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Abstract—We propose an inverse agreement control strategy only knowledge of the relative positions of agents located
for multiple kinematic agents that forces the team members within its sensing zone at each time instant. The sensing
to disperse in the workspace in a distributed manner. Both ;56 in this paper is assumed to be a cyclic area around

the cases of an unbounded and a cyclic, bounded workspace h t wh di . f I ts. Th
are considered. In the first case, we show that the closed each agent whose radius Is common for all agents. e

loop system reaches a configuration in which the minimum application of this inverse agreement strategy is dispersion
distance between any pair of agents is larger than a specific of the team members in the workspace, i.e. convergence to
lower bound. It is proved that this lower bound coincides a configuration where the minimum distance between the
with the agents’ sensing radius. In the case of a bounded gyarm mempers is bounded from below bycentrollable
cyclic workspace, the control law is redefined in order to . . L .
force the agents to remain within the workspace boundary lower bpund. Itis shovyn that this lower bound.comudes with
throughout the closed loop system evolution. Moreover the the radius of the sensing zone of the agents in the case of an
proposed control design guarantees collision avoidance between unbounded workspace. Furthermore, the results are extended
the team members in both cases. The results are supported in order to take into account the workspace boundary for the
through relevant computer simulations. case of a cyclic bounded workspace.

|. INTRODUCTION Possible applications of the proposed dispersion algorithm

H . f | lti-robot and It_include coverage control [5], and optimal placement of
€ emerging use of large-scale muiti-robot and mullly 15,46 scale multi-robot team in a relatively small area

vehicle systems in various modern applications has rais [12],[21],[2]. However, in this paper it is also shown

recently the need for the design of control laws that forc at inverse consensus/agreement algorithms can be used to

? teain” Otf murl1t.|ple Veh'CIeS/rOt;OtSA (f:ﬁm nov; on fcalle rovide solutions to various problems in multi-agent control.
agents”) to achieve various goals. As the number of agen is is a topic of probable future research directions.

increases, centralized control designs fail to guarantee ro-ri . 1ast of the paper is organized as follows: Section Il

bustness and are harder tp |mplement_ than decentrghz %sents the system and describes the problems treated in
approaches, which also provide a reduce in the computatio ﬁ|s paper. The swarm dispersion methodology is presented
co/ra\nplexny Ef the c_)verall tf)(_aedback shcher?]e. | desi in Section Ill. The case of a bounded workspace is treated
_~Among the vanousho Ject||yes that the control desigi}, gection IV, while simulations that support the presented
aims to Impose on the multi-agent system, CONVErgencR,qims are included in Section V. Section VI summarizes

of the agents to a common confl'guratlon,. glsc_) known %Fe results of this paper and indicates current research efforts.
the agreement problem, is a design specification that has

been extensively pursued recently. Many feedback control [l. SYSTEM AND PROBLEM DESCRIPTION
schemes that achieve stabilization of the multi-agent team Consider a system ofV point agents operating in the

to an agreement point in a distributed manner have begame workspac#’ C R2. Let ¢; € R? denote the position
presented recently, see for example [1],[4],[19],[14],[10L.[7]of agenti. The configuration space is spanned py=
[17],[13],[20],[16], for some recent results. Furthermore{qlT’m’q]Tv]T_ The motion of each agent is described by
the application of motion models of large populations othe single integrator:

animals/insects (swarms) in nature to multi-vehicle/robot

systems is also a field of extensive research activity in the last Gi =upi €N =[1,...,N] 1)

few years. Relative results include among others algorithnwhereui denotes the velocity (control input) for each agent.
for swarm aggregation [9] and flocking motion [18],[22],[6]. \we assume that each agent has sense of agents that are
In this paper we propose a control methodology fofoyng within a circle of radiug around the agent. This circle
swarm dispersion which can be considered as an inverge.gjied thesensing zonef each agent and the parameter
agreement problem. Each agent follows a flow, whose invergg sensing radiusThe sensing radiug is assumed common
would lead the multi-agent team to agreement. The proposgg} 4| agents. We denote hy; the subset o\ that includes
control design is distributed, in the sense that each agent hag agents that agentcan sense at each time instant, i.e.
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The goal is to design control laws that force the agents t@nd (D;;), =
converge to sufficiently large distances between them, i.e. [ Ono . 1 O 10 4 }@I
disperse in the workspace. Specifically, we equip each agent' ~ 1> (=1 Ix(j=i—1) IX(N=j) 2

with a repulsive potential with respect to each other agenthere ® denotes the standard Kronecker product between
within its sensing zone. No global knowledge is imposed ttwo matrices [11]. The definition ab,;,(D;;);, fori > j is

any of the team members. This paper’s main result states tisdtaightforward.

the closed loop system converges to a configuration wherelt can easily be shown that; > 0 for 0 < 3;; < d* and

the sensing zone of each agent is empty, i.e. every agentpis = 0 for 3;; > d°.

located at a distance no less thafrom every other agent.
Moreover, the control design guarantees collision avoidance .
between the agents. The stability analysis is first performé%‘ Tools from Matrix Theory

assuming an unbounded workspace. We then obtain similarln this subsection we review some tools from graph theory

1. SWARM DISPERSION CONTROL DESIGN

results for the case of a bounded workspace. [3] and matrix analysis [11],[15] that we shall use in the
The dispersion potential function between agentémd;  stability analysis of the proposed control framework.
is given by For an undirected grapg = (V, E) with n vertices we
1 2 denote byV its set of vertices and by its set of edges. If
§ﬁij,0§ﬁij§c . . .o
(Bi) = 4 B(Byy), 2 < By < &2 there is an edge connecting two vertiaes, i.e. (4,j) € E,
g i L é% > 5 Y= theni, j are calledadjacent A pathof lengthr from a vertex
’ = Mij

i to a vertex;j is a sequence of+ 1 distinct vertices starting
where §;; = [l¢; — ¢;|I” is the distance between agerits with i and ending withj such that consecutive vertices are
andj. The positive constant scalar parameters 1 and the  adjacent. If there is a path between any two vertices of the
function¢ are chosen in such a way so thaf is everywhere graphg, theng is calledconnected
continuously differentiable. In this paper, we choose the The undirected graphg = (V, E) corresponding to a real
following polynomial function:¢(z) = agz® 4 a1z + ag. symmetrice x n matrix M is a graph withn vertices indexed
The parameters of this function satisfy the differentiabilitypy 1. ... 5 such that there is an edge between verticgse
requirement fory;;, provided that2the coefficient§ satisfy they/ if and only if M;; #0, i.e.(i,j) € E & M;; #0.
relationsay = ﬁ,al = %7, agp = m,h = A n x n real symmetric matrix with non-positive off-
%_ Figure 1 shows a plot of the functiop; with respect diagonal eIe_menFs and Zero row sums is call_ezj/ralmetric
to 3;; for ¢ = 0.56 and d®> = 0.96. The gradient and the Metzlermatrix. It is shown in [15] that all the eigenvalues of
a symmetric Metzler matrix are non-negative and zero is a
trivial eigenvalue. The multiplicity of zero as an eigenvalue
of a symmetric Metzler matrix is one (i.e. it is a simple
eigenvalue) if and only if the corresponding undirected
03 1 graph is connected. Tﬁe trivial corresponding eigenvector
025 J is the vector of ones,1. This result has been used in
the proof of the consensus algorithm for single integrator
kinematic agents presented in [17]. Its usefulness in the
present framework is verified in the sequel.

0.4

0.35

B. Swarm Dispersion with collision avoidance
We propose the following control law
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JEN;
Fig. 1. The functiony;; for ¢ = 0.56 andd? = 0.96.

L) Oy 2pi;
partial derivative ofy;; are computed bW~;; = 2p;;D;;q U; = — Z (72> a—ql = Z v (Dij); q
and %’7 = 2pi; (Dij)i q Where JEN; (] jen, i

which can be rewritten as

A D 20
Pia = 0Bij u; = Z Tgm (Dij); a (2
and the matrice®;;,(D;;),, for i < j, are given by j#i
D, — sincep;; = 0 for 3;; > d*. We should note that each agent
Y OGi—1)xn takes into account only the agents within its sensing zone at
Oix(icty 1 Oixoicy —1 Oixn_j each time instant. We then hayge= 2 (R, ® I2) g, where
Oyi—i—1)xN ® I f;g =7
O1x(i-1) —1 Oixgi-1y 1 O1xn—j (R2);; =4 7707
— 2! 7é J

O(N_j)XN ’yij



We considerV = Z Z as a candidate Lyapunov 0, by virtue of Lemma 1. We tak¥ as a candidate Lyapunov

J function. V' is continuously differentiable withiff. Its time
function. Its gradient i |s computed by

derivative is given by (3)V = —8||(R2®[2)q||2 <0
W=y ( 5 )ny” = Since by virtue of Lemma 2, the swarm center remains
i i i constant, the boundedness of the solutions of the closed loop
=->3 2;’” D;jqg=—-2(R1®1I5)q system can be checked based on the relative positions of the
igF Y swarm members. Pick* > d. It is easy to see that since
where the matrixR; is given by pij = 0 whenevers;; > d, the set|¢; — ¢;|| < (N —1)d*
Z pig + S = for all 7,7 € N is positively iqvariant for the trajectories of
(R1), — iz Vi iz _the closed Ieep sys_tem._By virtue of LemmaZl_cq) UF (q)
R Pw T is also positively invariant. Since this set is closed and
Y bounded, we can apply LaSalle’s Invariance principle.
We now havefy = % = R = 2R,. By LaSalle’s Principle, the trajectories of the closed loop

’YT' . @ . . . . -
The time derivative of the candidate Lyapunov function isystem converge to the largest invariant subset of the set

now calculated as follows g { v 0} (ol (Ro® 1) 0
V(W) = (2R 9 L)q)" -2(R® ) g ! it = )
M2y — SRy ) q> <0 Note that withinS, we havej = u =2 (Ry ® I) g =0 =
(38) wu;=0,forallic N, ie. all agents eventually stop.
The first result of this section establishes collision avoidance We show next that the largest invariant subsetSofs
between the team members, as shown in the next Lemmahe setS, = {q|p;; =0,Vi,j € N,i # j}. Clearly, Sy is
Lemma 1:Consider the system of multiple kinematica subset ofS which is invariant for the trajectories of the
agents (1) driven by the control law (2) and startclosed loop system. Suppose now that > 0 for some
ing from a feasible set of initial conditiond (§) = pairs of the team members. We denote the undirected graph
{qlllg; — qj|l > 0,¥i,j € N,i # j}. Then the setZ (¢) is corresponding to the matrik> by G(R2). The assumption
invariant for the trajectories of the closed loop system.  that p;; > 0 for some pairs of agents guarantees that
Proof: For every initial conditiong(0) € Z(q), the time G(R2) has at least one edge. The graghR,) can now
derivative ofV remains non-positive for al > 0, by virtue be decomposed into its connected components. Note that
of (3). HenceV (q(t)) < V(¢(0)) < oo for all t > 0. Since since the graph is undirected, no vertex can belong to two
V — oo if and only if ||g; — ¢;|| — 0 for at least one pair different components simultaneously. Ignoring the connected
i,7 € N, we conclude thag(t) € Z (¢), for all ¢ > 0. $ components containing only one vertex (i.e. vertiégefor
Next, we show that the “swarm center” remains constanwhich p,; = 0 for all j # k), and rearranging the agent
Lemma 2:Consider the system of multiple kinematicindices accordingly, equatidi?; ® I>) ¢ = 0 can be decom-
agents (1) driven by the control law (2). Define the “swarnposed intom different equations, each of which corresponds
N to a different connected component 6f(R;). Specifi-

center (7 N 1; gi- Theng(t) = g(0) for all £ > 0. cally for the connected component containing agents/vertices

. N i1,99,...,4},4, € N,j=1,...1 with [ < n we have
Proof: We havej = + Z Gi=% Z 3 27@7 (Dij), q = {in, 22 1} J
N i=1 i=1jeN; % (R2®12)(j:0
=25 3 %ii(g—q;) =0 and the result follows¢ ; )
i=1jeN; T whereg=[ ¢/ ... ¢} | andthel x [ matrix R, has

By virtue of Lemma 1, collision avoidance is guaranteed,
the same form af; taking into account the set of agents
The control design however is also directly related to th }. By denotin the stack vectors af in the
final configurations of the swarm members. The main resulfl 2+t BY gz, y
of this section is summarized in the following Theorem: %Y dlrect|ons we haVG(R? ® 12) G=0= Rof = Rajj =
Theorem 3:Consider the multi-agent system0. The symmetric matrix?, has zero row sums and non-
(1) driven by the control (2) and starting from positive off-diagonal elements, i.e. it is a symmetric Metzler
a set of initial conditions Z(q) U F(¢q) where matrix. As mentioned in Section IIA, the eigenvaluesiof
7 (q) = {qlllgi — g;l| > 0,Vi,j € N,i # j} was defined in are nonnegative and zero is the smallest eigenvalue. However,

Lemma 1 and since R, corresponds to a connected graph (a connected
B L. o, component ofG(Rz)), zero is a simple eigenvalue dt,
Flo) =Aallla; — gl < (N =1)d", Vi, j € N,i # 5} with trivial corresponding eigenvector the vector of ones,

whered* > d is chosen arbitrarily. Then the agents reachl Hence equatlonsRQx = Rij=0 guarantee that both

a static configuration (i.e. all agents eventually stop) whicl, § are eigenvectors ak, belonging to spa{11} Thus all

satisfies elements ofj attain the same value, implying that all agents
lgi —q;ll > d,Vi,j € N,i#j. converge to a common point at steady state. However this is

Proof: Since the set of initial conditions coincides witllg),  impossible, since, due to the invarianceZd§), no trajectory

we havey; (t) # g;(t), for all i, j € N,i # j, and for allt > of the closed loop system starting frafitg) can ever leave



this set, i.eg;(t) # ¢;(t) for all ¢ > 0. We conclude that the where
largest invariant subset .cﬂ’ is Sp. Sincep;; = 0 only for Ry = Ry+diag {P1267 o P21Vb}
llgi — g;]| > d, the proof is complete b YNb
Hence at steady state, the closed loop system converges,jgy
a configuration in which each agent is located at a distance no . P1b ONb
less thand from every other agent in the group. This reveals Ry = diag {%b7 T 72Nb}
an important geometric property of the system at steady state. ,
Since any pair of agents is located at least at a distance'Ve also denote by..;, the stack vector of alj; ;,,. Similarly
from each other, each agent occupies a disc of ragiasn 0 the case of an unbounded workspace, using
which no other agent is present. In other words, the agents 1 1
are dispersed ta disjoint circular regions of radiug/2. Wy = ZZ ,T” + Z ﬁ
i j#i i
as a candidate Lyapunov function and computing its gradient
The previous case proposed a dispersion algorithm fevith respect tog we get
multiple kinematic agents in an unbounded workspace. In
practical applications such as coverage control and sensor VVy = —4(R3 ® I5) ¢ + 4 (R4 © I2) gmin
deployment the problem is to redefine the algorithm_in Ordeéfhe time derivative of, is now given by
to take into account the workspace boundary. In this paper,
we consider the case of a cyclic boundary of radRig. Vo = (VVi)" -4 = —8|(Rs ® 1) ¢ — (R4 ® I3) qrin||> < 0
However, the proposed design is applicable to any convex (5)
workspace. The purpose is to construct an inverse agreem#&i first show that the interior of the workspace is a positively
control law that forces the dispersing agents to remain withimvariant set for the trajectories of the closed loop system:
the workspace limits. Lemma 4:Consider the multi-agent system (1) driven by
A similar potential field to the one for the inter-agentthe control (4) and starting from the set of initial conditions

dispersion potential is used for the agent-boundary repulsiaig) N 7(q) where 7 (q) = {q|q € int (W) 2 W\(‘)W}
potential. Copying witlh the Iimi_ted sensing capab_ilities of0incides with the interior of the workspace afi(l;) was
the agents, the repulsive potential of each agent with respggtfined previously. Theff(¢) N J(qg) is invariant for the

IV. THE BOUNDED WORKSPACECASE

to the boundary of the workspace is given by trajectories of the closed loop system.
%ﬂib, 0< B <2 Proof: The invariance ofZ(¢) was shown in Lemma 1.
i Bi) = @0 (Biv) ., & < B < &3 Similar arguments are used to show the invariance ¢f).
hy, d2 < By For every initial conditiong(0) € Z(¢q) N J(q), the time
derivative ofV}, remains non-positive for atl > 0, by virtue
where B, = |lgi — Giminl’s d» < d and gimin = of (5). HenceVi(q(t)) < Vi(q(0)) < oo for all ¢t > 0.

arg mgrv%/ llg: — q||2. Note thatg; min is continuous for all SinceV, — oo wheneverg; — ¢; min for at least one agent
qc

i due to the convexity ofV. The positive scalary, c, and  * € N, and the latter implieg — 9, we conclude that
the function, are defined in such a way so thag is 4(1) € J(q), forallt > 0. & . o

rendered everywhere continuously differentiable. Each agentThus, if the agents start within the interior of the
has to have knowledge of the workspace boundary only whayprkspace, they are forced to remain within it. Furthermore,

located at a distance smaller thdpfrom it. Lemma 1 still holds and hence collisions are avoided. Similar
The control law for agent is now redefined as convergence results can now be derived from the stability
analysis held in the previous sections. We first formally state
= — Z 9 (1/7i;) 0 (1/7ib) that the agents reach a configuration wheye= 0 for all :

o 94 9qi Corollary 5: Consider the system of multiple agents (1)

driven by the control law (4) and starting from the set of

Using the notationp;, = 5% the control law can be initial conditionsZ(q) N J(q). Then the system reaches a

rewritten as configuration in whichu = 0, i.e.u; =0 for all i € NV.

B 2pi; Dib Proof: The set7(q) is closed and bounded for the tra-
Wi = Zi (Dij)iquQT (@i = di,min) ) jectories of the closed loop system, by virtue of Lemma

2
iz i ib . . S
g 4. From (5) we know thal/, is negative semidefinite. By
since LaSalle’s Invariance Principle, the trajectories of the closed
d (1 /i) 1 vy P G g loop system reach the largest invariant subset of the set
] - 2 o ] 7 7,min .
0¢; Yip 04 Vib Sp = {(J\VZ = 0} ={q|(R3® I2) ¢ — (R4 ® I2) qmin = 0}

It should be noted that;, = 0 for 3;, > d7 and p;;, > 0 for

By < d2. In stack vector form we then have Within S, we have ¢ = u = 2(R3@Ilz)q —

2 (R4 ® I3) gumin = 0, wherew is the stack vector ofi;’s.
G§=2(R3®13)q—2 (R4 ® I3) Gmin Hencew; =0 foralli e V.



We now proceed to show that the control law is related teshow the evolution of the closed loop system in time. The
the final relative positions of the agents in a manner similar tagents are located at their initial positions in the screenshot I.
the unbounded case. From the proof of Corollary 5 we deriv€ollision avoidance is fulfilled, due to the proposed control
that the system converges to the largest invariant subset d#sign. The agents disperse in the workspace and eventually
the setS,. Please note that the result of Lemma 4 holds fostop in screenshot Ill. Screenshot IV depicts the final posi-
arbitrarily smallcy,, dy,. For ¢, d, — 0, we have that either tions of the swarm members. Each agent occupies a disc of
¢i — Qimin, OF pip — 0, for those agents that do not satisfyradiusd/2. These discs are visualized in the last screenshot
the conditiong; — ¢; min- Thus, in this case by the large discs whose center is the corresponding agent.

(Rs ® o) g — (Rs ® Io) Gunin — By virtue of Theorem 3, the large discs are disjoint.

= (R2® 1) ¢ — (R4 ® I2) (¢ — Gmin)
Ry ®12)q— ((diag{‘%b,... m}) ®I2) (¢ — Gmin)

= Vip "R o o
= (R @ L) q— ; : - \ W
T 71T . . . — N
- |: % (Q1 - ql,rnin) % (QN - qN,min) :| ) I oo / l N
( -

= RQ@IQ)(]

since for eachi € NV, we have eitheg; — ¢; min, OF pis — 0,
for ¢, dp, — 0 as discussed above.

Therefore the setS, coincides with the setS of the
proof of Theorem 3. As proved in that Theorem, the larges
invariant subset withirt is the set

So = {qlpi; = 0,¥i,j € N,i # j} =
= {alllg: — ¢jll > d,Vi,j € N,i # j}

Hence the system reaches a configuration in which all agen
remain within the workspace bounds and each agent is
IocaFed at a distance ”9 Iess_ tmm_om e\{er_y other agent, Fig. 2. Swarm dispersion for nine single integrator agents. The agents
provided that such configuration exists within the workspac@sperse in the workspace and eventually occupy nine disjoint discs of radius
bounds This result is formally stated in the next Theorem:d/2, one for each agent.
Theorem 6:Consider the multi-agent team (1) driven by
the control law (4) and starting from the set of initial In the second simulation of Figure 3, we have again nine
conditionsZ(q) N J(q). Assume furthermore that the set single integrator agents navigating under the control law (4).
The workspace radius is given iy = 18 x d. The agents
B(q) ={q €int(W)|ll¢g; — q;|l > d,¥i,j € N,i # j} start from an initial condition where they are aggregated near
is nonempty. Then the system reaches a configuration {€ workspace center. Some agents approach the workspace
which all agents remain in the interior of the workspacePoundary and are forced to remain within it due to the exis-
and||g; — q;|| > d,Vi,j € N,i # . tence of the repulsive potential on the workspace boundary.
Remark 1: Similarly to the unbounded case, the nonCollision avoidance is fulfilled throughout the closed loop
emptiness of the seB(g) corresponds to a situation whereSYStem evolution. The workspace is large enough to allow
each agent occupies a disc@f? at steady state. Wheneverth€ agents to occupy nine disjoint discs of radiys at
the setB(q) is empty, i.e. there does not exist a configuratiorft€ady state, i.e. the sé of Theorem 6 is nonempty. This
in the interior of the workspace such thiy; —¢;| > S depicted in the last screenshot of Figure 3. .
d,Vi,j € N,i # j, the workspace is not large enough BY reducing the Workspace.radlus of the previous simu-
to fulfill the above geometric condition, and the systenfation, the set3 of Theorem 6 is rendered empty, i.e. there
converges to a configuration that minimizes the cost functio#C€S not exist a configuration in the interior of the workspace
V,, respecting the constraint imposed by Lemma 4 that trch that the conditiofig; — g;|| > d,Vi,j € N,i # j is
agents are forced to remain within the workspace boundafylfilled. This is the case in Figure 4, where we have set
In essence, some of thi'2-discs may overlap. This will be {tw = 16+d. The agents disperse again within the limits of
visualized via a specific example in the simulations sectiof® Workspace, avoiding collisions with each other. In the last
Remark 2: The results can be extended to the case whefSreenshot, some of the big circles of radif surrounding
the workspacéV’ is an arbitrary convex region. the agents overlap, since the getis now empty.

V. SIMULATIONS VI. CONCLUSIONS

To support the results presented in the previous para-We proposed an inverse agreement control strategy for
graphs, we provide a series of computer simulations. multiple kinematic agents that forces the team members to
In the first simulation, nine single integrator agents navidisperse in the workspace in a distributed manner. Both the
gate under the control law (2). Screenshots I-lll in Figure 2ases of an unbounded and a cyclic, bounded workspace



) ) [2]
f-»\ 7 2
u . u

INGA Y i

Fig. 3. Swarm dispersion for nine single integrator agents in a boundegs)
workspace. The workspace is large enough to allow the agents to occupy
nine disjoint discs of radiug/2 at steady state. Agents are forced to remain

within the workspace boundary. [6]
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Fig. 4. Swarm dispersion for nine single integrator agents in a bounde[d
workspace. The workspace is not large enough to allow the agents to occypyp]
nine disjoint discs of radiug/2 at steady state. These discs are overlapping
in screenshot IV.

[17]

were considered. In the first case, we showed that the C|OSﬁ9]
loop system reaches a configuration in which the minimum
distance between any pair of agents is larger than a specific
lower bound. It was proven that this lower bound coincide&?!
with the agents’ sensing radius. In the case of a bounded
cyclic workspace, the control law was redefined in order t{20]
force the agents to remain within the workspace boundary
throughout the closed loop system evolution. Moreover thg;
proposed control design guaranteed collision avoidance be-
tween the team members in both cases. The results wers,
supported through a series of computer simulations.

Current research involves exploring the relation of the
sensing radius, the number of agents and the radius of the
workspace with the emptiness of the sBt of Theorem
6. Furthermore, the results should be extended to take
into account second integrator and nonholonomic models of

agents’ motion. Finally, we aim to apply the results to a real
experimental multi-robot testbed.
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