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Abstract— A framework for the event-triggered control syn-
thesis under signal temporal logic (STL) tasks is proposed.
In our previous work, a continuous-time feedback control
law was designed, using the prescribed performance control
technique, to satisfy STL tasks. We replace this continuous-
time feedback control law by an event-triggered controller. The
event-triggering mechanism is based on a maximum triggering
interval and on a norm bound on the difference between the
value of the current state and the value of the state at the
last triggering instance. Simulations of a multi-agent system
quantitatively show the efficacy of using an event-triggered
controller to reduce communication and computation efforts.

I. INTRODUCTION

Robot motion planning has traditionally been a challeng-
ing problem to the control community. Initially, the studies
were primarily directed towards optimal navigation from an
initial to a goal position while avoiding obstacles [1]. The
focus, however, shifted over the years to integrate complex
high-level task descriptions with the low-level dynamics of
the robots. Consequently, temporal logics [2] were brought
into the domain of motion planning to formally express and
systematically address such complex behaviors in a generic
way [3], [4]. Temporal logics have a rich expressivity;
however, integrating the temporal logic descriptions with the
dynamics of the robot is far from trivial. The derived methods
are highly relying on automata theory and an appropriate ab-
straction of the dynamics. As a result, complexity problems
arise as the size of the automata grow exponentially with the
‘size of the task’ and with the complexity of the dynamics.
Efficient techniques have been proposed in the context of
temporal logic-based design. Nonetheless, integration of tem-
poral logic tasks with a ‘finer’ abstraction of the dynamics
is still computationally expensive. Moreover, temporal logic
formulae expressing real-time constraints such as in signal
temporal logic (STL) [5] are even more intricate to handle.
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In this work, we take a different approach of integrat-
ing high level STL tasks with the dynamics of the robot.
Instead of following the automata-based approach, we aim
for a feedback control law that maximizes a robustness
metric associated with the temporal logic formula. STL
was introduced in [5], while space robustness [6] is the
aforementioned robustness metric for STL. In our previous
work [7], we leveraged ideas from prescribed performance
control [8] to derive a feedback control law that satisfies
the STL task under consideration. Prescribed performance
control essentially allows to impose a transient behavior
to the robustness metric, that, if properly designed, results
in a satisfaction of the STL task. To implement such a
feedback control law, we need continuous transmission of
the measurements from the sensors to the controllers, and
this can be a bottleneck in implementations. Mobile robots,
e.g., operating in uncertain environments, have limited en-
ergy and bandwidth to transmit continuous measurements
to the controllers. To alleviate this problem, we delve into
synthesizing an event-triggered feedback control law in this
paper that will ensure the satisfaction of the STL task. Event-
triggered control is an approach that has gained increasing
attention recently [9]. Extensions to multi-agent systems have
appeared, e.g., in [10]. An overview of this topic in the setup
of hybrid systems can be found in [11]. A first attempt in
combining event-triggered control and temporal logic-based
specifications is presented in [12]. However, the synthesis of
the control for the satisfaction of the temporal-logic formula
is based on the automata theory and discretization methods,
and hence it needs to deal with the high computational
complexity issues associated with such methods.

The main contribution of this paper is an event-triggering
feedback control law for dynamical systems under STL task
specifications. This event-triggered feedback control law is
robust with respect to noise and the task satisfaction, while,
at the same time, avoiding discretizations. We emphasize that
the major difference compared with our previous work in [7]
is the event-based nature of the approach taken here due to
which a drastic reduction in communication is observed.

The rest of the paper is organized as follows: notations and
preliminaries are provided in Section II, the formal problem
definition is given in Section III, while Section IV studies
the control synthesis problem. Simulations are performed in
Section V, and finally we conclude the paper in Section VI.

II. NOTATION AND PRELIMINARIES

Scalars are denoted by lowercase, non-bold letters x and
column vectors are lowercase, bold letters x. True and false
are denoted by > and ⊥; Rn is the n-dimensional vector



space over the real numbers R. The natural, non-negative,
and positive real numbers are N, R≥0, and R>0, respectively.
Let ‖ · ‖ and ‖ · ‖∞ denote the L2-norm and L∞-norm,
respectively, and set Bδ(x′) := {x ∈ Rn|‖x− x′‖∞≤δ}.

Let x ∈ Rn, u ∈ Rm, and w ∈ W ⊂ Rn, where W is
bounded, be the state, input, and additive noise of a system

ẋ(t) = f(x(t)) + g(x(t))u+w(t) (1)

where f is unknown apart from a regularity assumption.
Assumption 1: The functions f : Rn → Rn and g :

Rn → Rn×m are locally Lipschitz continuous, the function
w : R≥0 → Rn is piecewise continuous, and g(x)g(x)

T

is positive definite for all x ∈ Rn, i.e., ∃λmin ∈ R>0 s.t.
λmin‖z‖2 ≤ zT g(x)gT (x)z for all x, z ∈ Rn.

We emphasize again that f is unknown so that (1) is not
feedback equivalent to ẋ(t) = u(t) +w(t).

A. Signal Temporal Logic (STL)
Signal temporal logic (STL) consists of predicates µ

that are, for some ζ ∈ Rn, evaluated by a continuously
differentiable predicate function h : Rn → R as

µ :=

{
> if h(ζ) ≥ 0

⊥ if h(ζ) < 0.

The STL syntax is then given by

φ ::= > | µ | ¬φ | φ1 ∧ φ2 | F[a,b]φ | G[a,b]φ

where φ1, φ2 are STL formulas and where a ∈ R≥0 and
b ∈ R≥0∪∞ with a ≤ b. The satisfaction relation (x, t) |= φ
denotes that the signal x : R≥0 → Rn satisfies φ at time t.
The STL semantics [5, Definition 1] are recursively defined
as: (x, t) |= µ ⇔ h(x(t)) ≥ 0, (x, t) |= ¬φ ⇔ ¬((x, t) |=
φ), (x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ1 ∧ (x, t) |= φ2, (x, t) |=
F[a,b]φ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ, and (x, t) |=
G[a,b]φ ⇔ ∀t1 ∈ [t + a, t + b], (x, t1) |= φ. Disjunction
and until operators are not considered in this paper. Space
robustness [6] are robust semantics for STL, which are given
in Definition 1 and denoted by ρφ(x, t). Space robustness
determines how robustly a signal x satisfies the formula φ
at time t and it holds that (x, t) |= φ if ρφ(x, t) > 0 [13].

Definition 1: [6, Definition 3] The semantics of space
robustness are recursively given by:

ρµ(x, t) := h(x(t))

ρ¬φ(x, t) := −ρφ(x, t)

ρφ1∧φ2(x, t) := min
(
ρφ1(x, t), ρφ2(x, t)

)
ρF[a,b]φ(x, t) := max

t1∈[t+a,t+b]
ρφ(x, t1)

ρG[a,b]φ(x, t) := min
t1∈[t+a,t+b]

ρφ(x, t1).

By a slight change of notation, let ρφ(x(t)) := ρφ(x, t) if
t is not explicitly contained in ρφ(x, t), i.e., t is contained
in ρφ only through the composition of ρφ with the signal
x. For instance, ρµ(x(t)) := h(x(t)) since h(x(t)) is the
composition of h with x. However, t is explicitly contained
in ρφ(x, t) for temporal operators (eventually or always).

B. Event-Triggered Control

In contrast to continuous feedback control, event-triggered
feedback control requires the state measurements intermit-
tently while ensuring stability and sometimes even perfor-
mance arbitrarily close to the continuous feedback controller
[12]. These controllers rely on an event generator that decides
on the instances when the state measurements are sent to the
controller. Thereby, the communication between the sensors
and the controller can be reduced. Thus, in event-triggered
control, the controller obtains new state information only at
certain discrete time instances denoted by t1, t2, · · · , ti, · · · .

For any given event-triggered controller, it needs to be
guaranteed that Zeno behavior is avoided, i.e., the case of
infinite switching in finite time. This will be explicitly shown
in our design by guaranteeing a strictly positive minimum
inter-triggering time, which means that ti+1 − ti for each
i ≥ 1 is positive and lower bounded.

C. Prescribed Performance Control (PPC)

Prescribed performance control (PPC) [8] constrains a
generic error e : R≥0 → Rn to a user-designed funnel. For
instance, consider e(t) :=

[
e1(t) . . . en(t)

]T
:= x(t) −

xd(t), where xd is a desired trajectory. In order to prescribe
transient and steady-state behavior to this error, let us define
the performance function γ in Definition 2 as well as the
transformation function S in Definition 3.

Definition 2: [8] A performance function γ : R≥0 → R>0

is a continuously differentiable, bounded, positive, and non-
increasing function given by γ(t) := (γ0 − γ∞) exp(−lt) +
γ∞ where γ0, γ∞ ∈ R>0 with γ0 ≥ γ∞ and l ∈ R≥0.

Definition 3: [8] A transformation function
S : (−1,M) → R with M ∈ [0, 1] is a smooth and
strictly increasing function. Let S(ξ) := ln

(
− ξ+1
ξ−M

)
.

Now let γi be a performance function in the sense of
Definition 2. The task is to synthesize a continuous feedback
control law such that each error ei satisfies

−γi(t) < ei(t) < Mγi(t) ∀t ∈ R≥0,∀i ∈ {1, . . . , n} (2)

given that −γi(0) < ei(0) < Mγi(0); γi is a design
parameter by which transient and steady-state behavior of ei
can be prescribed. Note also that (2) is a constrained control
problem with n constraints subject to the dynamics in (1).
Next, define the normalized error ξi := ei

γi
. Dividing (2) by

γi and applying the transformation function S results in an
unconstrained control problem −∞ < S

(
ξi(t)

)
< ∞ with

the transformed error εi := S
(
ξi
)
. If εi(t) is bounded for all

t ≥ R≥0, then ei satisfies (2).

III. PROBLEM DEFINITION

In this paper, we consider the following STL fragment

ψ ::= > | µ | ¬µ | ψ1 ∧ ψ2 (3a)
φ ::= G[a,b]ψ | F[a,b]ψ (3b)

θs1 ::=

K∧
k=1

φk with bk ≤ ak+1 (3c)



θs2 ::= φ̃1 (3d)
θ ::= θs1 | θs2 . (3e)

where ψ in (3b) and ψ1, ψ2 in (3a) are formulas of class ψ
given in (3a). Formulas φk with k ∈ {1, . . . ,K} in (3c) are
formulas of class φ given in (3b) with time intervals [ak, bk],
whereas φ̃1 in (3d) follows from the recursive definition
φ̃k := F[ck,dk](ψk ∧ φ̃k+1) for all k ∈ {1, . . .K − 1} and
φ̃K := F[cK ,dK ]ψK with ck, dk ∈ R≥0 and ck ≤ dk for all
k ∈ {1, . . .K}. We refer to ψ as non-temporal formulas and
use ρψ(x(t)) := ρψ(x, t) due to the previous discussion. In
contrast, φ and θ are referred to as temporal formulas.

The control strategy that will be introduced in Section IV
requires three additional assumptions explained next. First,
for conjunctions of non-temporal formulas of class ψ given
in (3a), e.g., ψ := ψ1 ∧ ψ2, we approximate the robust
semantics in Definition 1, e.g., ρψ1∧ψ2 , by a smooth function.

Assumption 2: The robust semantics for a conjunction
of non-temporal formulas of class ψ given in (3a), i.e.,
ρψ1∧ψ2(x(t)), are approximated by a smooth function as

ρψ1∧ψ2(x(t)) = −1

η
ln
( 2∑
i=1

exp
(
− ηρψi(x(t))

))
where η > 0 determines the accuracy of the approximation,
i.e., larger values of η imply higher accuracy.

From now on, when we write ρψ(x, t), ρφ(x, t), or
ρθ(x, t) for formulas of class ψ, φ, and θ, respectively, we
mean the robust semantics including the smooth approxima-
tion in Assumption 2 unless stated otherwise. This approx-
imation is an under-approximation of the robust semantics
as remarked in [7], i.e., the property that (x, t) |= θ if
ρθ(x, t) > 0 is preserved. The next example illustrates the
above and emphasizes that the smooth approximation is only
used for conjunctions of non-temporal formulas ψ.

Example 1: Assume the formula θ := F[5,15](ψ1 ∧ ψ2) ∧
G[20,30]ψ3. Then, the robust semantics at time t := 0 are
ρθ(x, 0) = min

(
maxt∈[5,15](− 1

η ln(exp(−ηρψ1(x(t))) +

exp(−ηρψ2(x(t)))),mint∈[20,30] ρ
ψ3(x, t)

)
.

Second, the next assumption restricts the class of ψ
formulas given in (3a) that are contained in (3b) and (3e).

Assumption 3: Each formula of class ψ that is contained
in (3b) and (3e) is: 1) such that ρψ(x) is concave; and 2)
well-posed in the sense that ρψ(x) > 0 implies ‖x‖ ≤ C <
∞ for some C ≥ 0.

Third, let the global optimum of ρψ(x) be

ρψopt := sup
x∈Rn

ρψ(x) (4)

where ρψ(x) is continuous and concave (Assumption 2 and
3), which simplifies the calculation of ρψopt. It holds that φ is
satisfiable, i.e., ∃x : R≥0 → Rn s.t. (x, 0) |= φ, if ρψopt > 0.

Assumption 4: The supremum of ρψ(x) is s.t. ρψopt > 0.
In [7], we derived a continuous feedback control law to

satisfy formulas of class φ given in (3b). In this paper, the
focus is to derive an event-based feedback control law to
satisfy φ. A hybrid control strategy similar to [7] can then

be used to satisfy formulas of class θ given in (3e). We now
summarize the main idea used to achieve r ≤ ρφ(x, 0) ≤
ρmax, where r ∈ R>0 is a robustness measure and ρmax ∈
R>0 with r < ρmax is a robustness delimiter. It then follows
that (x, 0) |= φ since r > 0; r ≤ ρφ(x, 0) ≤ ρmax is
achieved by prescribing a temporal behavior to ρψ(x(t))
through the design parameters γ and ρmax as

− γ(t) + ρmax < ρψ(x(t)) < ρmax. (5)

Note the use of ρψ(x(t)) and not ρφ(x, 0) itself. The con-
nection between the non-temporal ρψ(x(t)) and the temporal
ρφ(x, 0) is made by the choice of the performance function
γ. The proposed solution in [7] consists of two steps. First,
the control law u is designed such that (5) holds for all
t ∈ R≥0. In a second step, γ is designed such that satisfaction
of (5) for all t ∈ R≥0 implies r ≤ ρφ(x, 0) ≤ ρmax. This
second step results in selecting

t∗ ∈

{
a if φ = G[a,b]ψ

[a, b] if φ = F[a,b]ψ,
(6)

ρmax ∈
(

max
(
0, ρψ(x(0))

)
, ρψopt − χ

]
(7)

r ∈ (0, ρmax) (8)

γ0 ∈

{
(ρmax − ρψ(x(0)),∞) if t∗ > 0

(ρmax − ρψ(x(0)), ρmax − r] if t∗ = 0
(9)

γ∞ ∈
(

0,min
(
γ0, ρmax − r

)]
(10)

l ∈

R≥0 if − γ0 + ρmax ≥ r
ln
(
r+γ∞−ρmax
−(γ0−γ∞)

)
−t∗ if − γ0 + ρmax < r,

(11)

where χ > 0 is a small constant that satisfies χ <
ρψopt − max

(
0, ρψ(x(0))

)
. Furthermore, it needs to hold

that ρψ(x(0)) > r if t∗ = 0. This paper will focus on
the first step and derive an event-triggered feedback control
law such that (5) holds for all t ∈ R≥0. Define the one-
dimensional error, the normalized error, and the transformed
error as e(x) := ρψ(x) − ρmax, ξ(x, t) := e(x)

γ(t) , and

ε(x, t) := S
(
ξ(x, t)

)
= ln

(
− ξ(x,t)+1

ξ(x,t)

)
. As a notational

rule, when talking about the solution x of (1) at time t,
we use e(t), ξ(t), and ε(t), while we use e(x), ξ(x, t), and
ε(x, t) when we talk about x as a state; (5) can now be
written as −γ(t) < e(t) < 0, which resembles (2) by setting
M := 0 and can further be written as −1 < ξ(t) < 0.
Applying the function S results in −∞ < ε(t) <∞. If now
ε(t) is bounded for all t ≥ 0, then (5) holds for all for all
t ≥ 0. We remark that ξ

(
x(0), 0

)
∈ Ωξ := (−1, 0) needs to

hold initally, which is ensured by the choice of γ0.
Problem 1: Consider the system in (1) and an STL for-

mula φ of the form (3b). Design an event-triggered feedback
control law û s.t. 0 < r ≤ ρφ(x, 0) ≤ ρmax, i.e., (x, 0) |= φ.

IV. CONTROL SYNTHESIS

We state the main result upfront in Theorem 1 which is
proved in the subsequent section.

Theorem 1 (Main Result): The dynamical system (1), sat-
isfying Assumption 1, along with the choice of PPC param-



eters as per equations (7) – (11) satisfies an STL formula φ
of the form (3b) if Assumptions 2 – 4 are satisfied and if
the event-triggered control law û has the form

û(t) := u(x(ti), ti) ∀t ∈ [ti, ti+1) (12)

where the triggering instances ti are generated as:

t0 := 0

ti+1 := inf{t > ti | ‖x(t)− x(ti)‖∞ > δi

or t− ti > δi},
i ≥ 1 (13)

for some δi > 0 (obtained later in the paper). The function
u(x, t) in (12) is chosen as

u(x, t) := −ε(x, t)g(x)
T ∂ρ

ψ(x)

∂x
. (14)

Theorem 1 is now proved in three steps. First, Lemma 1
summarizes how the continuous feedback control law u(x, t)
from [7] results in 0 < r ≤ ρφ(x, 0) ≤ ρmax. We recall
the proof from [7] that is needed in the third step. Second,
we exclude Zeno behavior of the proposed event-triggered
control strategy in Lemma 2. Third, it is shown in Theorem 2
how u(x, t) is replaced with the event-triggered control law
û(t) that still guarantees 0 < r ≤ ρφ(x, 0) ≤ ρmax.

Lemma 1 (Theorem 1 in [7]): The dynamical system (1),
satisfying Assumption 1, along with the choice of PPC
parameters as per equations (7) – (11) satisfies an STL
formula φ of the form (3b) if the continuous feedback control
law (14) is applied and if Assumptions 2 – 4 are satisfied. It
then holds that 0 < r ≤ ρφ(x, 0) ≤ ρmax, i.e., (x, 0) |= φ,
with all closed-loop signals being continuous and bounded.

Proof: First, define the stacked vector y :=
[
xT ξ

]T
and the sets Ωξ := (−1, 0) and Ωx := {x ∈ Rn| − 1 <

ξ(x, 0) := ρψ(x)−ρmax
γ0

< 0} and note that ξ(0) ∈ Ωξ and
x(0) ∈ Ωx due to the choice of γ0. As in [7], it follows that
the conditions in [14, Theorem 54] hold. Consequently, there
exists a maximal solution y : J → Ωy with J := [0, τmax)
and τmax > 0, i.e., ξ(t) ∈ Ωξ and x(t) ∈ Ωx for all t ∈ J .

We next show that y is complete, i.e., τmax = ∞, by
contradiction of [14, Proposition C.3.6]. Assume therefore
τmax <∞ and consider the Lyapunov function V (ε) := 1

2ε
2

and define V̇ := ∂V
∂ε

dε
dt . Thus, it holds that

V̇ = εε̇ = ε
(
− 1

γξ(1 + ξ)

(∂ρψ(x)

∂x

T

ẋ− ξγ̇
))
. (15)

Define α := − 1
γξ(1+ξ) , which satisfies α(t) ∈ [ 4

γ0
,∞) ⊂

R>0 for all t ∈ J . Inserting (1) and (14) into (15) results in

V̇ = αε
(∂ρψ(x)

∂x

T (
f(x)− εg(x)g(x)

T ∂ρ
ψ(x)

∂x
+w

)
− ξγ̇

)
which can now be upper bounded as

V̇ ≤ α|ε|
(
k1 − |ε|λmin‖

∂ρψ(x)

∂x
‖2
)
≤ α|ε|(k1 − k2|ε|)

where the positive constants k1 and k2 can be obtained
as follows. For the constant k1 note that w, ξ, and γ̇ are
bounded and that continuous functions on compact domains

are bounded. Note especially that ∂ρ
ψ(x)
∂x is continuous on the

compact set cl(Ωx) where cl denotes the set closure. For k2,
a positive lower bound for ‖∂ρ

ψ(x)
∂x ‖ can be derived. Since

ρψ(x) is a smooth and concave function due to Assumption 2

and 3, we have ‖∂ρ
ψ(x)
∂x ‖ ≥ ρψopt−ρ

ψ(x)

‖x∗−x‖ where ρψ(x∗) =

ρψopt. It holds that ρmax ≤ ρψopt−χ < ρψopt due to (7), which
leads to ρψ(x(t)) < ρmax ≤ ρψopt−χ < ρψopt since (5) holds
for all t ∈ J . Hence, there exists κ1 with χ ≥ κ1 > 0
such that κ1 ≤ ρψopt − ρψ(x(t)). Furthermore, ‖x∗ − x(t)‖
is upper bounded since x∗ is finite and since x(t) ∈ Ωx

(Ωx is bounded) for all t ∈ J so that there exists a κ2 > 0

such that ‖x∗ − x(t)‖ ≤ κ2. Thus, ‖∂ρ
ψ(x)
∂x ‖ ≥ κ1

κ2
> 0

and we set k2 = λmin(κ1

κ2
)2. It follows that V̇ ≤ 0 if

k1
k2
≤ |ε| and it can be concluded that the transformed error

|ε| will be upper bounded due to the level sets of V (ε)

as |ε(t)| ≤ max
(
|ε(0)|, k1k2

)
, i.e., ε(t) is lower and upper

bounded and hence evolves in a compact set. By the same
arguments as in [7] it follows that there exists compact sets
Ω′ξ ⊂ Ωξ and Ω′x ⊂ Ωx such that ξ(t) ∈ Ω′ξ and x(t) ∈ Ω′x
for all t ∈ J . According to [14, Proposition C.3.6] it follows
by contradiction that τ = ∞. By the choice of γ and [7,
Theorem 2] it holds that 0 < r ≤ ρφ(x, 0) ≤ ρmax.

As an intermediate step, we next show that the triggerings
generated by the rule (13) do not exhibit Zeno behavior.

Lemma 2: The event-triggered control law û(t) in (12)
in conjunction with the triggering rule (13) does not exhibit
Zeno behavior, i.e., ti+1− ti is lower bounded for all i ∈ N.

Proof: Triggerings induced when inf{t|t − ti > δi}
imply that ti+1−ti ≥ δi. Otherwise, i.e., ‖x(t)−x(ti)‖∞ >
δi, we have x(t) = x(ti) +

∫ t
ti

[f(x(s)) + g(x(s))û(s) +

w(s)]ds which is equivalent to x(t)−x(ti) =
∫ t
ti
K1(s)ds+∫ t

ti
[f(x(s)) − f(x(ti))]ds +

∫ t
ti

[g(x(s)) − g(x(ti))]û(s)ds
where K1(s) := f(x(ti)) + g(x(ti))û(s) +w(s). Then

‖x(t)− x(ti)‖∞ ≤
∫ t

ti

K(s)ds+

∫ t

ti

L0(s)‖x(s)− x(ti)‖∞ds

where K(s) := ‖K1(s)‖∞ and L0(s) := ‖Lf + Lgû(s)‖∞
with Lf and Lg being the Lipschitz constants of the functions
f(x) and g(x) in the domain Bδi(x(ti)). Thus using the
Grönwall-Bellman inequality, it can be shown that

‖x(t)− x(ti)‖∞ ≤
(∫ t

ti

K(s)ds
)
e
∫ t
ti
L0(s)ds.

In order for x(t) to leave the domain Bδi(x(ti)), which
corresponds to the condition in (13), it is necessary that
ζ(t) :=

( ∫ t
ti
K(s)ds

)
e
∫ t
ti
L0(s)ds ≥ δi. Clearly ζ(ti) = 0

and ζ(t) is differentiable everywhere for all t > ti with finite
ζ̇(t) and hence ζ(t) is Lipschitz continuous. Let us denote
its Lipschitz constant by Lζ . Therefore at the next triggering
instance ti+1 we have Lζ(ti+1 − ti) ≥ ζ(ti+1) ≥ δi so that
ti+1 − ti ≥ δi

Lζ
and hence Zeno behavior is excluded.

The focus of this work is to design an event-based control
law û(t) based on the continuous feedback control law
u(x, t) in (14). We show that simply replacing (14) by its
equivalent zero-order hold approximation will be sufficient.



Theorem 2: With the same assumptions as in Lemma 1,
the event-triggered control law û(t) in (12) in conjunction
with the triggering rule (13) guarantees 0 < r ≤ ρφ(x, 0) ≤
ρmax, i.e., (x, 0) |= φ, provided that ‖u(x, t)−û(t)‖∞ ≤ δu
for all t ∈ R≥0, where δu > 0 is a design parameter.

Proof: We now need to show that ε(t) is bounded
between each of the triggering instances ti and ti+1. We
can similarly to Lemma 1 guarantee a maximal solution
y : J → Ωy with J := [ti, τmax). Consider again the
Lyapunov function V (ε) := 1

2ε
2 so that (recall (15))

V̇ = αε
(∂ρψ(x)

∂x

T (
f(x) + g(x)û+w

)
− ξγ̇

)
= αε

(∂ρψ(x)

∂x

T (
f(x) + g(x)(û+ u− u) +w

)
− ξγ̇

)
≤ α|ε|k1 − αε2k2 + α|ε|

∥∥∥∂ρψ(x)

∂x

T

g(x)
∥∥∥
∞
‖û− u‖∞,

where k1 and k2 are from the proof of Lemma 1. We can

write ‖∂ρ
ψ(x)
∂x

T

g(x)‖∞ ≤ k3 for some positive constant k3
and obtain finally V̇ ≤ α|ε|(k1− εk2 +k3‖u− û‖∞). Thus,
‖u− û‖∞ ≤ δu implies that ‖ε(t)‖ ≤ max{ε(0), k1+k3δuk2

}.
Together with Lemma 2, it can be concluded that τmax =
ti+1 and hence 0 < r ≤ ρφ(x, 0) ≤ ρmax.

According to Theorem 2 there is no bound imposed on the
value of δu, i.e., δu is a design parameter. Larger values of δu
imply larger inter-event times, whereas smaller values of δu
imply more frequent triggering of the events. However, larger
values of δu also imply that ε(x, t) can attain higher values,
which implies (according to (14)) larger magnitude for the
control signal. Theorem 2 may not be very useful in practice
since u(x, t) still needs to be computed continuously at the
sensors in order to ensure ‖u(x, t) − û(t)‖∞ ≤ δu. The
triggering rule in (13), derived in the sequel, avoids this
and is chosen in a way to ensure ‖u(x, t)− û(t)‖∞ ≤ δu.
It holds that u(x, t) is a Lipschitz continuous function on
Bδi,x(x(ti)) × [ti, ti + δi,t] for some δi,x, δi,t > 0. To see
this, note that Ω := {(x, t) ∈ Rn × R≥0| − 1 < ξ(x, t) <

0} is an open set and that ε(x, t), g(x), and ∂ρψ(x)
∂x are

locally Lipschitz continuous on Ω due to being continuously
differentiable on Ω. If now (x(ti), ti) ∈ Ω, then there exists
a set Bδi,x(x(ti)) × [ti, ti + δi,t] ⊂ Ω in which ε(x, t),
g(x), ∂ρψ(x)

∂x , and hence u(x, t) are Lipschitz continuous.

Define z(t) :=
[
x(t)

T
t
]T

and denote by Lz(δi,x, δi,t) the
Lipschitz constant of u(x, t) on Bδi,x(x(ti))× [ti, ti + δi,t],
i.e., ‖u(x(t1), t1)−u(x(t2), t2)‖∞ ≤ Lz(δi,x, δi,t)‖z(t1)−
z(t2)‖∞ for x(t1),x(t2) ∈ Bδi,x(x(ti)) and t1, t2 ∈ [ti, ti+
δi,t]. Note that Lz(δi,x, δi,t) is a non-decreasing function of
δi,x and δi,t. Let us consider

δi := min
( δu
Lz(δi,x, δi,t)

, δi,x, δi,t

)
, (16)

which implies Bδi(x(ti)) ⊆ Bδi,x(x(ti)) and [ti, ti + δi] ⊆
[ti, ti + δi,t]. Thus, for all t ∈ [ti, ti + δi] and x(t) ∈

Bδi(x(ti)), i.e., when ‖z(t)− z(ti)‖∞ ≤ δi, it holds that

‖u(x(t), t)−û(t)‖∞ ≤ Lz(δi,x, δi,t)‖z(t)−z(ti)‖∞ ≤ δu.

Due to the use of the ‖ · ‖∞-norm, x(t) ∈ Bδi(x(ti)) and
t ∈ [ti, ti + δi] is a sufficient condition to ensure ‖u(x, t)−
û(t)‖∞ ≤ δu. Thus, the (i + 1)-th triggering instance is
induced when

ti+1 = inf{t > ti|‖x(t)− x(ti)‖∞ > δi or t− ti > δi},

which is the triggering rule given in (13).
Remark 1: With the choice of δi in (16), ‖x(t) −

x(ti)‖∞ ≤ δi and t − ti ≤ δi is a sufficient condition for
‖u(x, t)− û(t)‖ ≤ δu. Hence Theorem 1 is finally obtained
by the choice of δi in conjunction with Theorem 2.

V. SIMULATIONS

We consider a centralized multi-agent system consisting
of three agents v1, v2, and v3. Each agent is a three-wheeled
omni-directional mobile robot as in [15] with three states:
two states x1 and x2 describing the robot’s position and one
state x3 describing its orientation with respect to the x1-
axis. In figures, the orientation will be indicated by triangles.
The states of each agent vi with i ∈ {1, 2, 3} are hence
described by xi :=

[
xi1 xi2 xi3

]
, while the control input

is ui :=
[
ui1 ui2 ui3

]
. The dynamics of each robot are

ẋi = gi(x
i)ui =

cos(xi3) − sin(xi3) 0
sin(xi3) cos(xi3) 0

0 0 1

(BTi )−1Riui,
where Bi :=

 0 cos(π/6) − cos(π/6)
−1 sin(π/6) sin(π/6)
Li Li Li

 describes ge-

ometrical constraints with Li := 0.2 and Ri = 0.02
as the radius of the robot body and the wheels, respec-
tively. By definining x :=

[
x1 x2 x3

]T
and u :=[

u1 u2 u3
]T

, the overall dynamics are then given by

ẋ := diag
(
g1(x1), g2(x2), g3(x3)

)
u = g(x)u.

The STL task imposed on the multi-agent system is a
formula θ := F[0,50]ψ1 ∧ F[50,100]ψ2 where ψ1 orders agent
v1, v2, and v3 to the positions

[
20 30

]T
,
[
40 60

]T
, and[

60 30
]T

, respectively, while eventually all agents have
an orientation of 45 degrees. Furthermore, agent v1 and v3
should stay close; ψ2 orders agent v1 to

[
90 90

]T
, while

agent v1 and v2 and agent v2 and v3 should stay in proximity
and while all agents remain the orientation of 45 degrees. In
formulas, this can be expressed as ψ1 := (‖

[
x11 x12

]T −[
20 30

]T ‖ < 10) ∧ (‖
[
x21 x22

]T − [40 60
]T ‖ <

10)∧ (‖
[
x31 x32

]T − [60 30
]T ‖ < 10)∧ (‖

[
x11 x12

]T −[
x31 x32

]T ‖ < 30) ∧ (|x13 − 45| < 5) ∧ (|x23 − 45| < 5) ∧
(|x33 − 45| < 5) and ψ2 := (‖

[
x11 x12

]T − [90 90
]T ‖ <

10)∧ (‖
[
x11 x12

]T − [x21 x22
]T ‖ < 10)∧ (‖

[
x21 x22

]T −[
x31 x32

]T ‖ < 10) ∧ (|x13 − 45| < 5) ∧ (|x23 − 45| <
5) ∧ (|x33 − 45| < 5). With η := 1, it holds that ρψ1

opt = 1.86
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Fig. 1: Agent Trajectories and Robust Semantics
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Fig. 2: Input trajectories of agents v1, v2, and v3

and ρψ2

opt = 3.89 so that ρψ1
max := 1.8, ρψ1

max := 3.8,
r1 := 0.5, r2 := 1, and δu := 50 have been selected.

All simulations have been performed in real-time on a
two-core 1,8 GHz CPU with 4 GB of RAM.The agent
trajectories in the x1-x2 plane are displayed in Fig. 1a,
while the funnels (5), including ρψ1(x(t)) and ρψ2(x(t)), are
shown in Fig. 1b. The formula θ is satisfied, i.e, (x, 0) |= θ,
and it holds that min(r1, r2) = 0.5 < ρθ(x, 0) < 1.8 =
min(ρ1,max, ρ2,max). The control inputs are shown in Fig. 2
and it is visible that during the satisfaction of the first
subformula F[0,50]ψ1 there are fewer control updates than
for the second subformula F[50,100]ψ2. The coordination of
agent v1, v2, and v3 leads to an increase in control updates in
the latter case. The sampling frequency has been set to 100
Hz; and total simulation duration was 77.25 seconds. Out of
7725 samples, our event-triggered control law only required
185 triggerings. Thereby, a reduction in communication and
computation events by 97.6 % has been achieved.

VI. CONCLUSION

In this paper, we have derived an event-triggered feedback
control law for dynamical systems under signal temporal
logic tasks. The event-triggering mechanism is based on

a norm bound on the difference between the continuous
feedback law and the event-triggered version of it. Event-
triggered control leads to a significant decrease in communi-
cation between the sensors and the actuators, which is highly
desirable under costly communication.
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