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Abstract— We propose a control law for stabilization of a bar
tethered to two aerial vehicles, and provide conditions on the
control law’s gains that guarantee exponential stability of the
equilibrium. Given the proposed control law, we analyze the
stability of the equilibrium for two cases, specifically, for a bar
of known and unknown mass. We provide lower bounds on the
attitude gains of the UAVs’ attitude inner loop that guarantee
exponential stability of the equilibrium. We also include an
integral action term in the control law, so as to compensate
for battery drainage and model mismatches, and we provide a
lower bound on the integral gain that guarantees stability of the
equilibrium. We present an experiment that demonstrates the
stabilization and that validates the robustness of the proposed
control law.

I. INTRODUCTION

Automated inspection and maintenance of aging infras-
tructures is a challenging task, and aerial vehicles provide a
platform to partially solve and accomplish such task [1]. Ver-
tical take off and landing rotorcrafts, with hover capabilities,
and in particular quadrotors, form a class of underactuated
vehicles whose popularity stems from their ability to be
used in relatively small spaces, their reduced mechanical
complexity, and inexpensive components [2], [3].

While there is noteworthy research on using quadrotors
to perform specific tasks such as vision aided flying [4],
arm-endowed aerial control [5] and flying with wind [6],
in this paper we focus on transportation with quadrotors.
Transportation by aerial vehicles is an important task in the
scope of inspection and maintenance of infrastructures, and
it forms a class of underactuated systems for which trajectory
tracking control strategies are necessary [7]. To be specific,
the system we focus on is composed of a one dimensional
bar and two quadrotors attached to that bar by cables, and
one of the control challenges lies in dampening the sway
of the bar pose (position and attitude) with respect to the
quadrotors.

Different slung load systems and related control strate-
gies have been studied and proposed. Differential flatness
has been explored for the purposes of control and motion
planning of a single point mass load [8]–[11], while dynamic
programming has also been used for trajectory planning [12],
with the goal of minimizing the load swing. Adaptive con-
trollers have been proposed which compensate for different
unknown parameters [13]–[15], such as a variable center of
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gravity, an unknown load mass or a constant input distur-
bance. Vision has also been used to determine the pendulous
mode frequency and thereby the cable length [16]. Load
lifting by multiple aerial vehicles is also found in [17]–[20].
In particular, in [17], the relations in static equilibrium for a
rigid body tethered to aerial vehicles are analyzed; in [18],
[19] a controller is designed for three of more vehicles
transporting a rigid body; and in [20] a control platform,
including information exchange between the aerial vehicles,
is developed and experimentally tested.

In this manuscript, we propose a control law with the
objective of steering the bar to a desired pose, i.e., a desired
position in the three dimensional space and a desired unit
vector attitude. Linearization is used to infer exponential
stability of the equilibrium, and conditions on the gains are
provided for which exponential stability is guaranteed, in
a similar approach to [21], [22]. Our main contributions
lie in i) providing tight bounds on the gains such that
exponential stability is guaranteed in the case where the
aerial vehicles have an attitude inner loop, whose gain we
cannot control; ii) in including an integral action term in the
control law for compensating for battery drainage and model
mismatches (such as an unknown bar mass), and providing
tight bounds on the integral gains such that exponential
stability is guaranteed; and iii) to experimentally validate the
proposed control strategy.

II. NOTATION

The map S : R3 3 x 7→ S (x) ∈ R3×3 yields a skew-
symmetric matrix and it satisfies S (a) b = a × b, for any
a, b ∈ R3. S2 := {x ∈ R3 : xTx = 1} denotes the set of
unit vectors in R3. The map Π : S2 3 x 7→ Π (x) := I3 −
xxT ∈ R3×3 yields a matrix that represents the orthogonal
projection onto the subspace perpendicular to x ∈ S2. We
denote A1⊕· · ·⊕An as the block diagonal matrix with block
diagonal entries A1 to An (square matrices). We denote by
e1, · · · , en ∈ Rn the canonical basis vectors in Rn; when
clear from the context, n is omitted. For some set A, idA
denotes the identity map on that set. Given some normed
spaces A and B, and a function f : A 3 a 7→ f(a) ∈ B,
Df : A 3 a 7→ Df(a) ∈ L(A,B) denotes the derivative of
f . Given two matrices A and B, A ' B :⇔ A = PBP−1 for
some invertible matrix P . Given a manifold A, TaA denotes
the tangent set of A at some a ∈ A. In [23], we provide
mathematica files, where the reader finds all the details and
proofs, some of which we omit in this manuscript due to
space constraints.
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Fig. 1: Modeling of quadrotors-bar system

III. PROBLEM DESCRIPTION

Consider the system illustrated in Fig. 1, with two quadro-
tors, a one dimensional bar and two cables connecting the
aerial vehicles to distinct contact points on the bar. Hereafter,
and for brevity, we refer to this system as quadrotors-
bar system. We denote by p1, p2, p ∈ R3 the quadrotors’
and the bar’s center of mass positions; by v1, v2, v ∈ R3

the quadrotor’s and the bar’s center of mass velocities; by
n, ω ∈ R3 the bar’s orientation and angular velocity; by
r1, r2 ∈ S2 the quadrotor’s thrust axes; by m1,m2,m > 0
the quadrotors’ and bar’s masses; by J > 0 the bar’s moment
of inertia; by l1, l2 > 0 the cables’ lengths; and, finally, by
d1, d2 ∈ R the contact points on the bar at which the cables
are attached to. Finally, we denote by u1, u2 ∈ R3 the inputs
on the quadrotors-load system, which one may think of as
the quadrotor’s input forces; and by ξ1, ξ2 ∈ R the integral
action terms to be used in the respective quadrotor’s control
law. Consider then the state space

Z :=
{

(p, n, p1, p2, v, ω, v1, v2, r1, r2, ξ1, ξ2) ∈ R32 :

nTn = 1, nTω = 0, (pi − (p+ din))T (pi − (p+ din)) = l2i ,

(vi − (v + diS (ω)n))T (pi − (p+ din)) = 0, i ∈ {1, 2}
}
, (1)

which encapsulates the constraints illustrated in Fig. 1:
namely, that the bar’s attitude n is given by a unit vector
and the bar’s angular velocity ω is orthogonal to that unit
vector (rotations around the bar itself do not affect the bar’s
attitude); and that the distance between each contact point on
the bar and the corresponding quadrotor is constant and equal
to the corresponding cable length. We always decompose a
z ∈ Z and a u ∈ R6 in the same way, namely

z ∈ Z :⇔ (p, n, p1, p2, v, ω, v1, v2, r1, r2, ξ1, ξ2) ∈ Z, (2)

and u ∈ R6 :⇔ (u1, u2) ∈ R3×R3. Moreover, the state space
definition in (1) allows for the definition of the cables’ unit
vectors (see Fig. 1) and their angular velocity. Namely, for
i ∈ {1, 2}, we define

Z 3 z 7→ ni(z) := pi−(p+din)
‖pi−(p+din)‖

(1)
= pi−(p+din)

li
∈ S2, (3)

Z 3 z 7→ ωi(z) :=S (ni(z))
vi−(v+diS(ω)n)

li
∈ R3, (4)

where (3) can be visualized in Fig 1. Given an appropriate
u : R≥0 7→ R6, a system’s trajectory z : R≥0 3 t 7→ z(t) ∈ Z
evolves according to

ż(t) = Z(z(t), u(t)), z(0) ∈ Z, (5)

where the vector field Z : Z× R6 3 (z, u) 7→ Z(z, u) ∈ R32

is given by

Z(z, u) :=


Zk(z)
Zd(z, u)
Zr(z, u)
Zi(z)


=


kinematics
dynamics

attitude inner loop
integrator dynamics


 , (6)

with the kinematics given by

Zk(z) := (v,S (ω)n, v1, v2) (= (ṗ, ṅ, ṗ1, ṗ2, v̇)) ,

with the dynamics given by (below, g stands for the accel-
eration due to gravity; and T1, T2 stand for the tensions on
the cables, which are functions of the state and the input)

Z(z, u) :=


∑

i∈{1,2}
Ti(z,ū)

m ni(z)− ge3∑
i∈{1,2}

Ti(z,ū)
J S (din)ni(z)

ū1

m1
− T1(z,ū)

m1
n1(z)− ge3

ū2

m2
− T2(z,ū)

m2
n2(z)− ge3


=


v̇
ω̇
v̇1

v̇2


 ,(7)

ū ≡ (ū1, ū2) ≡ (uT1 r1r1, u
T

2 r2r2)

with the attitude inner loop dynamics given by

Zr(z, u) :=

S (kθ̄S (r1)
u1

‖u1‖

)
r1

S
(
kθ̄S (r2)

u2

‖u2‖

)
r2

(=

[
ṙ1

ṙ2

])
, (8)

and, finally, with the integrator dynamics given by

Zi(z, u) :=

[
eT3 p1 − l1
eT3 p2 − l2

](
=

[
ξ̇1

ξ̇2

])
. (9)

Let us provide some details on the vector field 6. The linear
and angular accelerations in (7) are written from the Newton-
Euler’s equations of motion, considering the net force and
torque on each rigid body: the bar is taken as a rigid body
(with net force and torque in blue – see Fig. 1); while the
quadrotors are taken as point masses (with net forces in
orange and green – see Fig. 1). The tensions T1 and T2

constitute internal forces and the Newton-Euler’s equations
of motion do not provide any insight into these forces.
However, the constraint that the state must remain in the
state set Z, enforces the vector field Z in (6) to be in the
tangent set; this constraint uniquely defines the tensions on
the cables, and its explicit expression is found in [23]. The
attitude inner loop dynamics in (8) is a simple first order
model with attitude gain kθ̄ > 0. The intuition for (8) is
simple: for a constant u ∈ R3\{03}, a solution t 7→ r(t) ∈ S2

of ṙ(t) = kθ̄S (r(t))S (r(t)) u
‖u‖ converges exponentially

fast to u
‖u‖ , with rate proportional to kθ̄ (provided that

r(0) 6= − u
‖u‖ ); and thus guarantees that the quadrotor thrust

vector aligns itself with the direction of the input force
u. Note that the model for the attitude inner loop of the
quadrotors in (8) is only a possible one, and there are more
ways of modeling that inner loop.



Let us define the equilibrium, before explaining the inte-
grator dynamics in (9). For any ξ? := (ξ?1 , ξ

?
2 ) ∈ R2, define

z? := (p?, n?, p?1, p
?
2, v

?, ω?, v?1 , v
?
2 , r

?
1 , r

?
2 , ξ

?
1 , ξ

?
2 ) ∈ Z (10)

:= (03, e1, d1e1 + l1e3, d2e1 + l2e3, 03, 03, 03, 03, e1, e1, ξ
?
1 , ξ

?
2 ),

and u? := (u?1, u
?
2) ∈ R6 as

u? :=

((
m1 +

md2

d2 − d1

)
ge3,

(
m2 +

md1

d1 − d2

)
ge3

)
.(11)

Since Z(z?, u?) = 024, it follows that z? (under a constant
input u?) is an equilibrium of the system. As such, the
integral terms (ξ1 and ξ2) evolving according to the integrator
dynamics in (9) represent the z-position integral error of
quadrotors. These integral errors are used in the control
law, and provide robustness again disturbances and model
uncertainties, as shall be verified in the experiments.

We can now formulate the problem treated in this paper.
Problem 1: Given the vector field Z in (6) and the equi-

librium z? in (10) (for some (ξ?1 , ξ
?
2 ) ∈ R2), design a control

law ucl : Z 7→ R6 satisfying ucl(z?) = u? and such that z? is
an exponentially stable equilibrium of Z 3 z 7→ Z(z, ucl(z)).

Remark 1: In general, we may require the bar to stabilize
around any point p? ∈ R3 and any attitude n? ∈ S2 with
eT3 n

? = 0 [23].

IV. PID CONTROL LAW

For each aerial vehicle – i ∈ {1, 2} – consider the PID-like
control law upidi : Z 3 z 7→ upidi (z) ∈ R3 defined as

upidi (z) := −

 mi(kp,xe
T
1 (pi − p?i ) + kd,xe

T
1 vi)

mi(kp,ye
T
2 (pi − p?i ) + kd,ye

T
2 vi))(

mi + m
2

)
(kp,ze

T
3 (pi − p?i ) + kd,ze

T
3 vi + ki,zξi)

 ,(12)

where p?1, p
?
2 are given in (10); where kp,j and kd,j , for

j ∈ {x, y, z}, are positive gains related to the position and
velocity feedback, respectively; and where ki,z is positive
gain related to the integral feedback. The real control law is
subject to saturations [23], which are of practical importance,
but which we omit here for brevity. The complete control law
is then defined as

ucl : Z 3 z 7→ ucl(z) := u? + (upd1 (z), upd2 (z)) ∈ R6,(13)

and, it follows that for (see Problem 1 and (11))

(ξ?1 , ξ
?
2 ) = (0, 0)⇒ ucl(z?) = u?. (14)

One of the motivations for adding integral errors to the
control law is to guarantee robustness against model un-
certainties (such as an unknown bar mass). Denote then
ucl|m=0 as the control law in (13) implemented with m = 0:
this represents the control law when the UAVs lift a bar of
unknown mass. Then (see Problem 1 and (11))

(ξ?1 , ξ
?
2 ) = ( g

k1,z

m
m1

d2

d2−d1
, g
k2,z

m
m2

d1

d1−d2
)⇒ ucl|m=0(z

?) = u?.(15)

In the next Sections, we study the stability of the equilibrium
z? (for (14) and (15)) of the closed loop vector field

Zcl : Z 3 z 7→ Zcl(z) := Z(z, ucl(z)) ∈ TzZ. (16)

V. ROUTH’S CRITERION

In Section VII, we linearize the closed loop vector field
around the equilibrium, and we verify that the Jacobian is
similar to a block triangular matrix, whose block diagonal
entries are in controllable form. This section provides im-
mediate tools for the analysis of the eigenvalues of those
matrices in controllable form. Denote then, for any n ∈ N,
Cn : Rn 3 (a0, · · · , an−1) =: a 7→ C (a) ∈ Rn×n defined as

Cn(a) :=
[
e2 · · · en −a

]T
, (17)

which yields a matrix in a controllable form, and whose
eigenvalues are those in {λ ∈ C :

∑i=n

i=0
aiλ

i = 0}. It follows
from the Routh’s criterion that

C3((a0, a1, a2)) Hurwitz⇔ a0, a1, a2 > 0 ∧ a0 < a1a2,(18)

which we make use of later on. In what follows, denote p :=
(p1, p2, p3) ∈ (R≥0)

3 and k := (kp, kd) ∈ (R≥0)
2, where,

later, p provides physical constants of interest, and k provides
the controller gains (a proportional and a derivative gain).
There are two matrices (in controllable form) that appear
several times in Section VII, and therefore we introduce them
here. Specifically, for l ∈ {3, 5}, we define Γl : (R≥0)

3 ×
(R≥0)

2 3 (p, k) 7→ Cl(p, k) ∈ Rl×l as

Γ3(p, k) :=C3((p3kp + p3p2, p3kd + p2, p3)), (19)
Γ5(p, k) :=C5(p3e+ (p1 + p2)(0, 0, 0, 1, 0))|e as in (21),(20)

e :=(p1kp, p1kd, kp + p1 + p2, kd, 1). (21)

It follows from the Routh’s criterion that the matrices (19)–
(20) are Hurwitz if and only if

p3 > kp/kd. (22)

VI. STABILITY ANALYSIS OF UNIT VECTOR DYNAMICS

In Section VII, we look at the kinematics and dynamics
of three unit vectors, namely the bar’s unit vector and the
cables’ unit vectors. These unit vectors and corresponding
angular velocities are constrained in a manifold of dimension
4 and embedded in a Euclidean space of dimension 6, namely
� := {(ν,$) ∈ R3 × R3 : νTν = 1, νT$ = 0}. For that
reason, a linearization of a vector field in � (and around
an equilibrium in �) always yields a Jacobian with two
zero eigenvalues, and thus standard linearization theorems
cannot be invoked. In this section, we solve this problem
by adding to the above vector field an additional vector
field that vanishes at the manifold, and thus does not affect
solutions; however, this additional vector field replaces the
zero eigenvalues by any desired eigenvalues (which we will
pick to be real negative).

From now on, we always decompose a θ ∈ � as θ ∈ � :⇔
(ν,$) ∈ �. Let θ : R≥0 3 t 7→ θ(t) ∈ � be a trajectory of
θ̇(t) = Θ1(θ(t)) for all t ≥ 0 and θ(0) ∈ �, where the vector
field Θ1 is defined as

� 3 θ 7→ Θ1(θ) :=

[
S ($) ν

Π (ν) (−kd$ − kpS (e1) ν)

]
∈ Tθ�,

for some positive gains kp and kd; as such, θ? := (ν?, 03) ∈
� is an equilibrium since Θ1(θ

?) = 06. We now introduce a



vector field that serves only the purpose of stability analysis.
Consider then Θ2 : R3 × R3 3 (ν,$) =: θ 7→ Θ2(θ) ∈
R3 × R3 defined as

Θ2(θ) :=

[
Θn(ν)

Θ$(ν,$)

]
:=

[
ν(1− νTν)
−ννT$

]
, (23)

where we emphasize that Θ2 vanishes at �, i.e., that Θ2(θ) =
06,∀θ ∈ �. Given any λ > 0, consider then the new unmod-
ified vector field � 3 θ 7→ Θ3(θ) := Θ1(θ)+λΘ2(θ) ∈ Tθ�,
where we emphasize that Θ3(θ) = Θ1(θ) for all θ ∈ �. The
Jacobian of Θ3 around the equilibrium then yields

DΘ3(θ
?) w

[
03×3 I2

−kpI2 −kdI2

]
⊕ (−λI2×2),

which is Hurwitz. As such, introducing (23) allows us to
conclude that the equilibrium θ? = (e1, 03) ∈ � is (locally)
exponentially stable.

VII. COORDINATE TRANSFORMATION TO UNIT VECTORS
AND LINEARIZATION

In order to apply the results from Section VI, we must
perform a coordinate transformation. In the new coordinate
system, the state space is

X :=
{

(p, v, n, ω, n1, ω1, n2, ω2, r1, r2, ξ1, ξ2) ∈ R32 :

(n, ω) ∈ �, (n1, ω1) ∈ �, (n2, ω2) ∈ �, r1, r2 ∈ S2
}
,

and, hereafter, given an x ∈ X, we always decompose it
as x ∈ X :⇔ (p, v, n, ω, n1, ω1, n2, ω2, r1, r2, ξ1, ξ2) ∈ X.
Consider then the coordinate transformations gx

z : Z 3 z 7→
gx

z (z) ∈ X and gz
x : X 3 x 7→ gz

x(x) ∈ Z defined as

gx
z (z) := (p, v, n, ω, n1(z), ω1(z), n2(z), ω2(z), r1, r2, ξ1, ξ2)

gx
z (z) := (?, r1, r2, ξ1, ξ2)

? ≡ (p, n, p+ d1n+ l1n1, p+ d2n+ l2n2, v,S (ω)n, · · ·
v + d1S (ω)n+ l1S (ω1)n1, v + d2S (ω)n+ l2S (ω2)n2),

where it is easy to verify that gz
x ◦ gx

z = idZ and that gx
z ◦

gz
x = idX (the functions ni and ωi in gx

z are those in (3)
and (4)). Given a solution R≥0 3 t 7→ z(t) ∈ Z of (5), it
then follows that R≥0 3 t 7→ x(t) := gx

z (z(t)) ∈ X satisfies
ẋ(t) = X1(x(t)) for all t ≥ 0 and x(0) := gx

z (z(0)) where

X1 : X 3 x 7→ X1(x) := Dgx
z (z)Z

cl(z)|z=gz
x(x) ∈ TxX,

with Zcl as in (16); and where x? := gx
z (z

?) ∈ X, with z?

in (10), is an equilibrium of X1. Following the reasoning
from Section VI, we pick any λ > 0 and define the vector
field X3 : X 3 x 7→ X3(x) ∈ TxX as

X3(x) := X1(x) + λX2(x) (24)
X2(x) := (06,Θ2((n, ω)),Θ2((n1, ω1)),Θ2((n2, ω2)), · · ·

Θn(r1),Θn(r2), 02)

with Θ2 and Θn as in (23) (notice that indeed X2(x) = 032

for any x ∈ X). Linearization around x? := gx
z (z

?) yields the
Jacobian

A = DX3(x
?) ∈ R24×24, (25)

which is not a diagonal matrix, and thus determining whether
it is Hurwitz is not straightforward. For that purpose, we
provide a similarity matrix, called P ∈ R32×32, such that
PAP−1 is a block triangular matrix, and where each block
diagonal matrix is in controllable form (allowing us to invoke
the results from Section V). Later, we also provide a physical
interpretation for the similarity transformation P .

Assumption 2: Hereafter, we assume that m1 = m2 =:
M , that l1 = l2 =: l, and that d1 = −d2 =: d. Analysis for
the general case is left for future research.
Consider then

P :=
[
Pz Pθ Px Pδ Py Pψ P⊥

]T ∈ R32×32,

where (below A is the Jacobian in (25))

Pz :=
[
e31 + e32 A(e31 + e32) A2(e31 + e32)

]
∈ R32×3,

Pθ :=
[
e31 − e32 A(e31 − e32) A2(e31 − e32)

]
∈ R32×3,

Px :=
[
e1 Ae1 A2e1 A3e1 A4e1

]
∈ R32×5,

Pδ :=
[
(e13 − e19) A(e13 − e19) A2(e13 − e19)

]
∈ R32×3,

Py :=
[
e2 Ae2 A2e2 A3e2 A4e2

]
∈ R32×5,

Pψ :=
[
e8 Ae8 A2e8 A3e8 A4e8

]
∈ R32×5,

P⊥ :=
[
e7 e10 e15 e18 e21 e24 e27 e30

]
∈ R32×8.

It then follows that

PAP−1 =

[
Az ⊕Aθ ⊕Ax ⊕Aδ ⊕Ay ⊕Aψ ?

08×32 −λI8×8

]
,(26)

where (26) is a block triangular matrix, with the first block as
a block diagonal matrix. Thus eig(A) = {−λ} ∪ eig(Az) ∪
· · · ∪ eig(Aψ), and, therefore, determining whether the Ja-
cobian A in (25) is Hurwitz amounts to checking whether
each block diagonal matrix in (26) is Hurwitz. Recalling
the definitions in Section V, namely (17) and (19)–(20), the
matrices in (26) are given by and

Ax = Γ5 (p, k) |p=( gl ,
g
l
m

2M ,kθ̄),k=(kp,x,kd,x), (27)

Aδ = Γ3 (p, k) |p=( gl ,
g
l
m

2M ,kθ̄),k=(kp,x,kd,x), (28)

Ay = Γ5 (p, k) |p=( gl ,
g
l
m

2M ,kθ̄),k=(kp,y,kd,y),

Aψ = Γ5 (p, k) |
p=( gl

d2m
J , gl

m
2M ,kθ̄),k=(kp,y,kd,y)

. (29)

The matrices (27)–(29) are the same regardless of whether
the bar’s mass is know or unknown (i.e, the same for
both equilibria satisfying (14) and (15)). As concluded in
Section V (see (22)), the matrices in (27)-(29) are Hurwitz
if and only if

kθ̄ > max (kp,x/kd,x, kp,y/kd,y) . (30)

Since, we do not have control over kθ̄, preserving stability
amounts to guaranteeing that kp,h

kd,h
, for h ∈ {x, y}, remains

small. Intuitively, this implies that fast x and y (position and
attitude) motions require a fast attitude inner loop.

Let us now focus on the matrices Az and Aθ, which are
of the form

Aj = C3 (γj(ki,z, kp,z, kd,z)) ∈ R3×3, j ∈ {z, θ},

where γz, γθ depend on whether the bar’s mass is known or
unknown. When the mass is known, i.e., for the equilibrium



satisfying (14), γz = 1 and γθ = 2d2M+d2m
2d2M+J ; when the mass

is unknown, i.e., for the equilibrium satisfying (15)) γz =
2M

2M+m and γθ = 2d2M
J+2d2M . From (18), Az and Aθ are Hurwitz

if and only if

ki,z < min (γz, γθ) kp,zkd,z. (31)

Intuitively, (31) requires the integral gain to be small enough.
Also notice that if d is arbitrarily small, then ki,z needs also
be arbitrarily small; this is motivated by γθ (either 2d2M+d2m

2d2M+J

or 2d2M
J+2d2M ), and it agrees with intuition, which suggests that

controlling the z-attitude motion of the bar becomes difficult
if the contact points on the bar are too close to its center of
mass (see Fig. 1).

Let us now provide some intuition into the meaning of
the similarity matrix P and the matrices in (26). Recall the
decomposition of the state z in (2).

Notice that eT1 Pzz = ξ1 + ξ2 and that eT2 Pzz =: 2eT3 p =:
2pz, while eT1 Pθz = ξ1−ξ2 and eT2 Pθz = −2deT3 n =: −2dθ;
i.e., the sum of the integral errors is related to the z-position
of the bar, while the difference between the integral errors is
related to the z-attitude of the bar. As such, for the linearized
motion,

p(2)
z (t) = (Az)3,3p

(1)
z (t) + (Az)3,2p

(0)
z (t) + (Az)3,1

∫ t
0
p(0)
z (τ)dτ

θ(2)
z (t) = (Aθ)3,3θ

(1)(t) + (Aθ)3,2θ
(0)(t) + (Aθ)3,1

∫ t
0
θ(0)(τ)dτ.

Since Pxz = eT1 p =: px and Pδz = eT1 (n1 − n2) =: δ, it
follows from (27) and (28) that, for the linearized motion,
the bar’s x-position behaves as a fifth-order integrator and
the cables’ unit vectors displacement from each other in the
x-direction behaves as a third-order integrator, i.e.,

p(5)

x (t) = (Ax)5,5p
(4)

x (t) + · · ·+ (Ax)5,1p
(0)

x (t),

δ(3)(t) = (Aδ)3,2δ
(2)(t) + · · ·+ (Aδ)3,1δ

(0)(t).

A similar interpretation may be drawn for Py and Pψ: for
the linearized motion, the bar’s y-position and the bar’s y-
attitude behave as fifth-order integrators. Finally, P⊥ collects
all the components along which the eigenvalues would be
zero if not for the contribution of the extra term in (24).

We state two results, one for when the bar’s mass is
known, and another for when it is unknown.

Theorem 3: Consider the quadrotors-bar system with the
open loop vector field (6), and the control law (13), yielding
the closed loop vector field Zcl in (16). Then, the equilibrium
z? in (10) of Zcl, with (ξ?1 , ξ

?
2 ) = (0, 0), is exponentially

stable if and only if (30) and (31) are satisfied.
Proof: The Jacobian in (26) is Hurwitz iff all block

diagonal matrices in (26) are Hurwitz, which in turn are
Hurwitz iff (30) and (31) are satisfied. Then exponential
stability of x? := gx

z (z
?) for the nonlinear vector field X3 is

guaranteed, and exponential stability of z? for the nonlinear
vector field Zcl is also guaranteed.

Theorem 4: Consider the quadrotors-bar system with the
open loop vector field (6), and assume the control law (13)
is implemented with m = 0, yielding the closed loop vector
field Zcl in (16). Then, the equilibrium z? in (10) of Zcl, with
(ξ?1 , ξ

?
2 ) as in (15), is exponentially stable iff (30) and (31)

are satisfied.

VIII. EXPERIMENTAL RESULTS

A video of the experiment that is described in the sequel is
found at https://youtu.be/ywwPvZuVpF0, whose results can
be visualized in Fig. 2. A detailed experimental description is
found in [23]. For the experiment, two commercial quadro-
tors were used, weighting M = 1.442 kg, with a maximum
payload of 0.4 kg. The bar weighted m = 0.33 kg, had a
length of 2m, and it was attached to the UAVs by two cables
of equal length, specifically l = l1 = l2 = 1.4 m; the contact
points between the bar and the cables were at the extremities
of the bar, and thus d = d1 = −d2 = 1 m.

The control law (12) was applied with m = 0kg; with
ki,z = 0.5s−3 with kp,x = kp,y = 2.9s−2, kd,x = kd,y =
2.4s−1 and with kp,z = 1.0s−2, kd,z = 1.2s−1 (see (13) there
are saturations, which we omitted here for brevity).

In the beginning of the experiment the system quadrotors-
bar is required to stabilize around z? where p? = 0.4e3m and
n? = e2 (see Remark 1 and see (10)), i.e, the bar is required
to hover at 0.4m and required to be aligned with the y-axis. In
Fig. 2(d), the bar attitude is parameterized with a pitch and
yaw angle, i.e., n = (cos(θ) cos(ψ), cos(θ), sin(θ)) ∈ S2,
and, as can be seen in Fig. 2(d) the bar is initially aligned
with the y-axis (ψ = 90◦). At around 60 sec, the bar is
required to remain in the same position but to align its
orientation with the x-axis (n? = e1 :⇔ ψ? = 0◦), which
can be seen in Figs. 2(d) and 2(a). At around 70 sec, the bar
is required to move 1m in the y-direction (p? = (0, 1, 0.5)m)
while keeping the same orientation (n? = e1 :⇔ ψ? = 0◦),
which can again be seen in Figs. 2(d) and 2(a). During the
same experiment, we also tested robustness against impulse
disturbances, which illustrate the size of the basin of attrac-
tion of the equilibrium. First, at around 90s, we disturbed the
bar position in the y-direction, as can be seen in Fig. 2(a);
and, at around 100s, we disturbed the uav 1 position in the
y-direction, as can be seen in Fig. 2(b). In both cases, the
system quadrotors-bar returns to its equilibrium point.

In Fig. 2(c), the control inputs computed from the control
law (12) are shown, which are converted into PWM signals:
one for the pitch, one for the roll, and another for the throttle
(in this paper, we ignored the yaw motion, and requested
the uavs to always keep the same yaw position). The pitch
and roll PWM signals have neutral values for which the
quadrotors do not pitch nor roll, regardless of battery level;
while the throttle PWM signal results in a propulsive power
which decays as the battery drains. In Fig 2(f), the integral
states are shown. There is a trend, where the integral term
grows larger while the experiments are running, which stems
from the fact that, as the batteries drain, a larger throttle
PWM signal needs to be requested from the IRISes+.

IX. CONCLUSIONS

We proposed a control law for stabilization of a
quadrotors-bar system, and provided conditions on the con-
trol law’s gains that guarantee exponential stability of the
equilibrium. The system was modeled assuming that the
UAVs have an attitude inner loop, and a lower bound on the
attitude gain, for which exponential stability of the equilib-
rium is preserved, was provided. An integral action term, to

https://youtu.be/ywwPvZuVpF0


(a) Bar position (b) UAV 1 position (c) UAVs control inputs

(d) Bar orientation (ill-estimated for some time
instants)

(e) UAV 2 position (f) UAVs integral state

Fig. 2: Experimental results for collaborative bar lifting.

compensate for battery drainage or model mismatches such
as an unknown bar mass, was also included, and a bound on
the integral gain was provided that guarantees exponential
stability is preserved. An experiment demonstrates stabiliza-
tion around different equilibrium points, and robustness to
impulsive disturbances.
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