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Abstract— We consider a system composed of a bar tethered
to two aerial vehicles, and develop a controller for pose tracking
of the bar, i.e., a controller for position and attitude tracking.
Our first control step is to provide an input and a state
transformations which convert the system vector field into one
that highlights the cascaded structure of the problem. We then
design a controller for the transformed system by exploring
that cascaded structure. There are three main contributions:
i) we provide bounds on the linear and angular acceleration
of the bar that guarantee well-posedness of the controller,
and such bounds can be used when selecting the gains and
saturations of bounded controllers for both three dimensional
and unit vector double integrators; ii) the proposed control law
includes a degree of freedom which can be used to regulate
the relative position between the aerial vehicles; and iii) the
proposed control law for the throttle guarantees that the
cascaded structure of the problem is preserved. Simulations
are presented which validate the proposed algorithm.

I. INTRODUCTION

Aerial vehicles provide a platform for automating in-
spection and maintenance of infrastructures [1]. Vertical
take off and landing rotorcrafts, with hover capabilities,
and in particular quadrotors, form a class of underactuated
vehicles whose popularity stems from their ability to be used
in small spaces, their reduced mechanical complexity, and
inexpensive components [2], [3].

Slung load transportation by aerial vehicles is an important
task in the scope of inspection and maintenance of infrastruc-
tures [4]. To be specific, the system we focus on is composed
of a one dimensional bar and two quadrotors attached to
that bar by cables. Different slung load systems and control
strategies have been studied and proposed. Load lifting of
a point mass by a single or multiple aerial vehicles has
been studied, with focus on exploring differential flatness
for the purposes of control and motion planning [5]–[8],
on nonlinear control techniques for an extended range of
operation [9]–[13], and on adaptive control laws for com-
pensating model uncertainties and disturbances [14]–[16].
Experimental results are also found, with vision being used
for measuring the position of the load so as to estimate the
cable length [17], and with information exchange between
the aerial vehicles being considered [18]. Load lifting of a
rigid body by multiple aerial vehicles is also found in [19]–
[21]. In [20], [21] a controller for three of more vehicles
transporting a rigid body is proposed, where the throttle
control laws are designed by minimizing the error to the
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desired 3D force requested to each vehicle. In this work,
however, the proposed throttle control laws are designed
so as to preserve the cascaded structure of the problem.
A critical issue in trajectory tracking controllers for VTOL
vehicles is the need of a bounded control law for a 3D
double integrator, which guarantees well-posedness of the
control law over the whole state space [3], [22]–[24]. One
of our contributions is in realizing that the quadrotors-bar
system is an extended VTOL vehicle, in the sense that, in
addition to a bounded control law for a 3D double integrator,
a bounded control law for a unit vector double integrator is
also necessary.

In this manuscript, we design a control law that guarantees
that the lifted bar asymptotically tracks a desired pose
trajectory. The design process follows two steps: in the first,
we compute an input and a state transformations, which
convert the quadrotors-bar vector field into one where the
cascaded structure of the problem becomes explicit; and
in the second step, we explore that cascaded structure and
design a controller via a backstepping procedure. There are
three main contributions, which we emphasize here. First,
we provide bounds on the linear and angular acceleration
of the bar that guarantee well-posedness of the controller,
where these bounds are necessary when selecting the gains
and saturations of bounded controllers for three dimensional
double integrators and unit vector double integrators. Sec-
ondly, the proposed control law includes a degree of freedom
which can be used to regulate the relative position between
the aerial vehicles, namely to drive the vehicles further or
closer together. Finally, another novelty is that the proposed
control law for the throttle guarantees the preservation of the
cascaded structure of the problem.

II. NOTATION

The map S : R3 3 x 7→ S (x) ∈ R3×3 yields a skew-
symmetric matrix and it satisfies S (a) b := a × b, for any
a, b ∈ R3. S2 := {x ∈ R3 : xTx = 1} denotes the set of
unit vectors in R3. The map Π : S2 3 x 7→ Π (x) := I3 −
xxT ∈ R3×3 yields a matrix that represents the orthogonal
projection onto the subspace perpendicular to x ∈ S2. We
denote A1⊕· · ·⊕An as the block diagonal matrix with block
diagonal entries A1 to An (square matrices). We denote by
e1, · · · , en ∈ Rn the canonical basis vectors in Rn. For some
set A, idA denotes the identity map on that set. Given some
normed spaces A and B, and a function f : A 3 a 7→ f(a) ∈
B, Df : A 3 a 7→ Df(a) ∈ L(A,B) denotes the derivative
of f . Given a manifold A, TaA denotes the tangent set of
A at some a ∈ A. In [25], the reader finds all the details
and proofs, some of which we omit in this manuscript due
to space constraints.
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Fig. 1. Modeling of the quadrotors-bar system

III. MODELING AND PROBLEM STATEMENT

Consider the system illustrated in Fig. 1, with two quadro-
tors, a one dimensional bar and two cables connecting the
quadrotors to distinct contact points on the bar. All the phys-
ical quantities are those in Fig. 1. Hereafter, we refer to this
system as quadrotors-bar system. As a first modeling step, we
assume that we have control over the quadrotors’ throttle and
attitude – u1, u2 ∈ R3 in Fig. 1. Later, in Section VI, we let
the quadrotors’ attitude (i.e., r1, r2 ∈ S2) be part of the state,
and we assume we have control over the quadrotors throttles
and angular velocities (i.e., U1, U2 ∈ R and ωr1 , ωr2 ∈ R3).
Consider then the state space in (1), which encapsulates
the constraints illustrated in Fig. 1. We emphasize that the
constraints in (1)-(2) imply that the distance between each
contact point on the bar and the corresponding quadrotor is
constant and equal to the corresponding cable length. We
always decompose a z ∈ Z and a u ∈ R6 in the same way,
namely u ∈ R6 :⇔ (u1, u2) ∈ R3 × R3 and

z ∈ Z :⇔ (zk, zd) ∈ Z :⇔ (p, n, p1, p2, v, ω, v1, v2) ∈ Z, (4)

where zk := (p, n, p1, p2) ∈ Zk corresponds to the pose of
the bar and positions of the vehicles (with Zk as in (2));
and zd := (v, ω, v1, v2) corresponds to the twist of the bar
and velocities of the vehicles. The state space definition
in (1) allows for the definition of the cables’ unit vectors.
Specifically, for i ∈ {1, 2}, we define

Zk 3 zk 7→ ni(zk) := pi−(p+din)
‖pi−(p+din)‖

(2)
= pi−(p+din)

li
∈ S2, (5)

where (5) can be visualized in Fig 1. Given an appropriate
u : R≥0 7→ R6, a system’s quadrotors-bar trajectory z : R≥0 3
t 7→ z(t) ∈ Z evolves according to

ż(t) = Z(z(t), u(t)), z(0) ∈ Z,

where Z : Z× R6 3 (z, u) 7→ Z(z, u) ∈ R24 is given by

Z(z, u) :=

[
Zk(zk)zd
Zd(z, u)

](
=

[
żk
żd

])
∈ R24, (6)

where

Zk(zk) := (I3 ⊕−S (n)⊕ I3 ⊕ I3) ∈ R12×12,

Zd(z, u) :=


∑ Ti(z,u)

m ni(zk)− ge3∑ Ti(z,u)
J S (din)ni(zk)

u1

m1
− T1(z,u)

m1
n1(zk)− ge3

u2

m2
− T2(z,u)

m2
n2(zk)− ge3


=

 v̇ω̇v̇1

v̇2


 ,

with g as the acceleration due to gravity; and T1, T2 as the
tensions on the cables (see Fig 1). The linear and angular
accelerations in (6) are written from the Newton-Euler’s
equations of motion, considering the net force and torque on
each rigid body: the bar is taken as a rigid body (with net
force and torque in blue – see Fig. 1); while the quadrotors
are taken as point masses (with net forces in orange and
green – see Fig. 1). The tensions T1 and T2 constitute internal
forces to the quadrotors-bar system, and the Newton-Euler’s
equations of motion do not provide any insight into these
forces. However, the constraint that the state trajectory must
remain in the state set Z in (1), enforces the vector field Z
in (6) to be in the tangent set of Z, i.e., in Tz∈ZZ (this set
is here omitted for brevity). This constraint uniquely defines
the tensions on the cable, i.e., for any (z, u) ∈ Z × R6,
Z(z, u) ∈ TzZ⇒ (T1(z, u), T2(z, u)) as in (3). We can now
formulate the problem treated in this paper.

Problem 1: Given the vector field Z in (6) and a desired
bar pose, i.e, (p?, n?) : R≥0 3 t 7→ (p?(t), n?(t)) ∈ R3 ×
S2, design a control law ucl : R≥0 × Z 7→ R6 such that
limt→∞(p(t) − p?(t), n(t) − n?(t)) = 06 along a solution
R≥0 3 t 7→ z(t) ∈ Z of ż(t) = Z(z(t), ucl(t, z(t))).

We emphasize that the vector field (6) is input affine: to
be specific, Z(z, u) = A(z)+

[
0T12×6 B(zk)

T
]T
u, for some

A(z) ∈ R24 and B(zk) ∈ R12×6 that are be found in [25].

IV. CONTROL LAW DESIGN

Let us explain the pursued control strategy, which is
illustrated in Fig. 2. As a first step, we introduce an input
transformation from ν := (T1, T2, τ1, τ2) ∈ R8 to u ∈ R6,
where Ti and τi will stand for the tension and angular
acceleration of cable i ∈ {1, 2}. As shall be seen later, ν
provides a more meaningful input to design, and once it is
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Fig. 2. Control strategy: we provide an input and state transformations
which convert the vector field Z into the vector field X3 which, in turn,
highlights the cascaded structure of the problem.

Z =
{

(p, n, p1, p2, v, ω, v1, v2) ∈ (R3)8 : (p, n, p1, p2) ∈ Zk, nTω = 0, (vi − (v + diS (ω)n))T (pi − (p+ din)) = 0, i ∈ {1, 2}
}
, (1)

Zk =
{

(p, n, p1, p2) ∈ ×(R3)4 : nTn = 1, (pi − (p+ din))T (pi − (p+ din)) = l2i , i ∈ {1, 2}
}
. (2)[

T1(z, u)
T2(z, u)

]
=

[
1 + m

m1
+

md2
1

J ‖a‖
2 c+ md1d2

J aT b

c+ md1d2

J aT b 1 + m
m2

+
md2

2

J ‖b‖
2

]−1([
mn1(zk)Tu1

m1

mn2(zk)Tu2

m2

]
+m

[
‖v1−(v+d1S(ω)n)‖2

l1
‖v2−(v+d2S(ω)n)‖2

l2

]
+m‖ω‖2

[
d1n

Tn1(zk)
d2n

Tn2(zk)

])
|
c=n1(zk)Tn2(zk)
a=S(n)n1(zk)
b=S(n)n2(zk)

=: MT (zk)u+

[
T1(z, 06)
T2(z, 06)

]
. (3)



designed one can map ν to u (the actual input) by means of
the function ū (see Fig. 2). This is done in Section IV-B

In the second step, done in Section IV-C, we provide
a coordinate transformation g3 that maps a z ∈ Z into
an x3 ∈ X3 (g3 and X3 are defined later), and with this
coordinate transformation, we obtain a new vector field X3,
which comes from the composition of the vector field Z
with the input transformation and the coordinate change. The
benefit of this coordinate transformation is that it highlights
the cascaded structure of the problem, namely the cascaded
nature of X3.

From the desired pose trajectory in Problem 1, one can
compute a corresponding desired trajectory in X3, i.e., x?3 :
R≥0 → X3. In the final step, done in Section V, and by
exploiting the cascaded nature of X3, one designs a control
law

R≥0 × X3 3 (t, x3) 7→ νcl(t, x3) ∈ R8 (7)

that guarantees that limt→∞ x3(t) − x?3(t) = 0. By means
of the mapping ū (see Fig. 2), a control law in the original
system may constructed, i.e.,

R≥0 × Z 3 (t, z) 7→ ucl(t, z) := ū(z, νcl(t, x3))|x3=g−1
3 (z̃), (8)

which then guarantees that Problem 1 is accomplished.

A. Angular velocity and acceleration of cables
In order to construct the input and coordinate transfor-

mation, illustrated in Fig. 2, we must define the angular
velocity and acceleration of the cables. Consider then a
smooth function f : Zk ∈ zk 7→ f(zk) ∈ R3 where f has
constant norm pointwise (i.e., ‖f(zk)‖ = df for some df > 0
and for all zk ∈ Zk). We can then define

nf : Zk 3 zk 7→ nf(zk) := f(zk)
df
∈ S2,

ωf : Z 3 (zk, zd) 7→ ωf(zk, zd)(= S (nf) ṅf) ∈ R3,

τf : Z× R6 3 (z, u) 7→ τf(z, u)(= ω̇f) ∈ R3, (9)

where nf is the unit vector associated to f , ωf is the angular
velocity of nf , and τf is the angular acceleration of nf , along
the vector field in (6). Because the vector field is input affine,
the angular acceleration in (9) can be expressed as

τf(z, u) = Anf
(z) +Bnf

(zk)u. (10)

for some Anf
(z) ∈ R3 Bnf

(zk) ∈ R3×6 (found in [25]). For
our purposes, we are interested in the angular acceleration
of the cables, thus we consider, for i ∈ {1, 2}, the functions

fi : Zk 3 zk 7→ fi(zk) := pi − (p+ din) ∈ R3.

We know from (2) that dfi = li, and therefore we can define
the cable unit vector nfi (this is the same function as in (5)),
its angular velocity ωfi and its torque τfi .

B. Input Transformation
Let us now provide the input transformation ū illustrated

in Fig. 2. For that purpose we introduce a function

R : Z× R6 3 (z, u) 7→ R(z, u) ∈ Rm (11)

of m ∈ N physical quantities we wish to regulate/control. In
particular, we wish to control 6 quantities: the two tensions

on the cables (2 quantities, namely T1 and T2), and the
angular accelerations on each cable (2 × 2 = 4 quantities:
note that the angular accelerations τf1 and τf2 are three
dimensional, but each angular acceleration is orthogonal to
the corresponding cable, which means that we only need to
control 2× (3− 1) quantities). As such, we define

R(z, u) :=

T1(z, u)
T2(z, u)
τf1(z, u)
τf2(z, u)

 =


T1(z, 06)
T2(z, 06)
Anf1

(z)

Anf2
(z)


︸ ︷︷ ︸
=:AR(z)∈R8

+


eT1MT (zk)
eT2MT (zk)
Bnf1

(zk)

Bnf2
(zk)


︸ ︷︷ ︸
=:BR(zk)∈R8×6

u,(12)

where we made use of (3) and of (10). We note that, given
any (z, ν) ∈ V := {(z, ν) ∈ Z × R8 : ν := (T1, T2, τ1, τ2) ∈
R2+6, τT1 n1(z) = 0, τT2 n1(z) = 0} it follows that there exists
a unique ū : V 3 (z, ν) 7→ ū(z, ν) ∈ R6 such that ν =
R(z, ū(z, ν)) and it is given by

ū(z, ν) := (BR(zk)
TBR(zk))

−1BR(zk)
T (ν −AR(z)). (13)

Notice that there exists an inverse on (13), which depends
exclusively on the kinematic configuration, and it can be
shown that (13) is well defined for any zk ∈ Zk [25].

C. State Transformation

Let us now provide the coordinate transformation illus-
trated in Fig. 2, which will emphasize the cascaded structure
of the problem. Due to this cascaded structure, let us make
the following cascaded set definitions, namely,

X1 := {x1 := (p, v, n, ω) ∈ (R3)4 : n ∈ S2, ωTn = 0}, (14a)
X2 := {x2 := (x1, n1, n2) ∈ X1 × (S2)2}, (14b)
X3 := {x3 := (x2, ω1, ω2) ∈ X2 × (R3)2 : ωTi ni = 0}. (14c)

We always decompose an x1 ∈ X1, an x2 ∈ X2 and an
x3 ∈ X3 as decomposed in (14a)–(14c). Consider then the
mappings

Z 3 z 7→ g1(z) :=(p, v, n, ω) ∈ X1, (15a)
Z 3 z 7→ g2(z) :=(g1(z), nf1(zk), nf2(zk)) ∈ X2, (15b)
Z 3 z 7→ g3(z) :=(g2(z), ωf1(z), ωf2(z)) ∈ X3, (15c)

where g1 isolates the pose of the bar, and the twist of the
bar; while g2 and g3 map also to the cables’ unit vectors
and the cables’ angular velocities (see Section IV-A for
those definitions). The inverse mapping g−1

3 : X3 3 x3 7→
g−1

3 (x3) ∈ Z exists but it is omitted (see [25]).
It then follows that (denote ν := (T1, T2, τ1, τ2) ∈ R2+6)

X3(x3, ν):= Dg3(z)Z(z, ū(z, ν))|z=g−1
3 (x3) ∈ Tx3

X3.

=

X2(x2, (T1, T2, ω1, ω2))
Π (n1) τ1

Π (n2) τ2

=

ẋ2

ω̇1

ω̇2

 = ẋ3

, (16)

where (denote ν2 := (T1, T2, ω1, ω2) ∈ R2+6)

X2(x2, ν2) :=

X1(x1, (n1, n2), (T1, T2))
S (ω1)n1

S (ω2)n2

=

ẋ1

ṅ1

ṅ2

 , (17)



and where (denote ν1 := (T1, T2) ∈ R2)

X1(x1, (n1, n2), ν1) :=


v

T1n1+T2n2

m − ge3

S (ω)n
S (n) d1T1n1+d2T2n2

J


=

 ṗv̇ṅ
ω̇


 . (18)

The choice of the mappings in (15) and of ū in (13) is
now clear: it induces a cascaded structure with three layers
in (16)–(18), which can be explored in the control design
process. Recall Problem 1, and note that one can then
compute the desired equilibrium in X3: i.e., x?3 : R≥0 → X3

can be computed where (p?, n?)|x?3 = (p?, n?)|Prob. 1.

V. BACKSTEPPING CONTROL

The next subsections are dedicated to each of the three
layers, and for the control design, we apply a backstepping
procedure, similar to the one found in [24].

A. Step 1

We focus first on the first layer, and thus on the vector
field (18). Consider then the following similar vector field
(denote T := (T1, T2) ∈ R3+3)

X1 × R6 3 (x1, T ) 7→ X1(x1, T ) :=


v

T1+T2

m − ge3

S (ω)n
S (n) d1T1+d2T2

J

, (19)

where we observe that, as long as T = (T1, T2) ∈ (R3\{03})2

X1

(
x1,
(
T1

‖T1‖ ,
T2

‖T2‖

)
, (‖T1‖, ‖T2‖)

)
= X1(x1, T ). (20)

The idea in the first step is then to find a control law for
T = (T1, T2) in (19) such that Problem 1 is accomplished.
Immediately after, and based on observation (20), we define
the desired cable i ∈ {1, 2} direction as the unit vector given
by Ti. The critical issue, and one of our contributions, is
in guaranteeing that Ti does not vanish, which requires a
bounded controller for a 3D double integrator and a unit
vector double integrator.

Given r > 0, denote B(r) := {ξ ∈ R3 : ‖ξ‖ ≤ r}. Given
ā, τ̄ > 0 and k ∈ R, consider then X1 × B(ā) × B(τ̄) 3
(x1, a, τ) 7→ T̄ cl(x1, a, τ) := (T̄ cl1 (x1, a, τ), T̄ cl2 (x1, a, τ)) ∈
R6 defined as[
T̄ cl1 (x1, a, τ)
T̄ cl2 (x1, a, τ)

]
:= 1

d1−d2

[
−d2mI3 JI3

d1mI3 −JI3

] [
a+ ge3

kn− S (n) τ

]
(21)

and, it follows that composing (19) with (21) yields

X1(x1, T̄ cl(x, a, τ)) :=

 v
a

S (ω)n
Π (n) τ


=

 ṗv̇ṅ
ω̇


 . (22)

As such, a and τ in (21) can be understood as the acceler-
ation and torques inputs on the bar, while k is a degree of
freedom that can be explored for positioning the cables in
different configurations, as illustrated in Fig 3. Importantly,
if

ā+
J

mmin(|d1|, |d2|)
(τ̄ + k) < g (23)

k = 0 k 6= 0

θ1θ2

θ1 = arctan
(

J
mgd2

k
)
∈
(
−π2 ,

π
2

)
θ2 = arctan

(
J

mgd1
k
)
∈
(
−π2 ,

π
2

)
UAV 2 UAV 1

Fig. 3. Effect of degree of freedom k ∈ R in (21)

is satisfied, where ā and τ̄ are those in the domain of (21),
then neither T̄ cl1 nor T̄ cl2 vanish, and therefore their direction
is well defined. Also, notice that the control law (21)
transforms the vector field (19) into two decoupled vector
fields in (22): one three dimensional double integrator related
to the bar position (and controlled with a ∈ B(ā)), and one
unit vector double integrator related with the bar attitude (and
controlled with τ ∈ B(τ̄)). In order to satisfy (23), the need
for bounded controllers for the double integrator arises.

Remark 1: Hierarchical controllers for position trajectory
tracking of VTOL vehicles require ā < g for well posed-
ness [3], [22]–[24]. The quadrotors-bar system is in essence
an extended VTOL vehicle, which apart from position con-
trol also requires attitude control, giving rise to the more
restrictive condition (23) for well-posedness.

Recall now Problem 1, and denote P := R≥0 × R6 and
� := R≥0 × {(n, ω) ∈ R6 : n ∈ S2, nTω = 0}. Suppose
then that we are given: i) a bounded control law law
acl : P 3 (t, p, v) 7→ acl(t, p, v) ∈ B(ā) ⊂ R3 which
guarantees that limt→∞(p(t) − p?(t)) = 03, and with a
companion Lyapunov function and its non-positive derivative
P 3 (t, p, v) 7→ Vξ(t, p, v),Wξ(t, p, v); and ii) a bounded
control law τ cl : Θ 3 (t, n, ω) 7→ τ cl(t, n, ω) ∈ B(τ̄) ⊂ R3

which guarantees that limt→∞(n(t) ± n?(t)) = 03, and
with a companion Lyapunov function and its non-positive
derivative � 3 (t, p, v) 7→ Vθ(t, n, ω),Wθ(t, n, ω). Note
that the bounds on acl and τ cl depend on the desired pose
trajectory, so (23) imposes constraints on the desired pose
trajectory: i.e., there are desired pose trajectories for which
the desired cable directions may not be well defined (free
falling is one example). The bounds on acl and τ cl also
depend on saturations and gains, which need to be chosen
such that (23) is satisfied. Given the latter control laws
and (21), we compose these as in

(t, x1) 7→ T cl(t, x1) := T̄ cl(x1, a
cl(t, p, v), τ cl(t, n, ω)), (24)

and, for i ∈ {1, 2}, we define

(t, x1) 7→ ncli (t, x1) :=
T cli (t, x1)

‖T cli (t, x1)‖
∈ S2, (25)

as the desired cable i direction, and which is well defined for
all (t, x1) ∈ R≥0×X1 provided that (23) is satisfied. Finally,
notice that, given positive kξ and kθ, and given

(t, x1) 7→ V1(t, x1) := kξVξ(t, p, v) + kθVθ(t, n, ω) ≥ 0, (26)

it follows that (t, x1) 7→ W1(t, x1) := ∂1V1(t, x1) +
∂2V1(t, x1)X1(x1, T cl(t, x1)) = kξWξ(t, p, v) +
kθWθ(t, n, ω) ≤ 0. We are now in position to design
(T1, T2) as they appear in the vector field (18). Based



on (24), consider then the control law for the tensions as

(t, x2) 7→ T cli (t, x2) := nTi T cli (t, x1) ∈ R, i ∈ {1, 2}. (27)

Composing (18) with (27), it follows that

X1(x1, (n1, n2), (T1, T2))|Ti=T cli (t,x2) = X1(x1, T cl(t, x1))+

+e1(t, x2),

e1(t, x2) := −
∑

i∈{1,2}


03

1
mΠ (ni) T cli (t, x1)

03

di
J S (n) Π (ni) T cli (t, x1)

 , (28)

where e1 can be understood as the error remaining after
step 1 is finished.

B. Step 2 & 3
Due to space constraints, steps 2 and 3 are omitted in this

manuscript (they are found in [25]). Let us summarize these
steps, which are essentially two consecutive backstepping
steps (similarly to as in [24]). In the 2nd step, we design the
cables’ angular velocities that steer the error e1 in (28) to
zero, and where the backstepping is built upon the Lyapunov
function V1 in (26). After this step, we are left with a
2nd error, and, in the third step, we design cables’ angular
accelerations that steer that 2nd error to zero. We only state
here that, and the end of the 3rd step, one can construct a
control law for the cables angular accelerations

R≥0 × X3 3 (t, x3) 7→ τ cli (t, x3) ∈ TniS
2, i ∈ {1, 2}, (29)

at which point the control design is finished. Indeed, one can
combine (27) and (30) to construct the control law in (7),
defined as

νcl3 (t, x3) := (T1, T2, τ1, τ2)|Ti=T cli (t,x2),τi=τcli (t,x3), (30)

which is itself used to define the control law in (8).
Theorem 2: Consider the vector field (6), and the con-

trol law (8), with double integrator control laws whose
bounds satisfy (23). Then limt→∞(p(t) − p?(t)) = 03 and
limt→∞(n(t) ± n?(t)) = 03 along a solution of ż(t) =
Z(z(t), ucl(t, z(t))) with z(0) ∈ Z.
A proof is found in [25].

VI. ATTITUDE CONTROL

In Section III, we assumed that the quadrotrors were fully
actuated, which is not the case in a real aerial vehicle.
Consider then the augmented states

z̄ = (z, r1, r2) ∈ Z̃× S2 × S2 =: Z̄, (31)
x4 = (x3, r1, r2) ∈ X3 × S2 × S2 =: X4, (32)

where r1, r2 ∈ S2 stand for the quadrotors’ direction where
throttle is provided (see Fig. 1); and with z as in (4) and
x3 as in (14c). The state z̄ : R≥0 3 t 7→ z̄(t) ∈ Z̄ evolves
according to ˙̄z(t) = Z̄(z̄(t), u(t)), z̄(0) ∈ Z̄, where Z̄ :
Z̄ × R8 3 (z̄, u) 7→ Z̄(z̄, u) ∈ Tz̄Z̄ is given by (denote
u := (U1, U2, ωr2 , ωr1) ∈ R2+6)

Z̄(z̄, u) :=

Z(z, (U1r1, U2r2))
S (ωr1) r1

S (ωr2) r2

=

 żṙ1

ṙ2

 , (33)

with the vector field Z as in (6) (in Section III, we took
ui = Uiri ∈ R3 as an input, which meant we had immediate
control over the vehicles’ attitude, namely ri ∈ S2 – see
Fig. 1). One must now design control laws for the throttles
(U1 and U2) and angular velocities (ωr1 and ωr2 ) for each
quadrotor. Given the control law (8), one may be tempted to
choose (t, z̄) 7→ U cl

i (t, z̄) := rTi u
cl
i (t, z) ∈ R, as it minimizes

the error to the desired input, i.e., U cl
i (t, z̄) = infUi∈R ‖Uiri−

ucli (t, z)‖ [21]. However, if that choice is made, the cascaded
structure in Section IV-C is lost.

Notice that given any u ∈ R3 and n, r ∈ S2 with nT r 6= 0,
the equality nTu

nT r
r = u+ 1

nT r
S (n)S (r)u holds. With that in

mind, consider then ˜̄Z := {z̄ ∈ Z̄ : rTi ni(zk) > 0, i ∈ {1, 2}}
and the throttle control laws, for i ∈ {1, 2},

R≥0 × ˜̄Z 3 (t, z̄) 7→ U cl

i (t, z̄) :=
ni(zk)

Tucli (t, z)

ni(zk)T ri
∈ R, (34)

and thus

U cl
i (t, z̄)ri = ucli (z) +

S (ni(zk))S (ri)u
cl
i (t, z)

rTi ni(zk)︸ ︷︷ ︸
=:e4,i(t,z̄)

, (35)

where the error e4,i is orthogonal to the cable i (i.e., to
ni). Recall from (3) that the tensions depend on nT1 u1 and
nT2 u2, and thus, it follows from (35) that with the choice
in (34) the tensions remain unchanged, i.e., it follows from
composing (12) with (35) that

R(z, (u1, u2))|ui=Ucli (t,z̄)ri = R(z, ucl(t, z)) +

 02×6

Bnf1
(zk)

Bnf2
(zk)

[e4,1(t, z̄)
e4,2(t, z̄)

]
.

As such, for g4 : Z̄ 3 z̄ 7→ g4(z̄) := (g3(z), r1, r2) ∈ X4 and
g−1

4 : X4 3 x4 7→ (g−1
3 (x3), r1, r2) ∈ Z̄ it follows that

Dg4(z̄)Z̄(z̄, (U1, U2, ωr1 , ωr2))|Ui=Ucli (t,z̄),z̄=g
−1
4 (x4)

=


X3(x3, ν

cl(t, x3))

03

03

+


 018×6

Bnf1
(zk)

Bnf2
(zk)

[e4,1(t, z̄)
e4,2(t, z̄)

]
S (ωr1) r1

S (ωr2) r2

 |z̄=g−1
4 (x4),

where the cascaded structure becomes clear, and where we
have now to pursue a fourth step, in addition the other
three (X3 is the vector field in (16), and νcl the control
law designed at the end of step 3 in Section V-B). In this
fourth step (corresponding to a third backstepping step), one
designs the vehicles angular vehicles ωr1 , ωr2 that steer the
errors Bnf1

(zk)e4,1(t, z̄) and Bnf1
(zk)e4,1(t, z̄) to zero. All

the details are found in [25].

VII. SIMULATIONS

Consider the system quadrotors-bar with parameters m =
0.5kg, J = 0.04kg m2, m1 = 1.2kg, m2 = 1.5kg, d1 =
0.45m, d2 = −0.55m, l1 = 0.5m and l2 = 0.65m.
The desired position trajectory is R≥0 3 t 7→ p?(t) :=
r(cos(ωt), sin(ωt), 0) + (0, 0, 0.5) ∈ R3 with r = 2m
and ω = 2π/15s−1, and the desired attitude trajectory is
R≥0 3 t 7→ n?(t) := S(e3)p?(1)(t)

‖S(e3)p?(1)(t)‖ ∈ S2 (as such, we
want the bar to be perpendicular to the tangent to the
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Fig. 4. Trajectory for vector field (33).

path being described). The control law (8) is implemented,
with k = 0.25mgd1/J (the specific controllers and their
gains are found in [25]). For these choices, we provide
a simulation in Fig. 4, as a solution t 7→ z̄(t) ∈ Z̄
of (33) composed with the proposed control law and with
z̄(0) = (03, e1, l1e3, l2e3, 012, e3, e3) ∈ Z̄. In Fig. 4(a), one
can visualize the quadrotors-bar trajectory, and a visual
inspection indicates position and attitude tracking. Note that,
because k > 0, the cables are tilted away from the vertical
direction, as illustrated in Fig. 3. In Figs. 4(b) and 4(c),
the position and attitude errors are shown, and one verifies
indeed that the error position (t 7→ p(t) − p?(t)) and error
attitude (t 7→ θ(t) := arccos(n(t)Tn?(t)) are steered to
zero. In Figs 4(d) and 4(e), the UAVs throttle (see (34))
and angular velocity inputs are shown. In Fig. 4(c), one
verifies that the quadrotors attitude converges to the desired
attitude, i.e., that t 7→ γi(t) := arccos(ri(t)

T r?i (t)) for
i ∈ {1, 2} is steered to zero (r?i is the equilibrium attitude).
Finally, in Fig. 4(f) one visualizes the tensions in the cables
t 7→ Ti(z(t), (U

cl
1 (t, z̄(t))r1(t), U

cl
1 (t, z̄(t))r2(t))) with U cl

i

as in (34) for i ∈ {1, 2}, and one verifies that those tensions
are always positive, which means the cables are always taut.
Deriving precise conditions on the initial state that guarantee
that the tensions remain positive is a topic of future research.
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