known and
satisfies g(x)gT(x) being positive definite for all x ∈ Rn.
Furthermore, the term g(x) is known and we assume an
approximation of f(x) is available in order to simulate the
system. The initial state is given by x0 ∈ Rn.

2The subscripts t denote signals at a given time slice t, e.g., xt = x(t),
bridging notation between continuous time and its discretized setting.

B. Problem statement

The problem studied in this paper is formalized as follows.

Problem 1. Consider the dynamical system (5) tasked with
an STL specification φ during a time horizon T . Compute
a control policy πφ(x, t) : Rn × R → Rm under which the
system evolves in a trajectory τπ

φ

[0,T] that satisfies φ with a
given minimal robustness ρφ ≥ ρmin ≥ 0 while minimizing
a target cost C(τ).

Assumption 1. The task φ is composed of M atomic
propositions µi with known robustness metrics ρµi(x), i =
1, . . . ,M . Corresponding robustness specifications γi(t) are
known such that ρµi(x(t)) ≥ γi(t) for all i = 1, . . . ,M is
feasible for the system and guarantees satisfaction of φ with
the imposed minimal robustness ρφ ≥ ρmin.

The problem is formulated in a similar manner to the one
examined in our previous work [13]. Therein, a PPC-based
analytical law was used in (3) as a base law û(xt, t) to
guide the exploration in PI2 towards satisfying the given
STL task φ. This was done by aiming to enforce each
ρµi(x(t)) ≥ γi(t) through proper control of the metric ρµi ,
which necessitates the presented assumptions on the system
dynamics. While utilizing such a base law was shown to
yield substantial improvement in the convergence rate of PI2,
the learning procedure essentially had to start anew from
every initial condition of the system, because the base law
was not tailored towards minimizing the specific target cost
C(τ) in addition to satisfying the STL task. In this work, the
emphasis is placed on an even more sample efficient solution,
moving towards a practically feasible algorithm. The key idea
is to train a neural network as a base law that also attempts to
minimize the target cost of interest, thus transferring online
computational loads to an offline training phase.

To the authors’ knowledge, previous works employing
machine learning for solving STL tasks focused on variations
of Q-learning adapted to the STL setting, such as in robust
satisfaction of STL tasks [5] or in an adversarial environment
[16]. In case of STL formulas, the input to the policy neural
network must include the entire trajectory history up until
the time horizon of the formula φ in order to keep track of
its progression. This presents a computational challenge for
complex formulas; the examples provided in the mentioned
papers have a time horizon of a few simulated time steps
in a discrete time, space, and action setting, and it is not
clear if the proposed methods scale well for longer horizons.
Furthermore, the trained policy targets a single STL task,
while in our problem formulation the focus is again on a
sample-efficient online adaptation to any STL task at hand.
This suggests that the offline gathered experience should be
transferable to a variety of task specifications, motivating the
proposed approach presented in the following section.

IV. SOLUTION

Our proposed learning framework for efficiently synthe-
sizing controllers subject to STL tasks while minimizing a
target cost C(·) consists of two stages:

(1) A neural network is trained as a policy which aims to
satisfy any set of robustness specifications ρµi(x(t)) ≥
γi(t) laid on the atomic propositions µi while minimiz-
ing the cost C(τ) of the resulting trajectories.

(2) The trained policy is used as the base law û(xt, t) in
(3) for the PI2 algorithm in order to solve Problem 1,
similarly as in the previous work [13], but offering much
better sample efficiency (and thus potentially practical
applicability) due to the previously gathered experience.

A. Offline stage - satisfying robustness specifications

In the first stage, a neural network is trained to aim at
minimizing the target trajectory cost C(τ) while satisfying
the robustness specification requirements imposed by the
curves γi(t). To this end, the trajectory cost is augmented
with a penalty term as follows:

J(τ) = C(τ) +

M∑
i=1

∫ T

0

Pλi(ρµi(x(t)), t)dt. (6)

The penalty coefficients λi control the importance of satis-
fying the i-th robustness specification ρµi(x(t)) ≥ γi(t).
Hence, similarly as in (4), Pλi has a form such that as
λi → ∞, Pλi(ρµi(x(t)), t) → ∞ for ρµi(x(t)) < γi(t)
and Pλi(ρµi(x(t)), t) → 0 otherwise. In this paper, we
use functions composed of a linear and a sigmoid term
parameterized by the scalars α, β > 0 of the form:

Pλi(ρµi(x), t) = αξi(ρ
µi(x), t)+

λi
1 + e−βλi(ξi(ρ

µi (x),t)−1)
,

(7)
where the transformation ξi(ρµi(x), t) := Γi(t)−ρµi (x)

Γi(t)−γi(t) using
predefined curves Γi(t) > γi(t) controls how close to the ro-
bustness specification boundary γi(t) the penalization begins.
Note that the value ξi = 1 corresponds to ρµi(x(t)) = γi(t).
In (7), the sigmoid term serves as a barrier, while the added
(small) linear term provides gradient information to push
solutions towards the desired robustness. The form of this
penalty greatly impacts the behavior of the trained neural
network, and it would be interesting to make connections
between choices that perform well in this case and in the
design of analytical base laws discussed in [13].

In order to generate data for training a neural network
policy, we compute the solution to a multitude of sample
problems with objective (6) for a given cost C(τ) from
various initial conditions and robustness specification curves.
The PI2 algorithm is employed to find such solutions.

Each sample problem solution provides training data in the
form of an input {x(t),γ[t,T]} and a corresponding output,
the optimal control action u(t). The variable γ[t,T] de-
notes the evolution of the assembled robustness specification
curves γ(t) := [γ1(t), . . . , γM (t)] during the time horizon
[t, T]. The neural network serves as a universal function
approximator for the optimal policy π∗NN (x(t),γ[t,T]), a
function of both the system state and the entire future
specification curve, and can be trained using well-established
techniques in stochastic optimization [17].

From a practical perspective, the optimal control action
u(t) at time t could mainly be influenced by the initial por-
tion of γ(t). The policy can be thus treated as a function of
a smaller horizon window, e.g., πNN (x,γ[t,t+∆T]), or using
a lower-dimensional representation of the curve γ[t,t+∆T].
The idea is similar to receding horizon control [18] and
substantially decreases the amount of training data required
to train πNN due to the dimensionality reduction of its input
specification curve. Such a reduction is not possible in a
trajectory-based training as in previous works [5], [11], since
the entire state history is necessary to determine progress in
satisfying an STL task. Note that it is not crucial for our
trained policy to be fully optimal, since it is only used as a
base law in PI2 when solving Problem 1 in the second stage.

A further aspect to consider is selecting the penalty
values λi for the sample problems used to generate training
data. Higher penalties better accomplish the training goal
of satisfying the robustness specifications while minimizing
the target cost C(τ). On the other hand, there should be
training data for cases when the robustness specifications are
not satisfied. The trained policy must learn how to respond in
such situations, which are encountered during exploration in
PI2 or if the given robustness specifications are infeasible. If
C(τ) becomes negligible compared to the incurred penalties,
optimal solutions may be difficult to find due to numerical
reasons in these cases. This trade-off implies that the penalty
values should be chosen such that the two cost terms of the
objective (6) do not differ much in orders of magnitude.

B. Online stage - satisfying the STL task

In the second stage, the pre-trained policy πNN is used
as a base law in the PI2 algorithm discussed in Section
II-B in order to solve Problem 1. Depending on (i) the
available simulation environment for training and thus the
quality of the trained policy, and (ii) the supplied robustness
specifications which guarantee satisfaction of φ with ρφ ≥
ρmin, the base law is expected to offer much better guided
exploration towards minimizing the objective. This leads to
a significantly improved convergence rate and thus sample
efficiency of the PI2 algorithm during this online stage.

C. Further improvements

The proposed learning framework relies on a priori known
robustness specifications ρµi(x(t)) ≥ γi(t) which guar-
antee achieving the desired task satisfaction with minimal
robustness ρφ ≥ ρmin in exchange for the increased sample
efficiency offered by offline training. Here we highlight two
possible directions for future research towards generating
such specifications from specific STL formulas:

• Having trained a base law πNN , the curves γi(t)
themselves can be treated as the input to the system
instead of the actual input u. These curves then define
the achieved costs C(τ) and STL task satisfaction
robustness metrics ρφ, thus their initial estimate can be
further improved using a PI2 framework to optimize for
their values before the online stage begins.

• During the online stage, the specification curves γi(t)
should be continuously adjusted to follow the evolution
of each ρµi in time along the currently most optimal
discovered policy in order for them to keep offering
relevant guidance for exploration in the PI2 algorithm.

Pursuing these outlined directions will allow handling com-
plex STL formulas, where the necessary robustness specifica-
tions are not evident to design. The novelty of our presented
control synthesis strategy lies in the advantage and versatility
it promises by efficiently adapting to various STL formulas
using such robustness specifications. This motivates the pro-
posed learning framework’s potential practical applicability
compared to trajectory history-based learning approaches.

V. SIMULATION STUDY

The improved sample efficiency of using an offline trained
neural network policy to guide exploration in PI2 for solving
STL tasks is demonstrated by the following simulation study.

A. Scenario description

Consider an omnidirectional robot on a 2D plane with
dynamics ẋ = u with input constraint ‖u‖2 ≤ 1. The
robot is presented with a navigational task of reaching a
goal while avoiding two obstacles; these regions are all
circular and centered at xg = [1.0, 3.5]T, xo1 = [1.5, 2.2]T,
xo2 = [3.5, 1.5]T with radii rg = 0.2, ro1 = 0.7, and ro2 =
0.5, respectively. The corresponding atomic propositions µi
are defined by their robustness metrics hµ1(x) = rg −
‖x− xg‖2, hµ2(x) = ‖x− xo1‖2 − ro1, and hµ3(x) =
‖x− xo2‖2 − ro2. The scenario is simulated for a time
horizon T = 10s with a time step ∆t = 0.02s.

While the obstacles must always be avoided, we examine
two task descriptions regarding the goal region. The first
requires the goal region to eventually be reached within 10s,
whereas in the second one the agent must eventually always
stay inside the goal region within 6s. Formally, the two tasks
are defined as φ1 = F[0,10]µ1 ∧ G[0,∞](µ2 ∧ µ3) and φ2 =
F[0,6]G[0,∞]µ1 ∧ G[0,∞](µ2 ∧ µ3) and the robot is required
to satisfy either task with a minimal robustness degree
ρmin = 0.05. To this end, valid robustness specifications
γ1(t), γ2(t), and γ3(t) impose ρµ1 to become (and stay)
above ρmin within 10s (and 6s, respectively), as well as
ρµ2(t), ρµ3(t) ≥ ρmin for ∀t ≥ 0.

We also consider two costs of interest which the
robot must minimize while satisfying its given STL task:
C1(τ) =

∫ T
0
u(t)Tu(t)dt and C2(τ) =

∫ T
0

min(0, ρmin −
ρµ1(x(t)))dt. The first minimizes the expended input energy,
while the second the time spent outside the goal.

B. Training procedure

In the first offline stage, guiding base laws are trained
to satisfy a variety of robustness specifications for the two
separate cost functions by minimizing the objective (6) for
either C1(τ) or C2(τ) in each case. The linear-sigmoid
penalty function (7) was used to enforce the robustness
specifications, parameterized by the values α = 0.05, β =
10 and λ = 10; the curve Γi(t) controlling where the

(a) x0 = [2.2; 0.9], STL task φ1 = F[0,10]µ1 ∧G[0,∞](µ2 ∧ µ3), cost of interest C1(τ) =
∫ T
0

uTudt

(b) x0 = [2.2; 0.9], STL task φ2 = F[0,6]G[0,∞]µ1 ∧G[0,∞](µ2 ∧ µ3), cost of interest C1(τ) =
∫ T
0

uTudt

(c) x0 = [4.5; 0.5], STL task φ2 = F[0,6]G[0,∞]µ1 ∧G[0,∞](µ2 ∧ µ3), cost of interest C2(τ) =
∫ T
0

min(0, ρmin − ρµ1(x(t)))dt

Fig. 2: Performance of PI2 for solving STL tasks when using either a PPC-based (‘PPC’) or neural network based (‘NN’)
base law for guiding exploration. Each scenario corresponds to a different initial condition or STL task; the figures from
left to right show the initially imposed and achieved robustness specifications on µ1 and µ2, the initial and obtained system
trajectories, and the convergence rates of the cost C(τ) and the STL task’s robustness ρφ during the PI2 iterations.

penalization begins was defined by Γi(t) = γi(t) + 0.3 for
each atomic proposition µi. For both costs, the trained policy
was given by a neural network with two fully dense, rectified
linear unit (ReLU) activated hidden layers consisting of 64
neurons each. The inputs to each network are composed of
the system state x and a low-dimensional representation of
a 2s future horizon of the robustness specification curves
γ(t) using its values at time instances t, (t+1), and (t+2).
The output layers use tanh activations, aiming to structurally
enforce the input bound ‖u‖2 ≤ 1.

To train the policies, first a multitude of sample problems
were solved using PI2 to minimize (6) from a grid of initial
states spanning the intervals x = [0, 5] and y = [0, 4] in
a step size of 1/3. For each initial state x0, we defined 3
sample problems by choosing robustness specifications for
µ1 which attempt to drive the robot to reach the goal in a
linear fashion. The 3 cases randomized the initial imposed
distance to the goal and the imposed speed towards it, aiming
not to deviate much from the actual initial distance and the
maximum possible speed of the robot. The neural network
was then trained on the obtained (and normalized) data
using the machine-learning library Flux [17]. We employed
stochastic gradient descent with restarts [19], in particular
a cosine annealed learning rate restarted from 0.01 multiple
times after 250 descent steps computed from batches of 1024
random data points. A dropout rate of 0.1 was used to further
increase the effectiveness of the optimization procedure [20].

C. Results and discussion

The sample efficiency resulting from the pre-trained base
laws is demonstrated by comparing the convergence rate of
PI2 when solving for the two STL task specifications φ1 and
φ2 in the second, online stage. In each K = 50 iterations
of PI2, N = 25 trajectories were generated for exploration.
The desired STL robustness ρmin = 0.05 was enforced with
a penalty Pλ(ρφ) = min(0, λ(ρmin − ρφ)3) where λ was
increased from 200 to 5000 linearly throughout the iterations.

Fig. 2 presents a selection of results from the described
simulation study. For each sample problem of examined
cost Ci(τ) and task φi, we plot the imposed robustness
specifications and corresponding initial trajectories, along
with the obtained final trajectories and convergence rates of
the PI2 algorithm during the solution process. In each graph,
results corresponding to the PPC-based (‘PPC’) and neural
network (‘NN’) guiding laws are shown for comparison. The
latter base law is seen to be significantly superior both in
terms of the initially achieved costs and robustness metrics,
as well as in terms of convergence rates and thus sample
efficiency. The improvement depends on the training quality
and can be expected to further increase for more complicated
scenarios, provided that enough training data is used. We
note that the presented (both PPC and NN) results could
be further improved by adequate tuning of the PI2 algorithm
parameters or better training of the neural networks; however,
the main take-away is to show the versatility and fundamental
improvement in sample efficiency offered by our approach.

VI. CONCLUSIONS
A novel learning framework was presented for finding con-

trol policies for nonlinear systems which guarantee STL task
satisfaction while minimizing a target cost of the trajectory.
The approach relies on satisfying robustness specifications
laid on the temporal evolution of atomic propositions com-
posing the task. This allows offline training for a policy that
is readily adaptable to other STL tasks real-time, as the gath-
ered experience is not specific to a particular task. Compared
to previous methods, this approach greatly improves sample
efficiency during this adaptive online phase. Simulation re-
sults are promising and motivate further research into the
proposed learning framework towards a practically feasible
algorithm for STL task satisfaction.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[2] M. Kloetzer and C. Belta, “LTL planning for groups of robots,” in
IEEE International Conference on Networking, Sensing and Control,
2006, pp. 578–583.

[3] L. Lindemann, C. K. Verginis, and D. V. Dimarogonas, “Prescribed
performance control for signal temporal logic specifications,” in IEEE
Conference on Decision and Control, 2017, pp. 2997–3002.

[4] J. Fu and U. Topcu, “Probably approximately correct MDP learn-
ing and control with temporal logic constraints,” arXiv preprint
arXiv:1404.7073, 2014.

[5] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
learning for robust satisfaction of signal temporal logic specifications,”
in IEEE Conference on Decision and Control, 2016, pp. 6565–6570.

[6] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia,
“A learning based approach to control synthesis of MDPs for linear
temporal logic specifications,” in IEEE CDC, 2014, pp. 1091–1096.

[7] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017, pp. 3834–3839.

[8] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[9] M. Wen, R. Ehlers, and U. Topcu, “Correct-by-synthesis reinforcement
learning with temporal logic constraints,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015, pp. 4983–4990.

[10] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[11] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Zavlanos,
“Reduced variance deep reinforcement learning with temporal logic
specifications,” International Conf. on Cyber-Physical Systems, 2019.

[12] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” in IEEE American Control
Conference, 2018, pp. 240–245.

[13] P. Varnai and D. V. Dimarogonas, “Prescribed performance control
guided policy improvement for satisfying signal temporal logic tasks,”
in IEEE American Control Conference, 2019.

[14] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[15] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11(Nov), pp. 3137–3181, 2010.

[16] D. Muniraj, K. G. Vamvoudakis, and M. Farhood, “Enforcing signal
temporal logic specifications in multi-agent adversarial environments:
A deep Q-learning approach,” in IEEE CDC, 2018, pp. 4141–4146.

[17] M. Innes, “Flux: Elegant machine learning with Julia,” Journal of
Open Source Software, 2018.

[18] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[19] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

